
Research Article — SACJ, No. 47., July 2011 33

Investigations into the use of SNOMED CT to enhance an

OpenMRS health information system

Ken Halland†∗, Katarina Britz∗†, Aurona Gerber∗†

†School of Computing, Unisa, Pretoria
∗Centre for Artificial Intelligence Research – CSIR Meraka Institute and University of KwaZulu-Natal,
South Africa

ABSTRACT

In this paper, we discuss the advantages of using formal medical ontologies to enhance health information

systems. In particular, we consider the suitability of the medical ontology Snomed CT for enhancing a

health information system developed in the OpenMRS framework. We propose ways in which Snomed

CT can be linked to an OpenMRS application, based on our experience of extracting a module of Snomed

CT for tuberculosis.
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1 INTRODUCTION

An ontology (in the field of Computing) is a
formal expression of knowledge about some do-
main, specifying the commonly accepted termi-
nology and the relationships between its terms
[1]. Perhaps the most well-known use of on-
tologies is for the so-called semantic web, where
web pages are marked up with semantic infor-
mation so that intelligent agents can mine them
for data more effectively [2]. Ontologies also
have many other uses, such as for specifying
terminology in the medical field.
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Snomed CT is the most comprehensive
and widely used ontology in health informa-
tion systems. It consists of clinical terminology
“with unique meanings and formal logic-based
definitions organised into hierarchies” [3]. It is
used extensively in the USA and UK, and is ei-
ther being used or under serious consideration
in numerous other countries, as well as bodies
such as the EU.

OpenMRS is a “community-developed,
open-source, enterprise electronic medical
record system framework” [4]. The fact that it
is a framework means that it provides a shell for
implementers to create applications for storing
medical records that meet the particular needs
of a hospital or clinic. OpenMRS applications
have been implemented and successfully de-
ployed for keeping records about HIV/Aids and
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TB patients at selected hospitals and clinics
in a number of countries in Africa, including
South Africa, Kenya, Rwanda, Lesotho, Zim-
babwe, Mozambique, Uganda, and Tanzania.

The HISA (Health Informatics South
Africa) conference in June 2008 incorporated
an OpenMRS implementers meeting where de-
velopers of the OpenMRS framework and im-
plementers of OpenMRS applications could get
together and discuss issues of mutual con-
cern. During these meetings, the need was ex-
pressed to enrich the data model, in particular
the concept dictionary provided by OpenMRS,
with some form of ontology. We therefore de-
cided to investigate the possibility of combining
Snomed CT and OpenMRS in some way to
fulfil this need. This paper describes why this
would be a meaningful endeavour (i.e. what
the benefits would be) and how this could be
achieved.

The structure of this paper is as follows: In
Section 2, we describe ontologies in more detail,
and illustrate how they can be used to spec-
ify terminology in the medical domain. The
main uses of ontologies, namely for semantic in-
teroperability, for reasoning and for enhancing
database access, are also discussed. In Section
3, we describe the uses of Snomed CT and list
its so-called upper level concepts. In Section 4,
we discuss OpenMRS, in particular its use of
a concept dictionary to store clinical terminol-
ogy. In Section 5, we discuss how the upper
level concepts of Snomed CT could be linked
to an OpenMRS concept dictionary, and some
of the issues involved in this, and in Section 6,
we describe our experiences and findings that
arose from such an attempt. Finally, in Sec-
tion 7, we make some recommendations about
how problems that were encountered, could be
overcome, suggesting various approaches that
could be followed.

2 ONTOLOGIES AND THEIR USES

One of the most quoted definitions of ontology
is due to Gruber [5], namely “a formal, explicit
specification of a shared conceptualisation”. In
other words, an ontology defines the terminol-
ogy or vocabulary used in a domain so that
people or systems can ensure that they unam-

biguously mean the same thing when they use
those terms. The meaning(s) of the terms that
constitute the terminology are captured by pre-
cisely specifying the types of terms and their
relationships with one another.

A medical ontology is therefore a list of
medical terminology and a specification of the
relationships between the terms that constitute
it. For example, here is part of a medical on-
tology about the disease tuberculosis (TB):

Tuberculosis v BacterialInfectiousDisease
MycobacteriumTB v Bacterium uMicroOrganism
Tuberculosis v ∃causedBy.MycobacteriumTB

These three statements express the medical
knowledge that ‘tuberculosis is a bacterial in-
fectious disease’, that ‘mycobacterium TB is
a bacterium and a micro-organism’, and that
‘tuberculosis is caused by some mycobacterium
TB’, respectively.

In order to ensure that the meaning of
each term can be precisely defined, and also
to allow computer systems to work with them,
an ontology is always expressed in some for-
mal notation. Various formal notations ex-
ist for expressing ontologies, e.g. abstract de-
scription logic syntax (used in the example
above) [6], web ontology language (Owl) [7]
and knowledge representation system specifi-
cation (KRSS) [8]. The example above would
look as follows in KRSS:

(define-primitive-concept Tuberculosis

BacterialInfectiousDisease)

(define-primitive-concept MycobacteriumTB

(and Bacterium MicroOrganism))

(define-concept Tuberculosis

(some causedBy MycobacteriumTB))

Most (but not all) ontology formalisms are
logic-based. The advantages of logic-based for-
malisms are that the semantics are precisely
defined and well-understood (i.e. there is a long
history of research into the semantics of vari-
ous forms of formal logic), and they allow au-
tomated logical reasoning (i.e. many reasoning
algorithms have been developed to work with
these formalisms).

