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ABSTRACT 

Sudoku is a logical puzzle that has achieved international popularity.  Given this, there have been a number of computer solvers 
developed for this puzzle. Various methods including genetic algorithms, simulated annealing, particle swarm optimization and 
harmony search have been evaluated for this purpose. The approach described in this paper combines human intuition and optimization 
to solve Sudoku problems. The main contribution of this paper is a set of heuristic moves, incorporating human expertise, to solve 
Sudoku puzzles. The paper investigates the use of genetic programming to optimize a space of programs composed of these heuristics 
moves, with the aim of evolving a program that can produce a solution to the Sudoku problem instance. Each program is a 
combination of randomly selected moves. The approach was tested on 1800 Sudoku puzzles of differing difficulty. The approach 
presented was able to solve all 1800 problems, with a majority of these problems being solved in under a second. For a majority of the 
puzzles evolution was not needed and random combinations of the moves created during the initial population produced solutions.  For 
the more difficult problems at least one generation of evolution was needed to find a solution. Further analysis revealed that solution 
programs for the more difficult problems could be found by enumerating random combinations of the move operators, however at a 
cost of higher runtimes. The performance of the approach presented was found to be comparable to other methods used to solve 
Sudoku problems and in a number of cases produced better results. 
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1. INTRODUCTION 
A fair amount of research has been conducted into the 
derivation of methods for solving Sudoku problems. Initially 
these were brute force methods but as this domain developed 
further optimization techniques such as genetic algorithms, 
simulated annealing, bee colony optimization and particle 
swarm optimization, amongst others, have been evaluated as a 
means of solving Sudoku puzzles. It is evident from this 
research that Sudoku puzzles are not trivial to solve. 

The research presented in this paper firstly contributes to the 
area investigating techniques for solving Sudoku problems.  A 
set of heuristics, based on human intuition, have been derived 
for solving Sudoku. These heuristics are essentially moves 
which are applied to a Sudoku puzzle and incorporate human 
expertise. The paper also evaluates the use of a genetic 
programming approach (GPA) to combine these moves into 
programs for solving Sudoku. Genetic programming (GP) [14] 
is a variation of genetic algorithms which attempts to solve 
problems by finding an optimal program, which when 
implemented will produce a solution to the particular problem. 
GP is based on Darwin’s theory of evolution and iteratively 
improves an initial population through the processes of 

evaluation, selection and regeneration to induce a program that 
produces a solution.  Tournament selection is traditionally used 
to select parents in a GP system. Crossover, mutation and 
reproduction are commonly used for regeneration.  According 
to Banzhaf et al. [2] programs have been represented using 
various structures, e.g. parse trees, linear structures, matrices. 
More recently strings have also been used for this purpose. 

The GPA explores a space of programs composed of Sudoku 
moves so as to identify a sequence of moves that will produce a 
solution to the puzzle. The GP approach is tested on 1800 
puzzles of differing difficulty and where possible the 
performance of the GPA is compared to other methods used to 
solve Sudoku puzzles. The study revealed that evolution was 
not needed and random combinations of the heuristics were 
found to easily solve Sudoku problems at various difficulty 
levels. However, for the more difficult problems, including AI 
Escargot, the genetic programming approach was found to 
reduce the runtimes needed to generate a solution producing 
program.   

Although this paper focuses on Sudoku puzzles the heuristic 
moves and approach presented can be applied to a number of 
puzzles similar to Sudoku including CalcDuko, Killer Sudoku, 
Futoshiki, Kakuro, Killer Sudoku, Alphadoku, Irregular 
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Sudoku, Latin Squares, Sudoku Dragon, Word Sudoku, Jigsaw 
Sudoku and Samurai Sudoku.  The research presented in this 
paper also contributes to the recent shift in the area of 
combinatorial optimization to search a space of move operators 
rather than a solution space to find solutions [27] and provides 
an example of the derivation of heuristic moves for a particular 
domain. 

A description of Sudoku puzzles and previous methods that 
have been used to solve these puzzles is presented in Section 2.  
The heuristic moves and genetic programming approach and the 
methodology employed to evaluate this approach are described 
in sections 3 and 4 respectively.  The performance of the GPA 
is discussed in section 5.  A summary of the findings of the 
study and future work are presented in section 6. 

2. SUDOKU PUZZLES 
This section provides an introduction to Sudoku puzzles and 
provides an overview of the different methods that have been 
evaluated for solving Sudoku. 

2.1 An overview 

Sudoku was developed by Howard Garns and the first Sudoku 
puzzle become popular in Japan and was named Sudoku 
meaning single numbers [6]. The grid for an n × n Sudoku is 
comprised of n × n (i.e. n2) rows, columns and squares. For 
example a 3 ×  3 Sudoku puzzle consists of 3 times 3, i.e. nine 
rows, columns and blocks. This paper focuses on the 3 × 3 
Sudoku puzzle, an example of which is illustrated in Figure 1. 
The intersection of each row and column forms a cell which 
contains a number from 1 to 9. For example, the intersection of 
the first row and column in Figure 1 is a cell containing a 4.  
The intersection of the first row and second column is an empty 
cell.  Each row and column contains three blocks. In Figure 1 
the outlines of these blocks are highlighted. Each block 
encompasses 3 rows and 3 columns. 

