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ABSTRACT

Although handwritten signature verification has been extensively researched, it has not achieved an optimal classification

accuracy rate. Therefore, efficient and accurate signature verification techniques are required since signatures are still widely

used as a means of personal verification. This research work presents efficient distance-based classification techniques as an

alternative to supervised learning classification techniques (SLTs). The Local Directional Pattern (LDP) feature extraction

technique was used to analyze the effect of using several different distance-based classification techniques. The classification

techniques tested are the Euclidean, Manhattan, Fractional, weighted Euclidean, weighted Manhattan, weighted fractional

distances and individually optimized resampling of feature vector sizes. The best accuracy, of 90.8%, was achieved through

applying a combination of the weighted fractional distances and locally optimized resampling classification techniques

to the Local Directional Pattern features extracted. These results are compared with results from literature, where the

same feature extraction technique was classified with SLTs. The distance-based classification was found to produce greater

accuracy than the SLTs by 8.5%.
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1 INTRODUCTION

Biometrics is the measure of human characteristics for
authentication or identification of individuals [1]. Bio-
metric modalities are regularly becoming an important
aspect of automated electronic security systems. For
such a system to be successful, it requires methods and
techniques that produce high accuracy.

These systems are used either for recognition or
verification. Recognition entails the identification of
a biometric trait, or set of traits, as belonging to a
specific individual from a given set of individuals. Con-
versely, verification entails authenticating a claim that
a biometric trait, or set of traits, belongs to a specific
individual [1].

One of the most common and widely accepted bio-
metric modality is the handwritten signature. It has
been used for verification since before the advent of
electronic machines [2]. Due to its widespread use and
acceptance, handwritten signatures are an ideal can-
didate for automated biometric verification systems.
The two methods of capture for signatures are catego-
rizes as offline and online. For offline capture, a static
image of a completed signature is recorded. For online

Email: Yaseen Moolla ymoolla@csir.co.za, Ser-
estina Viriri viriris@ukzn.ac.za, Fulufhelo Nelwa-
mondo fnelwamondo@csir.co.za, Jules-Raymond Tapamo
tapamoj@ukzn.ac.za

capture, the creation of a signature is recorded as a
function of time [2].

Offline signature verification systems have much po-
tential for worldwide usage and there are several cases
in which only offline signatures can be used. These
include automated authentication of bank cheques and
legal documents [2]. Additionally, equipment for the
capture of offline signatures is cheaper [3], which will
allow for greater adoption of automated signature veri-
fication, especially for small-to-medium businesses and
in developing economies.

A high accuracy is required for the acceptance of
such a system, but offline signature verification sys-
tems are hindered by low accuracy rates, having not
yet reached an acceptable level of accuracy in compar-
ison to online signatures. These low accuracy rates
are due to the inherent randomness that is character-
istic of behavioural biometrics. Static signatures also
have much less information in comparison to online
signatures, since the time dimension is not present [3].

There is more current research that attempts vari-
ous techniques to improve the accuracy of offline signa-
ture verification systems. Some of the research focuses
on novel feature extraction techniques [4] [5] [6] [7] [8].
These are designed to extract the most relevant and
constant features of a signature while also attempting
to reduce the extraction of features that are not stable
or constant in an individual’s signature.

Other research concentrates on using different clas-
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sification techniques and finding the optimal classifi-
cation technique for a particular feature set. Classi-
fication can be categorized into supervised learning
techniques (SLTs) and distance-based measures. Most
offline classification emphasizes the use of different
SLTs, such as support vector machines [9] [10] [11]
[12], hidden Markov models [11] [13] [14] [15], artificial
neural networks [16] and fuzzy logic [17]. There is very
little research into using different distance-based classi-
fication techniques, except for the Euclidean distance,
which is the most commonly known distance measure
in geometric space. This is discussed further in Section
1.1.

There are many other distance-based measures
that could be used for classification. This work im-
proves the accuracy of offline signature verification
systems by investigating the use of some of these tech-
niques, specifically weighted and fractional distances
in Lebesque space, also called LP -space, and applies
them to various different feature extraction techniques.
The results obtained are compared with those from lit-
erature. In particular, the distance-based classification
techniques are compared with SLTs with the use of
the same feature extraction techniques.

1.1 Literature Survey

Many techniques exist for the classification of signa-
tures and other biometrics. They can be broadly cat-
egorized into supervised learning techniques (SLTs)
and distance-based classification techniques. SLTs in-
clude neural networks, hidden Markov models (HMM)
[18], support vector machines (SVM) [19] and fuzzy
logic. Linear techniques include Euclidean distance,
Mahalanobis, Manhattan distance, weighted Euclidean
distances [20] and fractional distances [21]. Some of
the notable, recent works are discussed below.

Kovari et al. [16] uses artificial neural networks
for classifying a feature vector comprised of both lo-
cal and global features, and achieves an equal error
rate (EER) of just over 20%. Coetzer et al. [13] ap-
plies HMM classification to discrete Radon transform,
which is a global feature, and achieved an EER of
12.2% using skilled forgeries and 4.5% using random
forgeries. Panton and Coetzer further improves the
EER to 8.6% by using a fusion of HMM classifiers
and adding local features to the feature vector [14].
Yilmaz et al. [9] performs SVM classification on a com-
bination of gradient-based and binary pattern-based
features. It is found that a user-dependent, also called
user-specific, classifier worked better than a globally
applied classifier for all users. They achieved a best
average error rate (AER) of 15.41%. Vargas et al. [10]
proposes a system with least squares SVM classifica-
tion on features extracted from the Fourier transform
of a signature image. An EER of 6.20% is obtained,
which by literature comparison performs better than
similar techniques using the same database. Batista et
al. [15] uses the statistical fusion of HMM classifiers
via a multi-hypothesis approach and user specific code-
books. An AER of 7.79% is acheived. The best recent
results for SLTs are obtained by using multi-hypothesis

fusion approaches. Ferrer et al. [11] performs a compar-
ison between the Euclidean distance, HMM and SVM,
using geometric features based on Cartesian and polar
coordinates. It is found that, for the feature extrac-
tions used, the best performance was for HMM, with
a false rejection rate (FRR) of 14.1% and false accep-
tance rate (FAR) of 12.3%, using skilled forgeries. The
SVM performed better than the Euclidean distance,
but worse than the HMM. Kisku et al. [12] develops
another multi-hypothesis approach where Euclidean
distance, Mahalanobis distance and Gaussian empirical
rule results are fused together using SVM. A private
signature database comprising 9 authentic signatures
and a single forged signature were collected for each
of 180 individuals. Individually, each classification
technique performs very well with EER values below
10%, and combined, a best EER of 2.15% is achieved.
While multi-hypothesis techniques can greatly improve
accuracy, they also require much more processing for
training and testing, since multiple classifiers are used
in place of a single classifier.