In general, the two main uses of ontologies
are for semantic interoperability and for rea-
soning. There is also renewed interest in the
integration of ontologies with databases. We
discuss these three uses now.
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2.1 Semantic interoperability

By interoperability we mean the ability of com-
puter systems to communicate with one an-
other. Data transfer between two systems has
to be accurate (and this is normally achieved
by some form of network protocol), but the sys-
tems must also be sure that they understand
what the data means in the same way. If both
systems use the same ontology, we can ensure
that the transfer of such knowledge and under-
standing is accurate [9]. This is termed seman-
tic interoperability.

The ideal situation is where two systems
use exactly the same ontology, but often this
is not possible. There is extensive and ongo-
ing research in the fields of ontology integration
[10] and ontology mapping [11]. Ontology inte-
gration is where two different ontologies need
to be merged so that the resulting ontology
maintains the meanings of the terms specified
in the separate ontologies. Ontology mapping
is where terms in one ontology are mapped to
terms in another ontology so that their mean-
ings remain the same. Things get even more
complicated when the two ontologies are speci-
fied in languages of differing expressivity. (See
Section 2.2 below for a discussion of expressiv-
ity.) These are all problems in achieving se-
mantic interoperability.

In the medical domain, there are often mul-
tiple health information systems (HISs) that
need to communicate with one another. The
SemanticHealth Report published by the Euro-
pean Commission [12] defines interoperability
in the realm of HISs as

... the ability to ... exchange, un-
derstand and act on citizens/patients
and other health-related information
and knowledge among ... disparate
health professionals, patients and
other actors and organisations within
and across health system jurisdictions
in a collaborative manner.

Interoperability becomes a challenge when the
HISs involved use different standards and/or
data formats for storing and processing infor-
mation. Just as important is the medical ter-
minology that the two systems use, and par-
ticularly what is meant by each of the clinical

terms. An important purpose of a medical on-
tology is therefore to achieve semantic interop-
erability between HISs.

2.2 Reasoning

By reasoning, we mean being able to derive
some logical conclusion from knowledge. If
the knowledge is expressed in statements us-
ing some formal notation, reasoning allows us
to infer additional statements that are implicit
in the stated knowledge, i.e. which are not
stated explictly. For example, from the last
two statements given at the beginning of Sec-
tion 2 above, we could conclude that

Tuberculosis v ∃causedBy.Bacterium

i.e. ‘tuberculosis is caused by some bacterium’,
even though this is not stated explicitly in our
ontology.

There are different types of reasoning tasks
that can be posed to a reasoner about a set of
statements. One task would be to ask whether
a particular statement is true with respect to
a set of statements. For example, we could
ask whether the above statement is true with
respect to the three statements given earlier.
Another task would be to check whether a set
of statements is consistent, i.e. that they do
not contradict one another. Yet another task
would be to check whether a given description
is satifiable with respect to a set of statements,
i.e. whether it is possible that there are indi-
viduals which comply with the description. For
example, we could ask the reasoner whether the
description Tuberculosis u Bacterium is satisfi-
able with respect to the set of statements given
earlier. Finally, we could ask whether a state-
ment about an individual is true with respect
to a set of statements, i.e. whether some indi-
vidual complies with a given description (see
Section 6.2.2 below for an example).

This final reasoning task may seem simi-
lar to a database query, like ‘is patient X in-
fected with tuberculosis?’. However, reason-
ing over logic-based ontologies amounts to rea-
soning over all possible interpretations of the
statements expressed in the ontology. This
is in contrast to reasoning over a database,
which amounts to reasoning over a single in-
terpretation. (See the discussion of the open-
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and closed-world assumptions in Section 2.3
below.)

Almost all logic-based ontologies are based
on description logics [6] (or DLs), a family of
decidable logics particularly suited to express-
ing ontological knowledge and reasoning about
it. Informally, a decidable logic is one for which
an algorithm exists that is guaranteed to an-
swer queries in a finite amount of time. Each
member of the DL family of logics has a differ-
ent measure of expressiveness, i.e. it is able to
express particular nuances of knowledge. The
reason why all these logics are not lumped to-
gether into one über-expressive logic is that
one wouldn’t be able to reason efficiently over
knowledge expressed in it. So each logic in this
family is limited in its expressiveness by the ex-
istence of an efficient algorithm to reason over
it. In other words, there is a trade-off between
the expressiveness of respective description log-
ics and the efficiency of algorithms that can
reason about knowledge expressed in them.

There are some highly expressive descrip-
tion logics, e.g. SHOIN (D) and SROIQ [13],
whose reasoning algorithms, although theoret-
ically shown to be of intractable complexity, in
practice perform quite acceptably for small to
medium-sized ontologies.

For very large ontologies, less expressive
description logics which have reasoning algo-
rithms of tractable complexity are preferred.
For example, the description logic EL+ [14],
which is the underlying logic of Snomed CT,
has limited expressiveness (e.g. it does not al-
low one to express negation, as in ‘a bacterium
is not a virus’). This restriction allows algo-
rithms to reason efficiently over large ontolo-
gies expressed in EL+. On the other hand, the
description logic DL-Lite [15] allows primitive
negation but does not allow qualified existen-
tial quantification (as in ‘tuberculosis is caused
by some bacterium’) as provided in EL+. This
allows the implementation of reasoners which
can operate efficiently over database schemas
expressed as DL-Lite ontologies [16].