Sudoku puzzles are a subset of Latin squares [6, 15, 16].  
Solving the puzzle involves placing the digits 1 to 9 so that 
these digits occur only once in each row, column and block. 
Depending on the difficulty of the puzzle, the time needed to 
solve a Sudoku puzzle ranges from O(1) [3] to non-polynomial 
time. Hence, Sudoku is an NP-complete problem [5, 13, 28]. 
Various scales have been used to categorize Sudoku problems 
with respect to difficulty and these appear to vary from one 
study to the next. The most commonly used scale describes 
problems as easy, medium, hard and super hard [1, 5].  There 
has also been an attempt to standardize the scale used according 
to the grading system used for certain Japanese martial arts such 
as karate and judo. The categories used are white belt, green 
belt, brown belt, black belt, second degree black belt and third 
degree black belt, with white belt being the easiest level and 

third degree black belt the hardest. In 2006 a Sudoku puzzle 
named ‘AI Escargot” was deemed to be the most difficult 
Sudoku puzzle [11]. Certain techniques, such as the SAT 
technique unit resolution with failed literal propagation, were 
unable to solve this problem [11]. The difficulty of a Sudoku 
puzzle can be measured by the positioning of the numbers on 
the grid and not the number of givens on the grid [23].  Pelanek 
[28] proposes an alternative to assess the difficulty of Sudoku 
puzzles, namely, the difficulty of steps required to solve the 
problem and the dependency between the steps. 

Based on the literature, there appears to be three main areas 
of research into Sudoku problems, namely, generating Sudoku 
puzzles [4], assessing the difficulty of Sudoku puzzles [4, 11, 
28] and solving Sudoku puzzles.  The research presented in this 
paper focuses on the latter and an overview of the methods used 
to solve Sudoku puzzles follows. 

2.2 Solving Sudoku 

There has been a fair amount of research into solving Sudoku 
puzzles. The earlier work in this field examined the use of brute 
force methods for solving Sudoku. While these methods worked 
well for easy problems they were not very effective for difficult 
puzzles and had high runtimes.   

Evolutionary and genetic algorithms have been the most 
frequently researched method for solving Sudoku.  A lot of this 
research has focused on investigating the use of effective 
genetic operators, i.e. crossover and mutation for this domain. 
While these algorithms appear to perform generally well for this 
domain they do not scale well with either no success or lower 
success rates for more difficult Sudoku puzzles.  Furthermore, 
the use of grammatical evolution in a genetic algorithm to 
produce instructions for solving Sudoku puzzles was not 
successful at solving this problem. 

Hybrid approaches have also proven to be fairly successful in 
solving Sudoku puzzles. Comparative studies examining the 
performance of different methods in solving the same set of 
problems have also been conducted.  

Certain methods, such as genetic algorithms, have been 
found to have high runtimes in solving Sudoku puzzles.  The 
use of parallel processing has been investigated as a means of 
reducing runtimes. 

The following sections give a brief overview of the various 
methods that have been used for solving Sudoku.  The reader is 
referred to the literature for more detail. 

2.2.1 Brute force methods 

Kovacs [15] outlines some of the brute-force methods used to 
solve Sudoku puzzles. The simplest method randomly assigns 
numbers to the empty cells and checks whether the completed 
puzzle is a solution. If not, this process is repeated until a 
solution is found. Clearly, this method can be very time 
consuming. A similar method is to generate all possible 
combinations for the empty cells.  This can only be done for 
easy problems. Kovacs also suggests creating a search space for 
the puzzle and applying searches such as a depth-first search 
with backtracking. 

2.2.2 Evolutionary and genetic algorithms 

A fair amount of research has been conducted into the use of 
evolutionary and genetic algorithms to solve Sudoku puzzles. 
Evolutionary and genetic algorithms are based on Darwin's 
theory of evolution and as such evolve an initial population 
through the processes of evaluation, selection and regeneration 
to find a solution.  Genetic operators such as reproduction, 
mutation and crossover are generally used for regeneration 
purposes. 
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Figure 1. Sudoku puzzle 
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Aid [1] uses an evolutionary algorithm to solve easy, 
medium and hard Sudoku problems. An individual in the 
population is composed of nine chromosomes, each 
representing the nine rows of the Sudoku board. The algorithm 
was tested on four Sudoku problems with ten runs being 
performed for each problem. The EA achieved a success rate of 
a 100% for the easy problem, 80% for the medium and 20% for 
the hard problem.   

Das et al. [5] employ a retrievable genetic algorithm to solve 
Sudoku puzzles. This GA differs from the standard GA in that 
the population is reinitialized after a set number of generations 
in an attempt to escape local optima. The GA was tested on 9 
sample problems, 25 easy, 25 medium and 25 hard problems. A 
100 runs were performed for each problem.  The retrievable GA 
was also able to find solutions for all 25 easy, 25 medium and 
25 hard problems, with lower success rates for the hard 
problems.  

Galvan-Lopez and O’Neill [7] study the locality of genetic 
operators in an evolutionary algorithm for solving the Sudoku 
problem. Four operators, namely, one cycle crossover, multi-
cycle crossover, partially matched crossover and uniform swap 
crossover were studied.  The evolutionary algorithm is used to 
solve 6 Sudoku problems. The partially matched crossover and 
uniform swap crossover were found to be the most successful at 
finding the global optimum.  