The Mahalanobis distance was first documented
in 1936 by Prasanta Mahalanobis [22]. It performs
best with multivariate normal data distributions [23].
Fang et al. [24] reports one of the earliest classifica-
tions using the Mahalanobis distance. A best EER of
19.1% was achieved. Nguyen et al. [25] also compares
squared Mahalanobis distance and Gaussian kernel
SVM classification on a local gradient-based feature
extraction. The AER for the SVM is 15.02%. The gra-
dient distance with SVM classification performs better
than the squared Mahalanobis distance, and better
than their previous tests with MDF feature extraction
and SVM classification. Sigari et al. [26] performs Ma-
halanobis distance classification on features extracted
using Gabor wavelets. Verification tests are performed
on 3 relatively small, yet diverse, signature databases.
EER values of 15.0%, 16.8% and 9.0% were obtained.
The Mahalanobis distance performs best with multi-
variate normal data distributions [23]. This limits its
applicability to feature extraction techniques.

The most well known distance-based measure is
the Euclidean distance. There are many works that
have used the Euclidean distance for authentication
due to it’s simplicity of implementation. Shekar et
al. [27] uses the Euclidean distance for the verification
of feature vectors created using an Eigenvector-based
feature extraction technique. Different sizes of fea-
ture vectors were tested, and a single globally applied
feature vector size was eventually chosen. An EER
of 14.33% is achieved when using 10 signatures for
training and 14 for testing. A better EER of 8.78%
is achieved when using 15 signatures for training and
9 for testing, but Shekar et al. notes that in related
works, the former configuration of training and testing
samples were used. Rekik et al. [28] also test global
and local feature extractions with Euclidean classifi-
cation. A fusion of local and global features is found
to perform better than using local or global features
independently. The best EER with skilled forgeries is
11.0% using signatures from 75 different individuals.
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Ramachandra et al. [7] finds the smallest Euclidean
distance between cross-validated graphs of signatures,
using the Hungarian method [29]. Various feature vec-
tor sizes are tested and an EER of 27.78% is achieved
using skilled forgeries and 6.25% using random forg-
eries for two different vector sizes. The Euclidean
distance accuracy is limited by the concentration of
distances of large feature vectors.

The weighted Euclidean distance is not a com-
monly used classification technique. Zhu et al. [20]
uses the weighted Euclidean distance for iris recogni-
tion in 2000. Alizadeh et al. [30] uses the weighted
Euclidean distance for online signature verification.
This is a promising technique that can improve the
accuracy of distance-based classification.

Fractional distances are another uncommon, yet
promising, classification technique. They have not been
used in offline signature verification before. However,
they have been used for online signature recognition in
Vivaracho-Pascual et al. [21], and for face recognition
in Espinosa-Dur et al. [31].

In this work, the concept of weighting by standard
deviation is applied to the fractional distance to pro-
duce a novel distance-based classification technique,
called the weighted fractional distance. Additionally,
locally optimized thresholding is optimized by choosing
the optimal feature vector length per individual.

2 TECHNIQUES AND METHODOLOGY

2.1 Design Overview

Figure 1: Overview of the design of a biometric verification

system

Fig. 1 shows the overview of the verification system.
The three main steps are preprocessing, feature ex-
traction and classification. Preprocessing prepares the
signature image for the extraction of features which
are then used to classify the signature as authentic or
forged. For feature extraction, the Local Directional
Pattern (LDP) features are used. Before feature extrac-
tion, the required preprocessing steps are binarization,
dilation and bounding box extraction. For classifica-
tion, distance-based classification techniques, such as
the Euclidean, Manhattan and fractional distances are
tested.

In the training phase, the reference feature vector
is determined by averaging a subset of randomly chosen
authentic feature vectors. Sample feature vectors are
obtained from other authentic and forged signatures
individually. The classifier is then trained to deter-
mine the threshold that provides the optimal accuracy
for the system, using sample feature vectors of known
classification as input. In the testing phase, further
sample signatures are used, but the classifier will de-
termine their classification independently based on the
threshold obtained from the training phase. Accuracy
is gauged based on the number of signatures that the
classifier correctly accepts as authentic and correctly
rejects as forgeries.

2.2 Feature Extraction

2.2.1 Local Directional Pattern

The Local Directional Pattern (LDP) [5] [32] is a gray-
scale texture based feature method that characterizes
the spatial structure of an image. For the purposes of
this paper, this is an image of a signature. The LDP
utilizes the 8 orientations of Kirsch masks, as shown
in Fig. 2, to detect the presence of edges or corners
and their orientations. Values of the 8 mask orienta-
tions, m0, m1, . . . , m7, are obtained by performing a
convolution of Kirsch masks with the image at each
pixel, followed by a binarization. In other words, given
the source signature image Isrc, we will compute the
transformed image ILDP , using Algorithm 1, where
each transformed pixel ILDP (x, y) encodes the LDP
spatial information of the source image pixel Isrc(x, y)
and its 8 neighbours.

Fig. 3 shows an example of an LDP transformation
using Algorithm 1. A source image pixel Isrc(x, y) is
transformed, using its 8-neighbourhood and Kirsch
masks, into a new LDP code pixel value ILDP (x, y).
The LDP code is a byte value, where each of the 8 bits
is derived from applying one of the 8 convolutions of
the Kirsch masks.