2.3 Integration with databases

Linking ontologies to databases has been an
active field of research recently and several ap-

proaches have been proposed [17, 18, 19, 6].
The reader should note that in this field, the
term ontology does not always refer to a for-
mal, logic-based ontology, but is often used in
a wider context. However, we limit our defini-
tion of ontology to mean a logic-based ontology.

There are many applications of logic-based
ontologies in the field of databases [20, 6].
Firstly, reasoning can be used to identify prob-
lems in the conceptual data model of an ex-
isting system, or during the development of a
system. If the data model is expressed as an on-
tology, reasoning can be used to find semantic
inconsistencies such as any concepts that are
unsatisfiable. An example of this is the ICom
tool for intelligent conceptual modeling [21].

Furthermore, when using an ontology as
conceptual data model, it is possible to rea-
son over queries. In other words, it is of-
ten possible to simplify the query before it is
posted to the database, or even to answer the
query without doing a table lookup. Reasoning
can also be used for so-called intelligent query-
ing, i.e. answering queries utilising logic-based
reasoning that can’t be answered by standard
query mechanisms [22]. (Note, by reasoning
over queries we exclude the types of query sim-
plifications which are possible with standard
database technology.)

With regards to the coupling of ontolo-
gies to databases, several of the initial tools
that were developed, imported the data from
a database into the ontology as instance data
(see Section 6.2.2). Examples are DataMas-
ter, RDB2Onto and Relational.Owl [17, 23,
18]. Other tools such as DB2Owl, VisAVis,
DBom, R2O, D2R Map, D2RQ and OBDA re-
tain the database separate from the ontology
implementation and provide an ontology-to-
database mapping mechanism to interact with
the data [24, 25, 26, 27, 28, 19]. Except for
OBDA, these tools support the coupling to
database data using binary relations only and
they mostly do not support the latest Owl 2.0
standard or state of the art reasoning technolo-
gies. For the purpose of this paper, we limit the
discussion to tools that support the most recent
developments in Owl reasoning, namely Sher
[29] and the work related to DL-Lite and the
OBDA toolset [30, 31, 32].
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One of the most active fields of research in
the area of combining formal ontologies with
large databases, is in the DL-Lite family of de-
scription logics [33, 34]. The intent is to pro-
vide access to data in a database through a
mediating ontology. The ontology provides the
semantic model of the data which should allow
for the inference of new knowledge from the
data, the verification of data integrity and se-
mantic data integration. An OBDA plugin for
Protégé is available for this purpose that pro-
vides ontology editing and data mapping func-
tionality, as well as a querying facility that al-
lows a user to query the database through the
mediating ontology [30, 31, 32].

The biggest disadvantage of the DL-Lite
and OBDA approach is the limited expressive-
ness of DL-Lite. However, inference of sub-
sumption queries already provide a user with
functionality that is not readily available in
RDBMSs with SQL queries. In addition, the
fact that a query can be posed to the data
source through the ontological domain model
is regarded as a substantial benefit by most
users. This advantage means that it should not
be necessary to appoint database and SQL spe-
cialists in order to extract relevant information
from the relational data sources. A domain
expert should be able to extract information
using domain knowledge through the ontology
in a far more intuitive way.

Sher is described as a scalable highly ex-
pressive reasoner [35] that provides the func-
tionality for semantic querying of large rela-
tional datasets through Owl ontologies. Sher
provides standard description logic reasoning
services including consistency checking and
conjunctive query answering, and supports the
Owl 1.0 logic Owl-DL but excluding nomi-
nals and datatypes [29]. The Sher toolset per-
forms limited reasoning when loading an ontol-
ogy and executes most of its reasoning when
doing query answering. Another key feature of
Sher is its ability to tolerate logical inconsis-
tencies in the data by not terminating when
inconsistencies are detected, but by pointing a
user to the source of the inconsistencies.

One issue that has to be borne in mind
when coupling ontologies with databases is the
impedance mismatch problem. Poggi et al

[19] summarise the impedance mismatch as the
problem arising from the difference between the
basic elements managed by the data source,
namely the data tuples, and the elements man-
aged by the ontology, namely concepts and in-
stances. When this problem is not handled
properly, the user will not extract the correct
data. The solution is a robust mapping lan-
guage that allows a user to map data source
elements appropriately to the elements of the
ontology, a claim made by the OBDA team.
The impedance mismatch has to be managed
by creating mappings that ensure the correct
consequences and inferences.

Another issue that has to be borne in mind
is that formal ontologies support an open-world
assumption, whereas in the database world a
closed-world assumption holds. The closed-
world assumption means that “if a fact is not
contained in the database, the fact is assumed
false” [36]. The open-world assumption means
that if a fact is not known, an answer of not
known will be returned.