Mantere and Koljonen [21] also use a genetic algorithm to 
solve Sudoku puzzles. The GA was tested on five Sudoku 
puzzles published in the local newspaper and five generated 
puzzles. The levels of difficulty of the newspaper puzzles were 
easy, challenging, difficult and super difficult. Solutions were 
found for all puzzles with the success rate for the easy puzzles 
being much higher than that for the other puzzles. In later work 
Mantere and Koljonen [22] incorporate cultural learning in a 
GA to solve Sudoku puzzles.   

Moraglio et al. [24] propose geometric crossover operators 
for use with an evolutionary algorithm for solving Sudoku. The 
algorithm was tested on five problems, three easy, one medium 
and one hard and was able to find solutions for all problems 
except the medium problem.  

Hamnes and Julstrom [10] introduce an iterated mutation 
operator for use in an evolutionary algorithm to solve Sudoku 
puzzles. The approach was applied to 100 Sudoku puzzles.   

Sato [36] proposes crossover and mutation operators that 
preserve building blocks by using local search, for use in a GA 
to solve Sudoku. The GA with the proposed operators was used 
to solve two problems for the following levels of difficulty: 
easy, intermediate and difficult and three difficult Sudoku 
problems provided in the literature. The approach found 
solutions for all problems.  A 100 runs were performed for each 
problem.  A success rate of 100% was obtained for the easy and 
intermediate problems, 96% for the difficult problems, 98%, 
83% and 58% for the three difficult problems from the 
literature.  

Nicolau and Ryan [26] implement a GA using grammatical 
evolution (GAuGE) to obtain solutions to the Sudoku problem. 
In this case a GA is employed to find an optimal set of 
instructions which, when executed, will solve the puzzle. The 
approach was not able to solve all the problems it was tested on.  

Sato et al. [37, 38] attempt to reduce the runtimes of GAs in 
solving Sudoku puzzles by taking a multi-core approach to the 
implementation of the GA. A multiple-population coarse-
grained GA is used to solve Sudoku problems.   

2.2.3 Harmony search 

Geem [9] evaluates harmony search as a means of solving 
Sudoku. This algorithm emulates different behaviours of 
musicians including random play, memory-based play and 

pitch-adjusted play. The harmony algorithm was able to solve 
an easy Sudoku puzzle in 9 seconds. The algorithm was unable 
to solve the hard problem which it was also applied to. 

2.2.4 Boolean satisfiability methods 

Methods that have been successfully used to solve the Boolean 
satisfiability problem have also been applied to this domain. 
Henz and Truong [11] test the following SAT propagation 
techniques to solve Sudoku problems, namely, failed literal 
propagation, binary failed literal propagation, hyper-binary 
resolution and a variation of grid analysis. These methods were 
tested on the AI Escargot problem and 20 other problems 
described as the most difficult Sudoku problems. All the 
methods except failed literal propagation were able to find 
solutions for all problems. The grid analysis variation proved to 
be the most efficient with the shortest runtimes. 

2.2.5 Bee colony optimization 

Bee colony optimization has also been applied to solving 
Sudoku puzzles [12].  Each Sudoku puzzle is represented as a 
two-dimensional array. The algorithm used solves the puzzle by 
emulating the process used by bees when foraging for food. 
Pacurib et al. [28] have also successfully applied a bee colony 
optimization algorithm to solve Sudoku puzzles. 

2.2.6 Simulated annealing 

Lewis [16] employs a process using simulated annealing to 
solve Sudoku puzzles published in daily UK newspapers. The 
process begins by randomly assigning numbers to empty cells 
in such a manner that each square contains just one occurrence 
of each number. This initial potential solution is then improved 
using simulated annealing. The approach found solutions for all 
puzzles it was applied to. 

2.2.7 Particle swarm optimization 

Moraglio et al. [23] evaluate geometric particle swarm 
optimization as a means of solving Sudoku puzzles. This 
approach was able to find a solution to the problem it was tested 
on but the success rate over fifty runs was not as high as other 
methods applied to the same problems. 

2.2.8 Hybrid approaches 

Khan et al. [13] use a combination of message passing and 
Sinkhorn balancing to solve Sudoku puzzles. This hybrid 
approach was found to scale well. After a certain number of 
iterations the message passing process is terminated and a 
solution check which attempts to guess the missing number is 
performed. The hybrid was tested on 2356 9x9 puzzles and 44 
16x16 puzzles. The approach solved all problems with lower 
success rates for problems with more unknowns. 

Machado and Chaimowicz [19] combine a constraint 
satisfaction algorithm and simulated annealing to solve Sudoku 
puzzles. Three approaches are tested, namely, the 
implementation of two constraint satisfaction algorithms (arc 
consistency and path consistency), an extension of the first 
approach using simulated annealing to further improve a 
potential solution that could not be improved any further using 
the constraint satisfaction algorithms, the third method again 
extends the second approach by using a process to fill empty 
cells on the board prior to the application of simulated 
annealing. These methods were applied to generated puzzles. 
All puzzles were solved in less than five seconds by the latter 
two approaches. 

Mullaney [25] employs an ant system to solve Sudoku 
problems. Each ant uses a tabu search to explore the puzzle 
space. The approach was tested on a set of 95 hard Sudoku 
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problems. Ant colonization optimization together with shortest 
tabu list produced the best results finding solutions for all 
problems and required 120 minutes to solve each problem. 