A histogram, HLDP , can then be created from the
image ILDP . Since each 8-bit pixel has exactly three
bits with the value 1, and five bits with the value 0, this
allows for only 56 possible permutations. Therefore,
the histogram will only account for these 56 possible
values. A sample histogram derived from a signature
image is shown in Fig. 4. This histogram of 56 values
is used as the feature vector.
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Algorithm 1 Local Directional Pattern, ILDP , calcu-
lation of an image, Isrc
Require: Isrc, . Source Image
Ensure: ILDP , . Image Transformed using

Local Directional Pattern
1: for each pixel (x,y) do
2: for i=0 to 7 do
3: for k= - 1 to 1 do
4: for l = -1 to 1 do
5: mi = mi +Mi(k+1, l+1)× Isrc(x+k, y+ l)

6: end for
7: end for
8: Transform the three highest values mi into

1s and the rest into 0s
9: end for

10: powerof2 = 1
11: ILDP (x, y) = 0
12: for i = 0 do 7
13: ILDP (x, y) = ILDP (x, y) +mi × powerof2
14: powerof2 = 2× powerof2
15: end for
16: end for

Figure 2: The 8 orientations of Kirsch Masks [5]. Each

orientation is applied to a pixel and its 8 neighbours to

calculate 8 mask values.

2.2.2 Feature Vectors and Resampling

Further, it is possible to divide the image ILDP (x, y)
into blocks by splitting it a specified number of parts
vertically (sV ) and horizontally (sH) and extract a
56-value histogram from each block. The final feature
vector, FVLDP , is then obtained by concatenating all of
these histograms, FV = H1

LDP +H2
LDP + ...+HsV ×sH

LDP .
A sample signature after binarization, dilation, crop-
ping and splitting is shown in Fig. 5.

In this work, multiple feature vector sizes are ana-
lyzed so as to understand the effect of resampling on
the LDP. Resampling refers to changing the number
of splits, and thus the size and depth of information
in the feature vector. Feature vectors between 1 and 8
vertical splits, sV , and horizontal splits, sH , are tested.
Since each histogram has a size of 56 and they are
concatenated, the feature vector size for LDP feature
extraction is calculated as

FVLDP = 56× sV × sH (1)

Resampling will be discussed further in the Sec-
tion 2.3.6 which discusses Individual Optimized Re-
sampling.

Figure 3: calculation of the LDP code [5] obtained by

applying each of the 8 Kirsch masks to the central pixel,

with value 50, and its 8 neighbouring pixels

Figure 4: A sample LDP histogram showing the occurrences

of each directional permutation from the image in Fig. 5

with no splits

2.3 Classification

2.3.1 Determining the Threshold

Authentic signatures are expected to have distance
values below a certain threshold while forged signatures
would have values above that threshold. This threshold
is determined by finding the optimal Equal Error Rate
(EER) during the training phase. Authentic signatures
with distances above the threshold are regarded as false
negatives and contribute to the False Rejection Rate
(FRR) while forged signatures with distances below the
threshold are regarded as false positives and contribute
to the False Acceptance Rate (FAR). This is further
split into the FAR for skilled forgeries (FARS) and
for random forgeries (FARR). The threshold is chosen
where the distance for the FRR and FARS are equal.
This rate is also called the Equal Error Rate (ERR).

2.3.2 Euclidean Distance

One of the most common distance-based classification
techniques for determining the accuracy of biometric
systems is the calculation of the Euclidean distance
[33] between a reference vector (derived as a mean
of several authentic signatures of an individual) and
other feature vectors. The Euclidean distance is used
to calculate the distance between points in a Cartesian
plane. It is a distance calculated in LP -space, also
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Figure 5: A dilated image with splits segmented by 3

horizontal splits and 4 vertical splits

called Lebesgue space, where the p-norm value is 2, or
the L2 distance.

The equation for determining the Euclidean dis-
tance between vectors x = (xi)i=1,2,...,m and y =
(yi)i=1,2,...,m is defined as

||x− y||p = (

m∑
i=1

|(xi − yi)|p)1/p (2)

where p = 2. This makes the equation

||x− y||2 = (

m∑
i=1

|(xi − yi)|2)1/2 (3)

2.3.3 Manhattan Distance

The Manhattan distance [34], also called the City-
block or Taxicab distance, is the distance between two
points determined as the sum of the absolute differ-
ence of their respective coordinates. The equation for
determining the Manhattan distance between vectors
x = (xi)i=1,2,...,m and y = (yi)i=1,2,...,m is computed
as defined in Equation (2) where p = 1. Therefore,
Equation (2) can be re-written as

||x− y||1 =

m∑
i=1

|(xi − yi)| (4)

2.3.4 Fractional Distance

The fractional distance [33] is another distance in LP -
space where the p-norm value, also called the Minowski
norm exponent, is any fractional value less than 1.
Francois et al. [35] discusses the use of fractional dis-
tance as an alternative to the Euclidean distance to
counteract the concentration phenomenon. This phe-
nomenon is when large feature vectors cause the results
of the Euclidean distance to concentrate, or cluster.
This clustering of values, which is an intrinsic property
of LP -space distances, makes classification difficult for
large feature vectors. Fractional distances generally
produce less concentrated results than the Euclidean
distance, which allows for better classification of data
sets.

Francois et al. states, “Fractional norms are not al-
ways less concentrated than other norms. They seem,
however, to be more relevant as a measure of simi-
larity when the noise affecting the data is strongly

non-Gaussian.” [35] Much of the noise generated by
behavioral biometrics is due to random variations in hu-
man action, that may not follow a normal distribution.
This makes fractional distances a viable investigative
route of classifying offline handwritten signatures.

The equation for determining fractional p-norm
distance between vectors x and y is computed as

min(||x− y||p) = (Σ|(x− y)|p)1/p (5)

where 0.1 ≤ p ≤ 2.0.
The optimal value of p is when the distance cal-

culated using Equation (5) is at its minimum for all
values of p within the given range.

2.3.5 Weighted Distances in LP -space

The weighted Euclidean distance measure is a tech-
nique adapted from Zhu et al. [20] to improve the
classification accuracy by adding weight, or statisti-
cal importance, to the most reliable features from the
feature vector. Firstly, the standard deviation for the
reference signatures is obtained.