For example, when querying a database
about whether there is stock of some medicine,
an absence of any record of stock will be used
to infer that there is no stock. In other words,
absence of data will result in the answer false.
However, posing the same question to an ontol-
ogy will result in an empty or null answer, not
false. Conversely, if it is not recorded that a pa-
tient is infected with some disease, a query to
a database would yield the answer false based
on the absence of information, whereas the an-
swer provided by an ontology would be incon-
clusive. These examples illustrate the useful-
ness of the open- and closed-world assumptions
in different contexts, but also the necessity of
being aware of which assumption is being used,
particularly when posing queries to a database
through an ontology. Results from the ontol-
ogy will be based on an open-world assumption
and only facts that are asserted or that can be
inferred from assertions, will be returned.

3 SNOMED CT

As stated above, Snomed CT is an industrial-
scale, logic-based ontology specifying all the
terminology one needs for any medical or clin-
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ical purpose.

As stated in Section 2.2, Snomed CT is
based on the description logic EL+. The main
reason why it is based on this relatively in-
expressive DL is that Snomed CT is a mas-
sive ontology (consisting of more than 300 000
terms representing medical concepts as well as
over 1 000 000 terms representing relations be-
tween the concepts). Any more expressive logic
would not allow reasoning in an acceptable
amount of time.

3.1 Uses

As with other ontologies, Snomed CT can be
used for semantic interoperability, reasoning
and integration with databases (see Sections
2.1, 2.2 and 2.3).

An example of semantic interoperability is
discussed by Ryan [37] who proposed enhanced
interoperability by basing Health Level 7 (HL7)
standard message models on Snomed CT con-
cepts. HL7 standardizes the information mod-
els for messages in health information systems
but without semantics which means that it
addresses only one aspect of interoperability,
namely standardized formats. Integrating HL7
with Snomed CT facilitates the automated
generation of HL7 messages from the struc-
ture of Snomed CT concepts and relation-
ships, which results in semantic interoperabil-
ity from the common vocabulary of Snomed
CT. Similar work has been done by Benson
[38].

The use of reasoning with the Snomed CT
ontology is discussed by Patel et. al. [39] who
investigated a case study that explores the ap-
plicability of ontology reasoning to automate
common clinical tasks. They identified the
need to bridge the semantic gulf between raw
patient data, such as laboratory tests or spe-
cific medications, and the way a clinician inter-
prets this data and they formulated a problem
of semantic retrieval to match patients to clin-
ical trials. Similarly, Milian et. al. [40] use the
ontological structure and assertions to extract
all relevant concepts of a specific medical sub-
domain (breast cancer) from the ontology. The
reasoning allows for the extraction of concepts
such as malignant tumor as a relevant concept.

This term would not be identified when doing
a basic keyword match on the term breast can-
cer. Zimmerman did his research on extend-
ing Snomed CT to include explanatory rea-
soning, specifically for clinical pathology [41].
He found that Snomed CT supports some
structures necessary for explanatory reasoning,
but for it to be really useful, it has to be ex-
tended with additional explanatory structures
and concepts.

As mentioned in Section 2.3, several ap-
proaches have been proposed to integrate or
couple ontologies with databases. In the case
of Snomed CT the ontology is often used as
a system component in a database driven sys-
tem. Since Snomed CT is not designed to
specify instance data (see Section 6.2.2), there
is not a strong integration of the ontology to
database data. Snomed CT is rather used as
an intelligent system module specifying clinical
terms, and queries to the database are handled
by a separate system module. An example of
such an approach is the semantic system de-
veloped by Bouamrane et. al. [42] that allows
backward compatibility to all patient records
held in a legacy information system database.

3.2 Structure

The concepts of Snomed CT are arranged into
hierarchies, with more general concepts higher
up, and more specific concepts lower down.
The so called upper level concepts are the most
general [3] and are as follows:

- Clinical finding/disorder Results of clin-
ical observations, assessments or judge-
ments, including diseases and disorders

- Procedure/intervention Activities per-
formed in the provision of health care,
including invasive procedures, adminis-
tration of medicines, imaging, education
and administrative procedures

- Observable entity Aspects, factors or pro-
cedures to which values can be assigned,
for example blood pressure, temperature,
colour of nails, etc.

- Body structure Normal as well as abnor-
mal morphological/anatomical structures
specifying body sites involved in diseases
or procedures
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- Organism Animals, plants and micro-
organisms of significance in medicine, par-
ticularly causes of diseases and conditions

- Substance Active chemical constituents of
drugs, food and chemical allergens, causes
of adverse reactions, toxicity or poisoning,
etc.

- Pharmaceutical/biologic product
Medicines, drugs, vaccines and other
pharmaceutical compounds

- Specimen Entities obtained (usually from
a patient) for examination or analysis, of-
ten including the source from which they
are obtained, the procedure used to collect
them and the substance(s) of which they
are comprised

- Physical object Natural and man-made ob-
jects such as medical devices, implants,
surgical implements, life support systems
and artificial organs

- Physical force Primarily forces that repre-
sent mechanisms of injury, such as heat,
pressure, electric current, or friction

- Event Environmental occurrences such as
floods, earthquakes and chemical spillages

- Environment/geographical location Medi-
cal and other environments as well as
named locations such as countries, states,
and regions

- Social context Social conditions and cir-
cumstances such as family and economic
status, ethnic and religious heritage, life
style, and occupations

- Staging and scales Assessment scales (e.g.
burn degrees and intelligence scales) and
tumor/cancer stages

These upper level concepts each represent
entire hierarchies of further, more specific
concepts. Concepts from one hierarchy are
linked to concepts in other hierarchies by
means of relations. For example, the relation
hasCausativeAgent relates some subconcept of
Disease in the ClinicalFinding hierarchy to some
concept in the Organism or Substance hierar-
chies.