Deng and Li [7] take a hybrid approach combining genetic 
algorithms and particle swarm optimization to solve Sudoku 
puzzles. 

2.2.9 Comparative studies 

Perez and Marwala [31] compare the performance of a cultural 
genetic algorithm, repulsive particle swarm optimization, 
quantum simulated annealing, and a hybrid approach combining 
a genetic algorithm and simulated annealing, in solving Sudoku. 
Repulsive particle swarm optimization differs from the standard 
approach by escaping from local optima by causing particles to 
repel each other. Quantum simulated annealing incorporates the 
use of quantum tunneling into simulated annealing. The hybrid 
approach firstly creates an initial potential solution using the 
GA. When the GA can no longer improve the potential solution, 
simulated annealing is used to obtain improvements. All the 
methods except repulsive particle swarm optimization were able 
to solve the Sudoku puzzle with the hybrid approach requiring 
the least amount of time to solve the problem. 

In a survey paper on Sudoku Serpen and Greenm [39] 
present an overview of various methods that have been used to 
solve Sudoku including a steepest ascent and greedy hill-
climbing hybrid, a chromatic polynomial formulation of the 
Sudoku problem, geometric particle swarm optimization, 
artificial immune systems, neural networks, simulated 
annealing, quantum simulated annealing, bee colonization, a 
constraint propagation formulation of Sudoku, constraint 
propagation and a depth-first search with backtracking hybrid 
and linear programming. The constraint propagation and depth-
first hybrid was able to solve 95 hard Sudoku problems 
requiring 0.125 seconds to solve a puzzle. The linear 
programming approach described by Serpen solved puzzles in 
16 seconds.  Simulated annealing was found to perform better 
than quantum simulated annealing solving 14 of the 40 
problems it was tested on while quantum simulated annealing 
could only solve 6 of these problems. Geometric particle swarm 
optimization and bee colonization obtained higher success rates 
of 47.5% and 55% respectively. 

3. HEURISTIC MOVES AND THE GPA 
This section describes the genetic programming approach 
implemented to solve Sudoku problems. The first section 
presents components each program will be composed of, 
namely, Sudoku moves. This is followed by a description of the 
algorithm used to search the program space. 

3.1 Sudoku moves 

This section describes nine moves for solving Sudoku. These 
moves are based on human tactics used to solve Sudoku.  Please 
note that the character in brackets is used to represent the move. 

3.1.1 Row move (r) 

This move applies a row operator to each row of the Sudoku 
grid. The pseudo code for the row operator is listed in Figure 2. 
The row operator attempts to place the missing numbers in the 
row. For example, consider the first row in the grid in Figure 1. 
The row operator will attempt to place the missing numbers, 
namely, 2, 3, 6, 7 and 8. The numbers 2, 6 and 7 have more than 
one empty cell as an option and therefore are not placed. The 
numbers 3 and 8 can be placed.  The number 3 cannot be placed 
in the first two available cells as the block these cells occur in 
contains a 3.  Similarly, a 3 cannot be placed in the next two 

available cells as the columns that these cells occur in already 
have a 3.  Thus, the 3 is placed in the last available cell. The 
number 8 cannot be placed in the first two available cells and 
the last two available cells in this row as the blocks containing 
these cells already have the number 8.  The 8 is placed in the 
third empty cell in this row. The row operator is applied to the 
nine rows of the grid sequentially. The effect of applying this 
heuristic to the grid in Figure 1 is illustrated in Figure 3. 

 
3.1.2 Column move (c) 
 
Like the row move the column move applies the column 
operator to each column sequentially. The column operator also 
attempts to place the missing numbers in the particular column.  
An application of the column heuristic to the Sudoku grid in 
Figure 1 is depicted in Figure 4. 
 
 

 
 
 
 
 

 
 

4. TABLES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Procedure row_op(row) 
Begin 
  for  nums →1 to 9 
    begin 
      fin → false 
     for cells → 1 to available spaces in row AND NOT fin 
       begin 
         if (the column containing the next available cell does not contain 
            nums AND the block containing the next available cell does  
            not contain nums) 
           if (a cell has not been found yet) 
            cell → next available cell 
           else 
            fin → true             
       endfor 
 
      //If fin is not true only one cell has been found for nums 
 
       if (!fin)      
        Update the grid to store nums in cell 
    endfor 
End 

Figure 2. Pseudo code for the row operator 
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3.1.3 Block move (b) 

This move performs a similar function to that of the row and 
column heuristics and applies the block operator to each block 
sequentially.  The operator is applied from left to right. Figure 5 
illustrates an application of the block operator to Figure 1. 
 

3.1.4 3-row move (w) 

This move applies a 3-row operator to each row that contains 3 
empty cells.  The operator is applied sequentially. If there are 
three spaces in a row and two of the missing numbers cannot be 
placed in a particular cell because the column or block 
containing the cell already has these numbers, the third number 
has to be placed in this cell. For example, consider the seventh 
row of Figure 5.  The numbers missing in this row are 1, 2 and 
8. The numbers 1 and 2 cannot be placed in the third empty cell 
in the row.  Thus, 8 should be placed in this cell.   