Let the n reference signatures be

x1 = (x11, x
2
1, . . . , x

m
1 )

x2 = (x12, x
2
2, . . . , x

m
2 )

...

xn = (x1n, x
2
n, . . . , x

m
n )

(6)

Let xji be the jth component of the ith reference
signature where 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Then the mean of the jth component the reference
signatures, µj , is computed as

µj =
1

n

i<n∑
i=0

xji (7)

and their standard deviation σj is defined as

σj =

√√√√ 1

n

i<n∑
i=0

(xji − µj)2 (8)

The weighted Euclidean distance is then calculated
using the standard deviation

||x− y||p =

j<m∑
j=0

|(xj − yj)|p

σj

1/p

(9)

where p = 2.
The equation can be rewritten as

||x− y||2 =

j<m∑
j=0

|(xj − yj)|2

σj

1/2

(10)

Further, the Manhattan distance and weighted
Euclidean distance are combined to form the weighted
Manhattan distance
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min(||x− y||1) =

j<m∑
j=0

|(xj − yj)|
σj

(11)

The fractional distances and weighted Euclidean
distance are also combined to form the weighted frac-
tional distance

min(||x− y||p) =

j<m∑
j=0

|(xj − yj)|p

σj

1/p

(12)

where 0.1 ≤ p ≤ 2.0.
As with Equation 5, the optimal value of p is when

the distance calculated using Equation 12 is at its
minimum for all values of p within the given range.

2.3.6 Individually Optimized Resampling

Resampling of the feature vector allows it to be re-
sized. This is a form of spatial normalization. Different
resampling sizes results in changing accuracies. It is ex-
pected that choosing the best resampling size per user
will optimize the overall accuracy of the system. When
a feature vector is resampled, its size is normalized
to produce a uniform feature vector size, either glob-
ally for all signature sets or locally per individual set.
Vivaracho-Pascual et al. [21] try several resampling
sizes for their feature vectors, in research with online
signatures. They note that there is no single resampling
size that is optimal for all signatures. They further
state that local optimization, obtained by choosing the
best feature vector size per individual, is a non-trivial
approach and interesting for future study. However,
for their work, they chose a global resampling size for
all individuals.

The resampling method used for LDP is described
in Sections 2.2.1 and 2.2.2. In the works of Ferrer et
al. [5], the signatures are split into 4 blocks vertically
and 3 blocks horizontally, giving a total of 12 blocks.
It is unclear if other split combinations were tested.
In their work, each block overlapped by 60% and fea-
ture vectors were transformed using the discrete cosine
transform before classification with a support vector
machine. In this work, images are tested with block
splits between 1 and 8 in both the vertical and horizon-
tal directions. This provides block numbers between 1
and 64 blocks per image.

3 RESULTS AND DISCUSSION

Tables 1 to 12 show the results of tests on the LDP
using different numbers of horizontal and vertical splits
(sH and sV respectively), with various different classi-
fication techniques. The feature vector sizes are deter-
mined by the sH×sV ×H where H is the length of the
histogram, which is always 56 in the LDP extraction
technique. Splits between 1 (no split) and 8 are tested.
Further splits were omitted due to the very large vector
size’s adverse effect on processing speed. The same
experiment setup is repeated for each of the Euclidean,

Manhattan, fractional, weighted Euclidean, weighted
Manhattan and weighted fractional distances.

3.1 Euclidean Distance

Table 1 shows the EER results using the Euclidean
distance calculations as defined in Equation 3. The
EER improved with increasing feature vector sizes at
first, since more data points allows better classification.
The smallest feature vector, from 1× 1 splits, provided
a high EER of 25.0%. This signifies a poor accuracy.
As feature vector size increased, the EER improved
to a best of 21.7% at splits 2 × 3. However, due to
the concentration phenomenon, which causes distance
values to cluster, the EER worsened for feature vectors
larger than this, while some of the largest feature
vectors resulted in worse accuracy that the smallest
feature vector. The worst EER of 26.0% was obtained
with the largest feature vector which had splits of 8×8.

A similar trend is observable with the FARR in
Table 2, obtained using the Euclidean distance calcula-
tions, with the best FARR in the same feature vector
size vicinity as the best EER, and the worst FARR
agrees closely with the worst EER. Once again this
can be attributed to the concentration phenomenon,
which makes the differentiation between authentic and
forged classes difficult with large feature vectors. The
distance measures discussed below are used to counter
the effects of the concentration phenomenon.

3.2 Manhattan Distance

Table 3 shows the EER results using the Manhattan
distance calculations as defined in Equation 4. The
best EER of 19.2% is with splits 3× 3, which gives a
feature vector slightly larger than with the Euclidean
distance. However, while the largest feature vectors
do not provide the best EER, they still provide a
better EER than the smallest feature vectors. This
is in contrast to the Euclidean distance where the
largest feature vectors resulted in a worse EER than
the smallest feature vectors. This shows that p-norm
distance measures other than the Euclidean distance
can provide a better result when feature vectors are
larger and information is greater.

The FARR in Table 4 shows a similar trend, where
the best FARR of 0.18% is also with splits of 3 × 3.
While the FARR increase for larger feature vector sizes,
it is still better than for the smallest feature vector.
This further advocates the use of p-norm distances
other than the Euclidean distance.

The fractional distances discussed next are used to
counter the concentration phenomenon even further.

3.3 Fractional Distance

Fig. 6 shows the effect of globally applied fractional
distances on small and large feature vectors. The
small feature vector was obtained from images with no
split (1 block), while the large feature vector was ob-
tained from images with 7×7 splits (49 blocks). While
fractional distances provide an improvement over the
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Euclidean distance with the small feature vector, the
effect is much more pronounced with the large feature
vector. With the small feature vector, the best EER
was obtained with p = 0.4. This agrees with the obser-
vation of Vivaracho-Pascual et al. [21] Accuracy then
sharply decreases and p = 0.1 gives a worse EER than
the Euclidean distance. Conversely, when the feature
vector is very large, the Euclidean distance provides a
slightly worse EER in comparison to the small feature
vector, but the EER greatly improves when p < 2.0.
The best EER was found to then be with p = 0.1,
which is 5.8% better than the best globally applied
fractional distance for the smaller feature vector. This
discrepancy with Vivaracho-Pascual et al. is most likely
due to their use of insufficiently large feature vectors.
Additionally, the best EER for the fractional distance
with the large feature vector was 8.8% better than the
associated Euclidean distance and 11.2% better than
the worse fractional distance with the small feature
vector. This proves that the fractional distances do
counter the concentration effect that occurs especially
with large feature vectors.