4 OPENMRS CONCEPT DICTIONARY

The OpenMRS data model comprises numer-
ous tables for storing all sorts of data; primar-

ily health records of patients. A selection of
these tables are used to define the so-called con-
cept dictionary of an application. This lists all
the possible medical concepts that can occur
in the application. These concepts are grouped
into classes, and together they can be consid-
ered as a ‘flat ontology’. The guidelines pro-
vided to OpenMRS implementers for populat-
ing the concept dictionary recommend the fol-
lowing classes [4]:

- Test Laboratory tests or physical exami-
nation maneuvers

- Procedure Actions performed in the diag-
nosis or treatment of conditions

- Drug Medications, prescriptions and over-
the-counter dispensing

- Diagnosis Medical conclusions

- Finding Observations or results of tests or
examinations

- Anatomy Body parts

- Question Queries to which there are open-
ended or coded responses

- LabSet Groupings of tests or procedures

- MedSet Groupings of medications

- ConvSet Groupings of questions (e.g. vital
signs)

- Symptom Signs or indications of possible
conclusions

- Specimen Samples of tissue or fluid

- Program Plans or sets of plans consisting
of tests or procedures to be followed

- Workflow Processes described/prescribed
by the organisation

- State Descriptions of patients’ status

- Misc Unclassifiable concepts

Some of these classes are represented by their
own tables (e.g. drugs) which are related
to concepts in the dictionary by standard
database relations. However, apart from this
and the simple is-a relation provided by the
abovementioned classes, the OpenMRS data
model does not allow the definition of hierar-
chies of concepts or of relations between con-
cepts as a proper ontology would.
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5 LINKING OPENMRS AND SNOMED CT

5.1 Why?

Potentially, OpenMRS could benefit from the
incorporation of a medical ontology such as
Snomed CT in terms of semantic interoper-
ability, reasoning and database integration as
discussed in Section 3.1.

Benson [38] describes the use of Snomed
CT to achieve semantic interoperability be-
tween health information systems. Although
OpenMRS already allows the incorporation of
health information standards such as ICD-10
and HL7 to ensure interoperability with other
systems, this does not ensure semantic interop-
erability at all. OpenMRS applications inter-
operate with larger HISs on district, provin-
cial and national level for the purposes of
data gathering and surveillance. For exam-
ple, health authorities might require data on
the number of successfully treated TB patients.
However, if the OpenMRS application and the
larger HIS attach different meanings to ‘suc-
cessful treatment’, the data that is gathered
will be inaccurate. A shared ontology that for-
mally describes the concept of successful treat-
ment could ensure semantic interoperability by
linking the different systems’ data relating to
successful treatment to the formal concept.

In its current form, OpenMRS doesn’t al-
low reasoning over the medical terminology
stored in its concept dictionary. Since a rich
hierarchy of concepts cannot be specified in
the concept dictionary of an OpenMRS appli-
cation, inference on related concepts cannot be
made. For example, one would like to spec-
ify that extreme drug resistant (XDR) TB is a
type of multi-drug resistant (MDR) TB, that
MDR TB is a type of active TB, and that
active TB is a type of TB. An ontology like
Snomed CT would allow such a hierarchy to
be expressed and allow one to infer that XDR
TB is a type of TB. It would also allow one to
infer that a patient infected with some variant
of TB (e.g. MDR TB or XDR TB) is a TB
patient. OpenMRS in its current form would
require one to specify each of these separately.

With regard to database integration, an
OpenMRS application could be enhanced by
an intelligent systems module in the form of

Snomed CT as discussed in Section 3.1. In
this case, Snomed CT could be used to iden-
tify relevant clinical terms that would link, for
instance, to data about patient records. It
should be noted that this approach would not
result in the fully integrated option discussed
in Section 2.3.

Database integration using Snomed CT
could also allow reasoning over patient data
that is not possible in OpenMRS at present. As
stated in Section 3.1, reasoning over part-whole
relationships is one type of reasoning that is not
possible with database systems. An example of
this type of reasoning is given in Section 6.2.1
below.

5.2 How?

The similarities between the upper level con-
cepts of Snomed CT and the concept classes
in an OpenMRS concept dictionary suggest the
possibility of a mapping. Upper level concepts
of Snomed CT missing from the recommended
classes in an OpenMRS concept dictionary in-
clude Observable entity, Organism and Sub-
stance, whereas the concepts Diagnosis, Ques-
tion and Symptom are missing the other way
around.

As stated above, the concept classes in the
concept dictionary of an OpenMRS application
are only recommended in the guidelines; there
is nothing to stop one from populating the con-
cept dictionary with concepts from Snomed
CT. This could address the mismatch in one
direction, but not the other way around.

Another issue is that Snomed CT is a large
and cumbersome ontology, and since Open-
MRS applications generally only store infor-
mation about medical interventions of limited
scope, it makes sense to only link a part of
Snomed CT to an OpenMRS application. In
particular, we decided to extract a module
from Snomed CT dealing specifically with TB,
and link it to the concept dictionary of a sim-
ple OpenMRS application dealing only with
TB patients. (By a module, we mean a sub-
ontology that only uses a subset of the ter-
minology of the main ontology, but that pre-
serves the meaning of the terminology [43].)
The smaller scale of this problem would also
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make it easier to evaluate the process.