3.1.5 3-column move (l) 

The 3-column operator is applied to each column sequentially. 
The 3-column operator performs the same function as the 3-row 
operator for columns. For example, consider the fifth column in 
Figure 5. The numbers 1, 4 and 9 must be added to this column. 
The numbers 4 and 9 cannot be added to the third empty cell in 
this column thus 1 must be placed in this column. 

3.1.6 3-block move (k) 

This move performs the same function as the 3-row and 3-
column moves on blocks.  The 3-block operator is applied to the 
blocks sequentially from left to right. For example, there are 3 
available spaces in the sixth block in Figure 5. The numbers 
missing from this block are 6, 7, and 8. Consider the third cell.  
The numbers 7 and 8 cannot be placed in this cell as both these 
numbers already occur in the column the cell lies in.  Hence, 6 
must be placed in this cell. 

3.1.7 Try-row move (3) 

The try-row move operator applies the try-row operator to each 
row sequentially. The try-row operator works through the 
missing numbers in the row until it finds a number for which 
there are two empty cell options the number can be placed in. A 
cell option would be a cell which does not lie in a column or 
block that already contains the missing number. Note that one 
of the two cells will be the correct position for the  number but 
at this stage it is not known which one is the right cell. Thus one 
of the cells is randomly selected and the number is allocated to 
it.  Hence, this move can contribute to generating a solution or 
may prevent a solution from being generated if the incorrect cell 

is chosen. The pseudo code for this operator is illustrated in 
Figure 6.   

For example, consider the fifth row in Figure 5. The number 
2 can be placed in the fourth or fifth cells in this row. The try-
row operator will randomly choose one of the cells to place the 
number 2 in. 
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Figure 5. Application of the block move 
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Figure 7. Application of clkb in solving the Sudoku puzzle 

Figure 4. Application of the column move 
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Figure 6. Pseudo-code for the try-row operator 

Procedure try_row_op(row) 
Begin 
   fin → false 
  for  nums → NOT fin AND 1 to 9 
    begin 
      if (there are two free cells in which nums can be placed) 
       begin 
          cell → randomly chose between the two cell options 
          fin → true             
         Update the grid to store nums in cell 
       endif 
    endfor 
End 
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3.2  GP approach 

The GPA employs a generational control model, which 
iteratively refines an initial population through the processes of 
evaluation, selection and regeneration, to search the program 
space.  These processes are described below. 

3.2.1 Initial population generation 

Each element of the population is a program consisting of one 
or more characters representing a Sudoku move.  For example, 
2wllc is an element of the population. In this case the Sudoku 
puzzle is solved by firstly applying the try-block move, 
followed by the 3-row move, the 3-column move twice and 
finally the column move. The length of each program is chosen 
to be between 1 and 50. This value was chosen given the results 
of trial runs conducted. The initial population has a variation of 
100%, i.e. duplicates are not permitted.  The fitness of each 
program is defined in terms of its effectiveness in solving the 
Sudoku puzzle. This is discussed in the following section. 
 

3.2.2 Evaluation and selection 

Each program is evaluated by using it to solve a Sudoku puzzle.  
For example, suppose that an individual of the population is 
clkb and the Sudoku puzzle to be solved is that depicted in 
Figure 1. Figure 7 illustrates how clkb is applied to solving this 
puzzle. 

The fitness of the program is the number of missing numbers 
in the Sudoku grid after the program has been applied to it.  In 
this example the fitness of clkb is 6. A fitness of 0 indicates that 
application of the moves in the string have solved the puzzle. 
Thus, the GPA aims to minimize the fitness. Note that there is 
no need to check for duplicates when calculating the fitness as 
the moves are defined to ensure that duplication of numbers 
cannot occur. 

Tournament selection is used to choose parents for 
regeneration. This method creates a subset of individuals which 
are randomly selected from the population. The size of the 
subset is problem dependant. The fittest individual, in this case 
the individual with the lowest fitness, of the subset is the winner 
of the tournament and is a parent of the next generation. 
Selection is with replacement, and thus an individual may be 
chosen to be a parent more than once. 

3.2.3 Genetic operators 

The mutation and crossover operators are used to create the 
offspring of each generation. As mutation and crossover can be 
reduced to reproduction, the reproduction operator is not 
explicitly applied. 

The mutation operator firstly randomly selects a mutation 
point in a copy of the parent.  The move at this point is replaced 
with a move that is randomly selected from the moves. For 
example suppose that kwllc is a copy of the chosen parent and 3 
has been randomly selected as the mutation point.  The move l 
will be replaced by a randomly chosen move. A possible 
offspring is kwklc, i.e. the 3-block move (k) was randomly 
selected to replace the 3-column move (l). Note that l could be 
chosen as a replacement move in which case the mutation 
operator will basically perform reproduction. 

The crossover operator is applied to two parents. Crossover 
points are randomly selected in copies of both the parents. Both 
programs are “crossed over” at the crossover points. The fitter 
of the two offspring is returned as the result of the operation. 
This operator varies from the standard crossover operator used 
in GP as it returns the fitter of two offspring.  It was evident 

from trial runs conducted that it was more effective to return the 
fitter offspring instead of both offspring. 