Figure 6: EER in Relation to individual fractional distances

for large and small feature vector sizes

The fractional distances were then applied with lo-
cal optimization. Table 5 shows the EER results using
the locally optimized fractional distance calculations
as defined in Equation 5. This means that the best
fractional distance within the range 0.1 ≤ p ≤ 2.0 was
chosen per individual, since some fractional distances
work better than others for different individuals. The
best EER of 14.7% is with one of the largest feature
vectors, 7×8. This is smaller than the smallest feature
vector using fractional distances by 4.2% and it is better
than the best Euclidean distance by 7.0%. This further
shows that the fractional distances provide a solution
to the concentration phenomenon that occurs with the
Euclidean distance. There is a trend of improvement as
feature vectors become larger. The fractional distances
appears to reach their best improvement in overcoming
the concentration phenomenon between splits 7 × 7
and 8 × 8, which has associated feature vector sizes
between 2744 features and 3584 features. There is
also an improvement over globally applied fractional
distance, by 1.8%.

The FARR in Table 6 shows a slightly different

trend, where the best FARR does not correspond with
the best EER. This is most likely due to choosing the
best p-norm value locally for each individual, rather
than a globally used p-norm as in the case of the Eu-
clidean and Manhattan distances. Due to this localized
optimization of the fractional distances, in some cases,
larger p-norm values were used for the best EER, re-
sulting in worsening of the concentration phenomenon
for larger feature vectors. However, the FARR for frac-
tional distances is still better than that for Euclidean
and Manhattan distances, especially in the case of
larger feature vectors.

3.4 Weighted Euclidean Distance

Table 7 shows the EER results using the weighted Eu-
clidean distance calculations as defined in Equation
10. The best EER of 14.5% is with splits 4× 5, which
gives a feature vector larger than with the best un-
weighted Euclidean or Manhattan distance. This is of
a better EER than the Euclidean and Manhattan dis-
tances, and of an almost equal EER in comparison with
the fractional distance. The low EER is due to extra
weight, or importance, being given to the most reliable
features in the feature vector, which have the smallest
intra-class difference per individual. This weighting
also counteracts the clustering of the concentration
phenomenon to a small extent. This is emphasized
further by the largest feature vectors having a lower
EER than the smallest feature vectors.

In contrast, the FARR in Table 8 shows a different
trend, where the FARR worsens as the feature vectors
become larger. This is because the weighting can not
always differentiate between different sets of signatures
and some features in random forgeries may be given
extra weight if they are similar to authentic signatures.
This is particularly visible with the largest feature
vectors which will also experience the effects of the
concentration phenomenon as well.

3.5 Weighted Manhattan Distance

Table 9 shows the EER results using the weighted
Euclidean distance calculations as defined in Equa-
tion 11. The best EER of 14.3% is with splits 7× 7,
which gives a feature vector larger than with the best
unweighted Euclidean, Manhattan and weighted Eu-
clidean distances. It is of equal size in comparison
to the fractional distance. The larger feature vector
size provided a better EER due to a combination of
a smaller p-norm distance and the weighting by stan-
dard deviation, which counteracted the concentration
phenomenon in tandem. Due to this combination, it
is also of a better EER than all the distances tested
with the LDP before it.

The FARR in Table 8 shows a similar trend to the
FARR of the weighted Euclidean distance, where the
FARR worsens as the feature vectors become larger.
However, due to the use of a smaller p-norm value,
the largest feature vectors have a smaller FARR in
comparison with the largest feature vector sizes of the
weighed Euclidean distance.
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Table 1: The effect of different sH and sV on EER(%)

using the Euclidean distance
HHH

HHsH

sV 1 2 3 4 5 6 7 8

1 25.0 23.9 22.6 23.0 22.6 22.8 23.0 23.0
2 23.8 22.3 21.7 22.0 22.0 22.3 22.4 22.6
3 24.0 22.7 21.9 21.9 22.2 22.3 22.6 22.8
4 24.1 23.0 22.5 22.5 22.8 23.0 23.1 23.5
5 24.3 23.7 23.1 23.2 23.5 23.6 23.9 24.3
6 24.8 23.9 23.4 23.7 24.0 24.2 24.5 25.1
7 25.2 24.4 24.2 24.1 24.5 25.0 25.3 25.4
8 26.0 25.2 24.7 25.0 25.2 25.6 25.7 26.0

Table 2: The effect of different sH and sV on FARR(%)

using Euclidean distances
HHH

HHsH

sV 1 2 3 4 5 6 7 8

1 1.70 0.96 0.60 0.58 0.55 0.55 0.59 1.35
2 1.09 0.48 0.31 0.34 0.34 0.35 0.41 0.45
3 0.85 0.43 0.28 0.33 0.37 0.38 0.44 0.54
4 0.72 0.43 0.35 0.37 0.42 0.54 0.59 0.72
5 0.81 0.52 0.42 0.53 0.61 0.80 0.88 1.09
6 0.89 0.57 0.52 0.68 0.83 1.02 1.28 1.52
7 0.97 0.77 0.73 0.94 1.20 1.53 1.84 2.26
8 1.02 0.90 0.92 1.19 1.50 1.89 2.24 2.87

Table 3: The effect of different sH and sV on EER(%)

using the Manhattan distance
H

HHHHsH

sV 1 2 3 4 5 6 7 8

1 23.3 21.6 20.4 20.3 20.2 20.1 20.2 20.2
2 21.7 20.2 19.3 19.7 19.4 19.7 19.8 20.0
3 21.5 20.0 19.2 19.4 19.3 19.4 19.5 19.7
4 21.4 19.9 19.6 19.5 19.8 19.5 19.6 20.1
5 21.6 20.2 19.6 19.8 19.9 20.1 20.1 20.3
6 21.5 20.6 20.0 20.3 20.2 20.4 20.6 20.8
7 21.9 20.6 19.8 20.1 20.5 20.5 20.8 21.0
8 22.0 21.0 20.2 20.5 20.7 20.9 20.9 21.2

Table 4: The effect of different sH and sV on FARR(%)

using Manhattan distances
H

HHHHsH

sV 1 2 3 4 5 6 7 8

1 1.39 0.77 0.46 0.43 0.39 0.43 0.37 0.89
2 0.79 0.34 0.24 0.24 0.23 0.23 0.28 0.30
3 0.54 0.22 0.18 0.20 0.23 0.24 0.29 0.32
4 0.45 0.22 0.22 0.23 0.26 0.32 0.36 0.44
5 0.47 0.25 0.24 0.27 0.37 0.45 0.54 0.60
6 0.45 0.25 0.30 0.34 0.44 0.55 0.64 0.79
7 0.47 0.30 0.31 0.43 0.55 0.71 0.93 1.08
8 0.50 0.35 0.38 0.50 0.67 0.87 1.10 1.33