We foresaw that some adaptation of the ex-
tracted module would be needed in order to
match the concepts in the OpenMRS dictio-
nary and/or to address local issues of MDR
and XDR TB.

6 FINDINGS

6.1 Experiences of extracting a module
from SNOMED CT

We considered two approaches for extracting
the module: (i) to use the ProSÉ plugin [44]
for the Protégé ontology editor [45], and (ii) to
use the module extraction facility provided by
the Cel reasoner [46].

The version of Snomed CT we had ac-
cess to was in KRSS format. There are a
number of different versions of KRSS syntax
used by different ontology softwares. For exam-
ple, Protégé can convert files from a particular
KRSS format to (its native) Owl format, and
the Cel reasoner accepts ontologies in KRSS
format of a different syntax. Some syntax mas-
saging of the version of Snomed CT that we
were in possession of was required to make it
readable by these programs.

Two other problems that we experienced
with Protégé were that the reasoners that could
be used with it at that stage only supported de-
scription logics like SROIQ and SHOIN (D)
which are far more expressive than EL+, the
underlying description logic in which Snomed
CT is defined. (The Cel reasoner can now be
used with Protégé, see [43].) There were also
memory problems of loading Snomed CT into
Protégé, since it is such a massive ontology.

We had more success with the Cel rea-
soner which was specifically designed to work
with ontologies defined in EL+ and expressed
in KRSS format, and could also be used to ex-
tract modules.1

The problem with the module that we ex-
tracted was that it only contained the super-
concepts of Tuberculosis, not the subconcepts.
To be usable as an ontology for linking to the

1The module we extracted from Snomed CT about
TB using the Cel reasoner is available from the first
author on request.

concept dictionary of an OpenMRS applica-
tion, this ontology would have to be expanded
to include many of the relevant subconcepts of
Tuberculosis, for example, ActiveTuberculosis,
ChronicTuberculosis, DrugResistantTuberculosis
etc.

We did not proceed with extracting a more
comprehensive TB module due to some prob-
lems that had become apparent during the pro-
cess. These are discussed below.

6.2 Pros and cons of SNOMED CT

As mentioned above, Snomed CT has numer-
ous strengths that make it the medical ontology
of choice for this enterprise. It is an interna-
tional standard, and for this reason it is good
for semantic interoperability. Snomed CT is
also a logic-based ontology and is therefore em-
inently suitable for reasoning. A number of ef-
ficient reasoners have been developed for pro-
cessing and reasoning over Snomed CT.

Snomed CT has two major disadvantages,
however, namely its design legacy and its lack
of support for instance data.

6.2.1 Design legacy

Snomed CT has undergone numerous rein-
carnations in its development. Since the ex-
pressiveness of the underlying logic was re-
stricted by the availability of reasoners (during
the early stages of the development of Snomed
CT) that could operate effectively over the on-
tology, restrictions were placed on what knowl-
edge could be expressed. A particular prob-
lem was to express certain part-whole rela-
tions, particularly for describing parts of the
anatomy. For example, the finger is part of the
hand and the hand is part of the arm. From
this we would like to be able to infer that the
finger is part of the arm without having to ex-
plicitly state it.

Such part-whole reasoning requires transi-
tive relations (i.e. from R(a, b) and R(b, c) infer
R(a, c)) which were not available in the rea-
soner being used. A clever trick called SEP

(Structure, Entire, Part) triplets was intro-
duced by Schulz et al [47] to allow transitive
relations to be expressed in the ontology with-
out implementing them in the reasoner. Here
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is an example of Sep triplets being used to ex-
press the transitivity of the part-of relation of
fingers, hands and arms:

Arm v ArmS

ArmP v ArmS u ∃partOf.Arm

HandS v ArmP

Hand v HandS

HandP v HandS u ∃partOf.Hand

FingerS v HandP

Finger v FingerS

FingerP v FingerS u ∃partOf.Finger

As shown here, this requires the introduction of
two additional (S and P) concepts for each con-
cept which needs to participate in the partOf
relation.

After the ‘Sep-triplification’ of Snomed
CT, Suntisrivaraporn et al [48] developed a
reasoner that could work with transitive rela-
tions and showed that it could do so without
any additional complexity (i.e. without the al-
gorithm requiring any appreciably additional
time or space). By specifying that the part-
of relation is transitive (with a statement like
(transitive partOf)), the eight statements above
could be expressed simply as follows:

Finger v ∃partOf.Hand

Hand v ∃partOf.Arm

From this, Finger v ∃partOf.Arm could be in-
ferred.

Despite this breakthrough, the damage had
been done. Unfortunately researchers have
been unable to automate the expunging of Sep
triplets in a safe way (without affecting the re-
lationships between other terms) – it has to be
done manually. As it stands now, Snomed CT
is still riddled with redundant Sep triplets.