Suppose that 2wllc and clkb are copies of the selected parents 
and 2 is randomly selected as a crossover point in the first 
parent and 3 in the second.  The corresponding offspring are 
2kb and clwllc. Both these offspring are applied to solving the 
Sudoku problem and the fitter of the two is returned as the 
offspring.  If the offspring have the same fitness the first 
offspring is returned. Suppose that 2wllc and clwllc have been 
chosen as parents and 3 is the crossover point in the first parent 
and 4 in the second parent.  Then in this case crossover is 
reduced to reproduction.   

4.  EXPERIMENTAL SETUP 
The GPA was tested on the following 1800 problems of varying 
difficulty rated according to the Japanese martial art grading 
taxonomy with white belt representing easy problems and 3rd 
degree black belt representing the most difficult problems: 
 
• 300 white belt problems (Rios 2005) 
• 300 green belt problems (Rios 2005) 
• 300 brown belt problems (Rios 2005) 
• 300 2nd degree black belt problems (Longo 2005) 
• 300 3rd degree black belt problems (Longo 2007) 

 
 These problems were obtained from the Sudoku puzzle books 
compiled by Michael Rios and Frank Lango.  

Most of the methods proposed by previous studies on 
Sudoku were evaluated on inaccessible sources obtained from 
newspapers and books. The following problems cited in 
previous work were used to compare the GPA to other methods 
applied to the same domain: 

 
• The most difficult problem, namely, AI Escargot presented 

in (Henz and Truong 2009). 
• The 20 most difficult problems tested by Henz and Truong 

(2009). 
• The 9 problems used by Sato (2010). 
• The easy and hard problem evaluated in (Geem 2007). 
• The problem presented by Perez (2008). 

 
Values of the genetic parameters were determined 

empirically by performing trial runs. These values are listed in 
Table 1. Using fairly small values like 20 for the population 
size resulted in the GPA not being able to find solutions for the 
more difficult problems. While slightly larger population sizes 
resulted in programs producing solutions being evolved, the 
number of generations and runtimes needed for the harder 
problems were higher than when using a value of 500. Larger 
population sizes did not result in any improvements in 
performance. 

 
 
 

Table 1. Genetic parameter values 
Parameter Value 
Population size 500 
Number of generations 50 
Tournament size 4 
Mutation rate 0.5 
Crossover rate 0.5 
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Table 2. Simulation results 
Problem Set Success 

Rate 
Min. No. of 
Generations 

Max. No. of 
Generations 

White belt 100% 0 1 
Green belt 100% 0 1 
Brown belt 100% 0 2 
Black belt 100% 0 7 
2nd degree black belt 100% 0 9 
3rd degree black belt 100% 0 8 

 
The genetic programming approach was implemented in Java 

using JDK 1.6.0 and all simulations were run on a Windows XP 
machine with a 1995 MHz Intel processor. 

5. RESULTS AND DISCUSSION 
Due to the stochastic nature of genetic programming 30 runs, 
each with a different random number generator seed, was 
performed for each problem. The results of the simulations are 
listed in Table 2. 

The success rate refers to the percentage of the 30 runs 
solving all 300 problems (300 x 30) in the set.  The table also 
lists the minimum and maximum number of generations needed 
to find a solution over the 30 runs for all 300 problems in the 
group. For Sudoku puzzles of all levels of difficulty the 
minimum number of generations needed to find a solution is 0.  
This means that no evolution was needed and a program 
producing a solution was found in the initial population. The 
maximum number of generations needed to produce a solution 
varies, depending on the difficulty of the problem. The 
maximum and minimum runtimes are listed in Table 3.   

Table 4 and Table 5 show the distribution of the number of 
generations needed to find a solution for the 300x30 runs 
conducted for each group of problems of differing difficulty. 
From these tables it is evident that as the difficulty of the puzzle 
increases there is more of a distribution over the number of 
generations needed to find a solution. 

 
 

Table 3. GPA Runtimes 
Problem Set Minimum 

Runtime 
Maximum 
Runtime 

White belt < 1  ms. 407 ms. 
Green belt < 1 ms. 422 ms. 
Brown belt < 1 ms. 578 ms. 
Black belt < 1 ms. 625 ms. 
2nd degree black belt < 1 ms. 1281 ms. 
3rd degree black belt < 1 ms. 1219 ms. 

 
 
 
Table  4. Number of generations distribution over 30 

 runs 
Generation White Green Brown Black 

0 8992 8985 8923 8881 
1 8 15 63 96 
2 0 0 14 11 
3 0 0 0 5 
4 0 0 0 3 
5 0 0 0 0 
6 0 0 0 1 

Table 5. Number of generations distribution over 30 runs 
continued 

Generation Black 2nd Degree Black 3rd Degree 
0 7644 7780 
1 1053 968 
2 188 170 
3 60 47 
4 33 19 
5 13 9 
6 4 5 

 
     Table 6.  Examples of programs evolved 

Level of 
Difficulty 

Programs 

White cckbr431,2kr34brr14223w1,  kbrcw1kbwcr33ww3r, 
3rr4b2wbb2334, 1rbkc2kwr 

Green r324krw1c4k4bkb11k1, 33rcw3cww14,  
b41bcc3rrrwk, cwcrkrrbcrb, k1crccr 

Brown b1bwcrcc2cr44k23kccw4, 3w22bccr1crbr42,  
wwc1k131ckbbk, kccccww4r1rbw,  
3b12rkw1rrkww 