Table 5: The effect of different sH and sV on EER(%)

using the fractional distance
H

HHHHsH

sV 1 2 3 4 5 6 7 8

1 18.9 17.7 17.0 16.9 16.7 16.6 16.6 16.7
2 17.9 15.0 16.2 16.1 16.1 15.9 16.0 16.0
3 17.5 16.4 15.6 15.7 15.4 15.2 15.2 15.5
4 17.5 16.2 15.9 15.6 15.4 15.3 15.3 15.2
5 17.5 16.3 15.3 15.4 15.3 15.2 15.0 15.2
6 17.7 16.1 15.7 15.4 15.2 15.0 14.9 14.9
7 17.4 16.2 15.4 15.3 15.0 14.8 14.7 14.7
8 17.7 16.5 15.5 15.3 15.3 14.8 14.7 14.7

Table 6: The effect of different sH and sV on FARR(%)

using fractional distances
H

HHHHsH

sV 1 2 3 4 5 6 7 8

1 1.59 0.95 0.53 0.50 0.50 0.48 0.45 0.52
2 1.02 0.48 0.40 0.37 0.38 0.44 0.51 0.52
3 0.70 0.33 0.32 0.30 0.35 0.32 0.42 0.43
4 0.57 0.31 0.37 0.39 0.34 0.40 0.45 0.51
5 0.59 0.34 0.39 0.31 0.45 0.47 0.54 0.57
6 0.54 0.36 0.44 0.44 0.45 0.51 0.54 0.73
7 0.52 0.42 0.41 0.47 0.51 0.66 0.77 0.78
8 0.53 0.54 0.50 0.51 0.60 0.70 0.76 0.89
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3.6 Weighted Fractional Distance

Following the success of the weighted Manhattan dis-
tance, the weighted fractional distances, which com-
bines the weighted Euclidean distance, are tested. Ta-
ble 11 shows the EER results using the weighted frac-
tional distance calculations as defined in Equation 12.
At splits 7 × 7, this provides the best EER of 12.2%
which is better than all of the classification techniques
tested so far. Once again, the use of fractional dis-
tances and weighting allow greater accuracy with larger
feature vectors. By combining two techniques that are
individually better than the Euclidean distance, an
overall much better accuracy was achieved. The worst
EER for the weighted fractional distance was 16.83%
using no splitting of the image. This is nearly 5%
better than the best results for the standard Euclidean
distance. Conversely, the best EER is 9.5% better than
the best recorded Euclidean distance, and 2.5% and
2.7% better than the fractional and weighted Euclidean
distances respectively.

The FARR in Table 12, shows a similar trend to
the FARR of the weighted Euclidean distance and the
weighted Manhattan distance, where the FARR wors-
ens as the feature vectors become larger. However, due
to the use of a wide range of p-norm values, the FARR
values are better than the FARR for the Euclidean
distance, but slightly worse than for the Manhattan
distance.

3.7 Individually Optimized Resampling

Tables 13 to 14 show the test results for individually,
or locally, optimized resampling performed in conjunc-
tion with each of the above six discussed distance-
based classification techniques, namely the Euclidean,
Manhattan, fractional, weighted Euclidean, weighted
Manhattan and weighted fractional distances. Opti-
mizations from 4 split and 9 split combinations were
tested. It was found that 9 splits yield better results
than 4 splits. These are symbolized in the following
tables with the [x:y] notation. For example, [1:3] rep-
resents the 9 combinations of 1× 1, 1× 2, 1× 3, 2× 1,
2× 2, 2× 3, 3× 1, 3× 2 and 3× 3.

3.7.1 Individually Optimized Euclidean Distance

Table 13 shows the results of tests with the p-norm dis-
tances and individually optimized resampling and the
Table 14 shows those for weighted p-norm distances.
The best EER for the Euclidean distance with individ-
ually optimized resampling was 16.5% from the [1:3]
combination. The optimal combinations of feature vec-
tor sizes corresponds with the lowest single Euclidean
distance EER, of 21.7%, from splits 2×3 when no indi-
vidual optimization was performed. The combination
provides a better EER than non-optimized Euclidean
and Manhattan distances. The FARR values also im-
proved through the individually optimized resampling.
This suggests an association between individuals with
a low EER and a low FARR.

3.7.2 Individually Optimized Manhattan Distance

The best EER for individual optimization on the Man-
hattan distance was 14.3% from the [1:3] combination.
The optimal combination of feature vector sizes cor-
responds with the lowest single Manhattan distance
EER, of 19.2%, from splits 3 × 3 when no individ-
ual optimization was performed. The 9-combination
provides an EER better than or equal to all of the
non-locally optimized distance-based measures, except
for the weighted fractional distance whose best EER is
12.2%. The FARR values also improved through the
individually optimized resampling.

3.7.3 Individually Optimized Fractional Distance

The best EER for individually optimized fractional dis-
tances was 11.3% from the [1:3] combination and worst
was 11.8% in the [6:8] combination. The 9-combination
provides an EER better than all measures tested before
it, including the weighted fractional distance whose
best EER is 12.2%. The FARR values also showed
an improvement through the individually optimized
resampling.

The optimal combinations of feature vector sizes
do not correspond with the lowest single fractional dis-
tance, even though the best and worst EER are very
close, with only a 0.5% difference between them. This
discrepancy may be explained by Fig. 7. In the worse
case scenario, with the combination [6:8], the majority
occurring p-norm in 0.1. This is larger than the second
highest, 0.2, occurrence by over 40%. Conversely, for
the best case scenario of [1:3], the 5 highest occurring
distances are all within a 10% range of each other, and
are the 5 smallest p-norm values. This allows a higher
accuracy, since sometimes, among smaller feature vec-
tors, different p-norm values are better for difference
individuals. However, with the largest feature vectors,
the p-norm value of 0.1 outperforms all others. A com-
bination of smaller feature vectors with more variable
p-norm values can therefore perform slightly better
than a large feature vector with a single dominant
p-norm value.