Although this problem is not evident in
the module which we extracted, any more ex-
tensive module that would (need to) be ex-
tracted that refers to any body structure (for
example, the lungs or the alveoli) would in-
volve Sep triplets. In fact, just for the concept
Lung, Snomed CT currently has the concepts
EntireLung, LungPart and LungStructure for this
purpose. Transitivity of relations for the TB
module would be necessary to be able to infer,
for example, that the alveoli are part of the
lungs, and that infection of the alveoli would
imply infection of the lungs.

Considerable reworking of the more exten-
sive module would be necessary to get rid of
Sep triplets.

6.2.2 Instance data

Snomed CT is a list of clinical terms which
refer to types of diseases, parts of the body,
drugs, etc. in general terms. It is not designed
or intended to express knowledge about spe-
cific patients, specific measurements or specific
interventions performed at specific times.

In ontologies based on some description
logic, instance data is stored in the form of
assertional statements about individuals. For
example,

Patient(P123)

infectedWith(P123,DrugResistantTuberculosis)

To be able to infer that P123 is a TB patient,
there would need to be addition terminological
statements like

TBPatient v Patient u ∃infectedWith.Tuberculosis

DrugResistantTuberculosis v Tuberculosis

Snomed CT only contains terminological
statements to define medical terminology. It
has no assertional statements, and no termino-
logical statements that define or use the con-
cepts needed for such assertional statements.

Another important aspect of patient data
is the necessity of being able to express nega-
tion, for example when a particular condition
is ruled out by the results of a test. As stated
in Section 2.2, negation is not expressible in
EL+, the underlying DL of Snomed CT. This
‘disadvantage’ of Snomed CT would only be
an issue if one wanted to use the ontology to in-
tegrate with the rest of an OpenMRS database
(as explained in Section 2.3), i.e. to allow rea-
soning over instance data in the form of patient
records.

Some work has been done to allow instance
data with Snomed CT, and to reason over it.
The Sher reasoner (described in Section 2.3)
is designed to reason over large ABoxes (i.e.
large collections of assertional statements) [49],
and has been used to reason over patient data
together with Snomed CT [39].
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7 RECOMMENDATIONS

We are convinced of the advantages of enhanc-
ing OpenMRS with some (richer) ontology (see
Section 5.1). As argued above, some adaption
of Snomed CT or at least of a module of it
would be needed for this purpose (Section 5.2).

An important decision would be whether
one wanted to allow reasoning over the clinical
terms (i.e. the medical terminology) stored in
the concept dictionary alone, or over the pa-
tient records (i.e. the instance data) stored in
the rest of the database as well. We envisage
three possible options:

Use an ontology that defines and al-
lows reasoning over the clinical terms
alone. This is the simplest option, since one
wouldn’t have to worry about modelling the in-
stance data. It would simply require cleaning
up a module extracted from Snomed CT and
perhaps adding concepts needed for the miss-
ing (recommended) classes (Section 5.2). If the
Snomed CT module were left unaltered (i.e.
with its Sep triplets and other redundant con-
cepts), another advantage would be its compat-
ibility with the current state of Snomed CT,
allowing semantic interoperability with other
systems that use Snomed CT (Section 2.1).

Use two ontologies: one for reason-
ing over the clinical terms, and another
for reasoning over the patient records.
The first ontology could be the one developed
for the first option above. The second ontol-
ogy could be created in a different (more or
alternatively expressive) description logic. For
example, if the underlying DL of the second on-
tology were DL-Lite, one could reason over the
patient records by means of the OBDA tech-
nology (Section 2.3).

One disadvantage would be that semantic
interoperability could only be achieved with
other systems that use compatible ontologies
(Section 2.1).

Another disadvantage would be if one
wanted to integrate the two ontologies for per-
forming reasoning which involved both the clin-
ical terms and instance data (Section 6.2.2).
Some form of ontology integration or ontology
mapping would have to be employed, with the
added complexity of having to deal with for-

malisms of different expressivity (Section 2.1).

Create a new, combined ontology for
reasoning over both clinical terms and
patient records. The main advantage of do-
ing things together would be that the ontol-
ogy could be used for reasoning over both clin-
ical terms and patient records (Section 6.2.2).
In other words, the problem of ontology inte-
gration or mapping of second option would be
avoided.

A disadvantage would once again be
that semantic interoperability could only be
achieved with other systems that use a com-
patible ontology.

One could consider developing the entire
ontology in something like DL-Lite (Section
2.3), but this would prevent much of the type
of reasoning over clinical terms that is possible
in Snomed CT. One could also consider using
the Sher reasoner which has been used to rea-
son over patient data together with Snomed
CT (Section 6.2.2). Alternatively, one could
consider using one of the highly expressive DLs
like SROIQ (Section 2.2). Since one would be
dealing with a much smaller ontology than the
entire Snomed CT, acceptable response times
should be obtained.

8 CONCLUSION

In this paper we have documented an attempt
to enrich an OpenMRS application with the
Snomed CT medical ontology. The main rea-
son for this enterprise was to allow reasoning
over the health information stored in such a
system, that is not possible with the database
technology currently used by the OpenMRS
framework. Although we did not complete the
planned implementation, we gained a number
of insights into the process that will be useful
for anyone attempting to do something similar.
In summary, we contend that Snomed CT in
its unaltered form is not suitable for linking
to an OpenMRS application. A module ex-
tracted from Snomed CT would be more suit-
able, and this would further need to be refined
and adapted to suit the concept dictionary of
the particular OpenMRS application. Various
strategies are possible, as outlined in Section 7.
These primarily depend on whether one would
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want to be able to reason over patient records
in addition to the clinical terms.
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and M. T. Özsu (editors), Encyclopedia of
Database Systems. Springer-Verlag, 2009. URL
http://tomgruber.org/writing/ontology-

definition-2007.htm.