Black 4k4442b1c4w1w3cwwrb4, br144wbcrk14c,  
1bk1ckbbkcbk1c13w1b3  
wbkrkkwc2rw4rw2kkwb1, 2rk441r3r3r1wwk311k 

Black 2 31b2brk43wbrkc1b3kc3c, 413rbb31kr3bwbbck,  
kwr42bc1rwcbb132r, 
rc11b1cwc3223rwk2r4kb4b43, 1wkc3b2brwbb 

Black 3 3bbc33w3kc22kbcrb13c1c42k, 
k1r3rbw3b41c1w1cbkkr, rcr11b2423rr13324kc114, 
41r224k2crbrwbrc, bw4r24cb1b121crrbc 

 
Programs producing a solution for each of the runs for  a 

problem were found to be different. Similarly, programs that 
produced solutions for the different problems also differed.  
This can be expected as more than one combination of moves 
can lead to a solution.  Furthermore, due to the stochastic nature 
of the approach and some of the operators, the approach appears 
to adapt to random noise and hence different optimal programs 
are produced for different runs. Thus the programs are 
disposable, i.e. a program is generated for a particular run. 

Table 6 lists examples of the programs evolved for each 
group of problems. As the difficulty of the puzzle increases the 
size of the program appears to increase, i.e. more moves are 
needed to solve the problem.  

The performance of the GPA was compared to that of the 
following methods used to solve Sudoku problems: 
• The harmony search algorithm implemented by Geem 

(2007).  This method was applied to an easy and hard 
problem. 

• The SAT methods used by Henz and Truong (2009) to 
solve AI Escargot and 20 difficult Sudoku puzzles. 

• The cultural genetic algorithm, quantum simulated 
annealing and the genetic algorithm and simulated 
annealing hybrid tested by Perez and Marwala (2008). 

• A genetic algorithm applied by Sato (2010) to solve 9 
Sudoku puzzles. 

 
These methods are described in section 2.  The GPA was 

applied to same set of problems that each of these methods was 
tested on. Thirty runs were performed for each problem.  

The harmony algorithm implemented by Geem (2007) took a 
minimum of 9 seconds to solve the easy problem.  The GPA 
was able to solve this problem in less than a millisecond.  For 
all 30 runs zero generations were needed to generate a program 
that produced a solution.  The harmony search was unable to 
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solve the hard Sudoku problem. The GPA was able to solve this 
problem in a minimum time of 15 milliseconds.  As with the 
easy problem no evolution was needed to solve the puzzle and a 
program producing a solution was found in the initial 
population for all 30 runs. 

Henz and Truong (2009) evaluate various SAT methods, 
namely, failed literal propagation, binary failed literal 
propagation, hyper-binary resolution and a variation of grid 
analysis.  The minimum runtime needed to produce a solution 
for AI Escargot was 76 seconds. Runtimes for the 20 difficult 
problems are not specified. All of these methods with an 
exception of failed literal propagation were able to find 
solutions to AI Escargot and the 20 difficult problems. The 
GPA was also able to find solutions for all of these problems.   
The success rate, minimum and maximum number of 
generations needed to find a solution, and minimum and 
maximum runtimes (seconds (s) or milliseconds (ms)) over the 
30 runs are listed in Table 7. Depending on the difficulty of the 
problem, the minimum and maximum number of generations 
needed to evolve a program producing a solution varies 
between 0 and 2 and 2 and 20 respectively.  From Table 7 it 
appears that the GPA found problems 7, 15, 17 and 20 just as 
challenging to solve as AI Escargot. Hence, these problems can 
be categorized as being of similar difficulty given the 
performance of the GPA. 

Perez and Marwala (2008) compare the performance of 
quantum simulated annealing, a cultural genetic algorithm and a 
hybrid combining a genetic algorithm and simulated annealing.  
All three approaches were successful at solving the same 
Sudoku problem. The minimum time required by quantum 
simulated annealing was 65 seconds, the cultural genetic 
algorithm 28 seconds and the hybrid 1.447 seconds. The GPA 
was tested on the same problem.  On all runs a program 

producing a solution was found in the initial population, i.e. 
evolution was not needed to derive a program that produces a 
solution. The minimum runtime taken by the hyper-heuristic to 
solve the problem was less than a millisecond. 

Sato [36] implemented a genetic algorithm with building 
block preserving genetic operators, namely, mutation and 
crossover incorporating local search, to solve the Sudoku 
problem.  The genetic algorithm was tested on two easy, two 
intermediate, two difficult Sudoku puzzles and three difficult 
problems from the literature. The GA was able to solve all 6 
problems with the following success rates: 100% for the easy 
and intermediate problems and the first difficult problem, 96% 
for the second difficult problem and 98%, 83% and 58% for the 
three difficult problems from the literature.  The runtimes of the 
GA were not specified. The GPA was able to solve all 9 
problems.  The success rate, minimum and maximum number 
of generations and minimum and maximum runtime for each 
problem is listed in Table 8. Given these results, we note that 
the GPA performed better than other approaches in solving 
Sudoku puzzles. 