Figure 7: The number of occurrences of each p-norm in the

fractional distance with individually optimized resampling

combinations [1:3] and [6:8]
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Table 7: The effect of different sH and sV on EER(%)

using the weighted Euclidean distance
HHH

HHsH

sV 1 2 3 4 5 6 7 8

1 18.6 17.9 16.8 16.5 16.1 16.0 16.0 16.0
2 18.4 16.5 15.8 15.7 15.4 15.3 15.2 15.2
3 17.3 16.0 15.5 15.3 14.6 14.8 14.6 14.9
4 17.4 15.7 15.2 15.1 14.5 14.8 14.8 15.0
5 17.3 15.6 14.7 14.8 14.6 14.6 14.7 15.1
6 17.0 15.7 14.8 15.0 14.7 14.8 14.7 14.8
7 16.9 15.5 14.8 14.9 15.0 14.7 14.9 15.1
8 17.2 15.8 15.1 15.3 15.2 14.9 15.1 15.3

Table 8: The effect of different sH and sV on FARR(%)

using weighted Euclidean distances
HHH

HHsH

sV 1 2 3 4 5 6 7 8

1 0.98 0.65 0.50 0.48 0.60 0.64 0.71 1.00
2 0.69 0.51 0.69 0.96 1.08 1.44 1.59 1.85
3 0.55 0.62 0.84 1.04 1.32 1.48 1.53 1.80
4 0.54 0.68 0.93 1.26 1.46 1.69 1.84 1.94
5 0.68 0.87 1.33 1.44 1.79 1.86 2.10 2.22
6 0.77 1.14 1.51 1.66 1.93 2.05 2.17 2.42
7 0.81 1.39 1.54 1.82 1.95 2.19 2.37 2.66
8 0.91 1.35 1.70 1.90 2.08 2.39 2.50 2.92

Table 9: The effect of different sH and sV on EER(%)

using the weighted Manhattan distance
H

HHHHsH

sV 1 2 3 4 5 6 7 8

1 19.4 18.6 17.3 17.3 17.0 16.6 16.7 16.7
2 19.3 17.2 16.6 16.3 15.9 15.6 15.5 15.6
3 18.3 16.5 15.8 15.5 15.1 15.0 14.7 14.7
4 18.1 16.2 15.4 15.3 14.8 14.8 14.5 14.7
5 18.0 16.2 15.0 14.9 14.8 14.7 14.7 14.7
6 17.7 16.1 15.1 15.1 14.9 14.6 14.5 14.7
7 17.4 16.0 15.0 15.0 14.5 14.3 14.3 14.4
8 18.0 16.3 15.2 15.1 14.7 14.6 14.5 14.6

Table 10: The effect of different sH and sV on FARR(%)

using weighted Manhattan distances
H

HHHHsH

sV 1 2 3 4 5 6 7 8

1 0.91 0.56 0.36 0.35 0.31 0.36 0.38 0.50
2 0.63 0.32 0.37 0.48 0.52 0.59 0.70 0.86
3 0.44 0.32 0.36 0.44 0.50 0.66 0.74 0.85
4 0.36 0.32 0.44 0.53 0.62 0.74 0.81 0.95
5 0.39 0.42 0.60 0.67 0.91 0.96 1.11 1.26
6 0.42 0.46 0.70 0.80 1.01 1.16 1.29 1.50
7 0.43 0.53 0.77 0.96 1.02 1.31 1.52 1.71
8 0.47 0.59 0.82 1.01 1.23 1.44 1.70 1.94

Table 11: The effect of different sH and sV on EER(%)

using the weighted fractional distance
H

HHHHsH

sV 1 2 3 4 5 6 7 8

1 16.8 16.1 15.1 14.8 14.5 14.4 14.2 14.6
2 16.7 15.0 14.2 14.0 13.7 13.4 13.3 13.4
3 15.7 14.3 13.6 13.2 12.7 12.6 12.5 12.6
4 15.8 14.0 13.3 13.0 12.5 12.7 12.4 12.5
5 15.3 14.1 12.8 12.7 12.5 12.3 12.3 12.5
6 15.1 13.9 12.9 12.7 12.6 12.5 12.3 12.4
7 15.0 13.8 12.9 12.7 12.5 12.3 12.2 12.4
8 15.4 13.9 13.0 13.0 12.6 12.5 12.5 12.6

Table 12: The effect of different sH and sV on FARR(%)

using weighted fractional distances
H

HHHHsH

sV 1 2 3 4 5 6 7 8

1 1.08 0.70 0.47 0.42 0.52 0.57 0.57 0.72
2 0.65 0.48 0.54 0.84 0.81 0.93 1.22 1.55
3 0.54 0.42 0.66 0.75 0.75 0.81 1.09 1.33
4 0.56 0.53 0.23 0.91 1.00 1.11 1.14 1.34
5 0.63 0.79 1.00 1.02 1.20 1.28 1.28 1.61
6 0.68 0.76 1.16 1.08 1.34 1.36 1.45 1.67
7 0.68 0.88 1.18 1.36 1.44 1.63 1.64 1.78
8 0.66 1.04 1.21 1.42 1.53 1.84 1.84 2.11

Table 13: The effect of implementing individually optimized resampling by choosing the best EER from 9 feature vectors

for each of the p-norm distances

Split Range Euclidean Manhattan Fractional
EER FARR EER FARR EER FARR

[1:3] 16.5 0.67 14.3 0.49 11.3 0.57
[2:4] 17.1 0.31 14.9 0.21 11.7 0.31
[3:5] 17.7 0.34 15.3 0.21 11.7 0.29
[4:6] 19.0 0.55 16.3 0.30 11.8 0.36
[5:7] 20.1 0.80 17.1 0.45 11.9 0.45
[6:8] 21.4 1.36 17.8 0.69 11.8 0.62
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Table 14: The effect of implementing individually optimized resampling by choosing the best EER from 9 feature vectors

for each of the weighted p-norm distances

Split Range Weighted Euclidean Weighted Manhattan Weighted Fractional
EER FARR EER FARR EER FARR

[1:3] 11.0 0.70 11.5 0.50 9.65 0.60
[2:4] 10.8 0.72 11.8 0.34 9.66 0.49
[3:5] 10.7 1.18 11.4 0.48 9.25 0.80
[4:6] 11.1 1.59 11.6 0.68 9.50 0.97
[5:7] 11.2 1.88 11.9 1.06 9.60 1.18
[6:8] 11.8 2.20 12.0 1.27 10.0 1.36

3.7.4 Individually Optimized Weighted Euclidean Dis-
tance

The best EER for individually optimized weighted Eu-
clidean distance was 10.7% from the [3:5] combination.
The optimal combination of feature vector sizes corre-
late with the lowest single weighted Euclidean distance
EER, of 14.5%, from splits 4× 5 when no individual
optimized resampling was performed. This provides
better EER than previous distance-based classification
measures. This includes better performance than the
best weighted fractional distance of 12.2% without
individually optimized resampling and all of the previ-
ously tested individually optimized resamplings of the
LDP. The FARR values correlate closely with those for
the weighted Euclidean distance without individually
optimized resampling.