[2] T. Berners-Lee, W. Hall, J. A. Hendler,
K. O’Hara, N. Shadbolt and D. J. Weitzner.
“A framework for web science”. Foundations
and Trends in Web Science, vol. 1, no. 1, 2006.

[3] Snomed CT, 2010. URL
http://www.ihtsdo.org/snomed-ct/.

[4] OpenMRS, 2010. URL
http://www.openmrs.org/.

[5] T. R. Gruber. “A translation approach to
portable ontology specifications”. Knowlegde
Acquisition, vol. 5, no. 2, pp. 199–220, 1993.

[6] F. Baader, D. Calvanese, D. McGuinness,
D. Nardi and P. Patel-Schneider (editors). The
Description Logic Handbook: Theory, Imple-
mentation and Applications. Cambridge Uni-
versity Press, Cambridge, UK, 2003.

[7] M. Horridge and P. Patel-Schneider.
“Manchester Syntax for OWL 1.1”.
In Proceedings of OWL: Experiences
and Directions, 4th international work-
shop (OWLED 2008 DC). 2008. URL
http://www.webont.org/owled/2008dc/papers

/owled2008dc paper 11.pdf.

[8] P. Patel-Schneider and B. Swartout.
“Description-Logic Knowledge Represen-
tation System Specification from the KRSS
Group”. Available on internet, 1993. URL
http://www-db.research.bell-labs.com/user/

pfps/papers/krss-spec.ps.

[9] L. Obrst. “Ontologies for semantically interop-
erable systems”. In Proceedings of the twelfth
international Conference on Information and
Knowledge Management (CIKM ’03). ACM,
2003.

[10] D. Calvanese, G. De Giacomo and M. Lenz-
erini. “A Framework for Ontology Integra-
tion”. In I. Cruz, S. Decker, J. Euzenat and
D. McGuinness (editors), The Emerging Se-
mantic Web: Selected Papers from the First
Semantic Web Working Symposium. 2002.

[11] Y. Kalfoglou and M. Schorlemmer. “Ontology
mapping: the state of the art”. Knowl. Eng.
Rev., vol. 18, no. 1, 2003.

[12] V. N. Stroetman, D. Kalra, P. Lewalle, A. Rec-
tor, J. M. Rodrigues, K. A. Stroetman, G. Sur-
jan, B. Ustun, M. Virtanen and P. E. Zanstra.
Semantic Interoperability for Better Health
and Safer Healthcare. European Commission,
2009.

[13] I. Horrocks, O. Kutz and U. Sattler. “The even
more irresistible SROIQ”. In Proceedings of
the 10th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR2006), pp.
57–67. 2006.

[14] F. Baader, C. Lutz and B. Suntisrivaraporn.
“Is tractable reasoning in extensions of the de-
scription logic EL useful in practice?” In In
Proceedings of the 2005 International Work-
shop on Methods for Modalities (M4M-05).
2005.

[15] D. Calvanese, G. De Giacomo, M. Lenzerini,
R. Rosati and G. Vetere. “DL-Lite: Practical
Reasoning for Rich DLs”. In Proceedings of
the 2004 International Workshop in Descrip-
tion Logics (DL 2004), vol. 104. 2004.

[16] D. Calvanese, G. De Giacomo, D. Lembo,
M. Lenzerini, A. Poggi, M. Rodriguez-Muro
and R. Rosati. “Ontologies and Databases:
The DL-Lite Approach”. In S. Tessaris and
E. Franconi (editors), Semantic Technologies
for Informations Systems - 5th Int. Reasoning
Web Summer School (RW 2009), vol. 5689 of
Lecture Notes in Computer Science, pp. 255–
356. Springer, 2009.

[17] C. Nyulas, M. O’Connor and S. Tu. “Data-
Master a Plug-in for Importing Schemas and
Data from Relational Databases into Protégé”.
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“R2O: An extensible and semantically based
database-to-ontology mapping language”. In
Proceedings of the Workshop on Semantic Web
and Databases, pp. 1069–1070. Edinburgh,
Scotland, 2004.

[27] C. Bizer. “D2R MAP A Database to RDF
Mapping Language”. In 12th International
World Wide Web Conference, Budapest. 2003.

[28] C. Bizer and A. Seaborne. “D2RQ: Treating
Non-RDF Databases as Virtual RDF Graphs”.
In Proceedings of the 3rd International Seman-
tic Web Conference (ISWC2004). 2004.

[29] J. Dolby, A. Fokoue, A. Kalyanpur, E. Schon-
berg and K. Srinivas. “Scalable highly expres-
sive reasoner (SHER)”. Web Semantics: Sci-
ence, Services and Agents on the World Wide
Web, vol. 7, no. 4, pp. 357–361, 2009.

[30] OBDA, 2010. URL
http://obda.inf.unibz.it/protege-plugin/.

[31] M. Rodriguez and D. Calvanese. “Towards an
Open Framework for Ontology Based Data Ac-
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