From the results presented in this section it is evident that for 
a majority of the problems evolution was not needed and 
programs producing solutions were found in the initial 
population. For the more difficult problems, namely AI 
Escargot and a number of the problems presented by  Henz and 
Truong (2009) in Table 7, at least one generation was needed to 
evolve a solution producing program. In order to ascertain 
 

 
Table 8. GPA performance on the problems presented in 
Sato (2010) -Caption Index: A- Success rate, B-Minimum 

number of generations, C- Maximum number of 
generations, D - Minimum runtime, E - Maximum runtime 

Problem A B C D E 
Easy 
 (No. 1) 

100% 0 0 < 1 ms 16 ms 

Easy (No. 11) 100% 0 0 < 1 ms 16 ms 
Intermediate (No. 27) 100% 0 0 < 1ms 78 ms 
Intermediate (No. 29) 100% 0 0 N< 

1ms 
31 ms 

Difficult (No. 77) 100% 0 1 < 1ms 594 
ms 

Difficult (No. 106) 100% 0 2 < 1 ms 531 
ms 

S1 100% 0 3 31 ms 1 s 
S2 100% 0 13 93 ms 4 s 
S3 100% 0 1 < 1 ms 1 s 

 
 

Table 9.  Runtimes for random generation of solution 
program 

Problem Min. 
Runtime 
(secs) 

Max. 
Runtime 
(secs) 

AI Escargot 3 12 
Problem 2 2 60 
Problem 7 3 60 
Problem 9 1 60 

Problem 12 1 60 
Problem 14 1 22 
Problem 15 1 60 
Problem 17 1 60 
Problem 20 1 15 

Table 7. GPA performance on the problems presented in 
Henz and Truong (2009)-Caption Index: A- Success rate, 
B-Minimum number of generations, C- Maximum number 
of generations, D - Minimum runtime, E - Maximum 
runtime 

Problem A B C D E 
AI Escargot 100% 1 15 1 s 4 s 
Problem 1 100% 0 11 31 ms 5 s 
Problem 2 100% 1 11 281 ms 4 s 
Problem 3 100% 0 9 156 ms 5 s 
Problem 4 100% 0 8 16 ms 4 s 
Problem 5 100% 0 7 141 ms 3 s 
Problem 6 100% 0 9 15 ms 3 s 
Problem 7 100% 2 20 62 ms 8 s 
Problem 8 100% 0 12 219 ms 4 s 
Problem 9 100% 1 12 406 ms 4 s 

Problem 10 100% 0 14 47 ms 5 s 
Problem 11 100% 0 4 < 1ms 1 s 
Problem 12 100% 1 13 750 ms 4 s 
Problem 13 100% 0 12 31 ms 4 s 
Problem 14 100% 1 9 375 ms 3 s 
Problem 15 100% 1 19 1.5 s 4 s 
Problem 16 100% 0 5 < 1 ms 2 s 
Problem 17 100% 1 18 687 ms 8 s 
Problem 18 100% 0 2 < 1ms 1 s 
Problem 19 100% 0 5 15 ms 2 s 
Problem 20 100% 2 17 594 ms 5 s 
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whether genetic programming is necessary to evolve programs 
producing solutions for these problems, randomly created 
programs were generated for each of these problems iteratively 
until a program producing a solution to the problem was 
induced. Using this process solution producing programs were 
found for all the difficult problems.  However, the runtimes  
needed to generate these programs were higher than that of the 
genetic programming approach. The minimum and maximum 
runtimes needed for each of these problems over ten runs, each 
using a different random number generator seed, is listed in 
Table 9. From the results presented it appears that more time 
was needed to solve AI Escargot compared to some of the other 
problems such as problems 2, 7, 9, 12, 15 and 17. However, 
given the stochastic nature of the process and that only ten runs 
were performed, concrete conclusions cannot be drawn from 
this. 
 

6. CONCLUSION 
Attempts at automating the process of solving Sudoku has led 
to research into the effectiveness of artificial intelligence and 
optimization techniques for this purpose.  This paper firstly 
presents a set of heuristic moves for solving Sudoku and 
evaluates a genetic programming approach  as a means of 
inducing programs composed of these moves to solve Sudoku 
problems. The GPA searches a space of programs composed of 
Sudoku moves.  The moves are based on human strategies for 
solving Sudoku puzzles. The genetic programming approach 
was successfully used to solve 1800 Sudoku puzzles of different 
levels of difficulty. The study revealed that evolution was only 
needed to reduce the runtimes associated with producing 
solutions for more difficult problems, namely AI Escargot and 
eight of the difficult Sudoku problems made available by Henz 
and Truong (2009). For a majority of the problems solution 
programs were found during initial population generation, i.e. 
they were randomly generated and evolution was not required.  

It was found that as the difficulty of the puzzles increase 
there is a wider distribution of the number of generations 
needed to evolve a program to produce a solution over the 30 
runs performed for each problem. The size of the programs 
evolved also appeared to increase with problem difficulty.   

More than one optimal program was found for each problem.  
This can be expected as a number of different combinations of 
the low-level heuristics can result in a Sudoku puzzle being 
solved.  An empirical comparison of the performance of the 
genetic programming approach and other methods used to solve 
Sudoku was also conducted.   

The performance of the GPA was found to be comparable to 
and in some cases an improvement on other techniques applied 
to the same puzzles. Given the success with Sudoku, future 
work will examine the effectiveness of the genetic 
programming approach in solving other logical puzzles such as 
Killer Sudoku and Kakuro. Future work will also investigate the 
effectiveness of the different heuristic moves in creating 
solutions to Sudoku problems. 
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