3.7.5 Individually Optimized Weighted Manhattan Dis-
tance

The best EER for individually optimized weighted
Manhattan distance was 11.4% from the [3:5] combina-
tion. The optimal combination of feature vector sizes
corresponds with the lowest single weighted Manhat-
tan distance EER, of 14.5%, from splits 7× 7 when no
individual optimized resampling was performed. This
provides better EER than previous distance-based clas-
sification measures, where no individually optimized
resampling was performed. However, the individu-
ally optimized weighted Manhattan distance performs
worse than the individually optimized weighted Eu-
clidean distance. This may be because the standard
deviation used in the weighting equation is calculated
with a p-norm of 2 while the Manhattan distance is cal-
culated with a p-norm of 1. The FARR values closely
agree with those for the weighted Manhattan distance
without individually optimized resampling.

3.7.6 Individually Optimized Weighted Fractional Dis-
tance

The best EER for the individually optimized weighted
fractional distance performed better than all other
test before. This good performance is due to choosing
both the best p-norm and best split size per individual,
i.e. locally optimized classification. The optimal split
sizes for the individually optimized fractional distance
do not correlate with the optimal split sizes for the
non-locally optimized weighted fractional distance, al-

though there is a mere difference of 0.75% between the
best and worst EER. An analysis of Fig. 8, shows that
the pattern for the highest EER, from combination
[6:8], is similar to that for the highest EER for the
individually optimized fractional distance in Fig. 7.
In both cases the smallest p-norm size of 0.1 has the
greatest percentage of occurrences by far. Similarly,
the best EER, from combination [3:5], for the individ-
ually optimized fractional distance has a comparable
pattern with the best EER of [1:3] for the individually
optimized fractional distance. In both cases, the first
4 p-norm distances are among the largest and within
a close range. Additionally, the greatest occurrence is
still for the p-norm value of 0.1. The smaller feature
vectors in combination [1:3] provide an EER in between
the highest and lowest. In Fig. 8, is can be seen that
the greatest occurrence was for p-norm of 0.6 rather
than 0.1. The latter provides much lower EER values
with larger feature vector sizes. The larger p-norm of
0.6 is more effect with smaller feature vectors, in com-
parison with 0.1. However, 0.1 performs much better
than 0.6 in comparison with larger feature vectors.

An analysis of the weighted Euclidean, individually
optimized weighted Euclidean, weighted Manhattan
and weighted fractional distances shows that all of
them provide their best EER in the feature vector
range for splits 3× 3 and 5× 5. This suggests a strong
involvement of the standard deviation function that
is used in the weighting. In all cases, the standard
deviation was calculated in p-norm space of 2, whereas
the Manhattan and fractional distances were calculates
with smaller p-norm distances.

3.8 Literature Comparison

Ferrer et al. [5] tested the Local Binary Pattern (LBP)
and Local Directional Pattern (LDP) using several data
sets, separately. These sets were 75 individuals from
the MCYT database [36], and 75, 300 and 960 users
from the GPDS database [37]. While EER with the
data sets using 75 individuals is low, these results can
not be used for comparison, since the small size of the
data set bring the precision and accuracy of results into
question. A better comparison of the results is obtained
with the data sets containing 300 and 960 individuals.
Classification was performed with an Least Squares
SVM (LS-SVM) with an RBF kernel. The signatures
were split into 12 blocks for the feature extraction,
consisting of 4 vertical splits and 3 horizontal splits,
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Figure 8: The number of occurrences of each p-norm in the

weighted fractional distance with individually optimized

resampling combinations [1:3] and [6:8]

and an overlap of 60%. From these, the best EER was
17.8% using 300 individuals of the GPDS database,
with a corresponding FARR of 0.68%.

In this work, the same feature extraction technique
was implemented and tested with multiple distance-
based classification techniques, including the Euclidean,
fractional, weighted Euclidean and weighted fractional
distances. Signatures of 300 GPDS individuals were
used, which was also the same database used for the
best results in [5]. A larger range of splits sizes were
tested. This range was from 1 to 8 splits in both the
vertical and horizontal directions. While the best Eu-
clidean and Manhattan distance performances for the
LDP was worse than the literature result, at 21.7%
and 19.2% respectively, the fractional, weighted Eu-
clidean, weighted Manhattan and weighted fractional
distances all performed much better, at 14.7%, 14.5%,
14.3% and 12.2%. It can be seen that the weighted
fractional distance performs better than the LS-SVM
with an RBF kernel for the classification of the LDP
[5]. Further, individually optimized resampling was
performed, where the best resampled block sizes per
individual were chosen from a possibility of 9. The
best individually optimized resampling was for the
weighted fractional distance, with an EER of 9.25%
and corresponding FARR of 0.80%. The obtained EER
is better than the best results in the literature [5] by
8.6%, and both systems obtained an FARR of below
1%.

4 CONCLUSION AND FUTURE WORK

To improve the accuracy of offline signature verification,
distance-based classification techniques in LP -space
were tested with application to LDP feature extraction
technique. The combination of weighted fractional dis-
tance with individually optimized resampling achieved
a best EER of 9.25%. This shows that distance-based
classification techniques provide a viable alternative
to SLTs for the verification of offline signatures.

Future work includes testing the system with for-
eign signature databases, such as Chinese and Persian;
and fusing the signature modality with other biometric
modalities to create a multi-modal biometric verifica-

tion system.
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