
Research Article ─ SACJ, No. 47., July 2011 1

How Can Secure How Can Secure How Can Secure How Can Secure SoftwareSoftwareSoftwareSoftware be Trusted?be Trusted?be Trusted?be Trusted?

Lynn Futcher1, Rossouw von Solms2

Nelson Mandela Metropolitan University, Port Elizabeth, South Africa,

Abstract

The security of software applications is a major concern, especially for information owners, software developers and users.

Increasingly, these stakeholders need to be confident that the software applications being developed are secure and can be trusted

when used in the intended environment. However, a problem exists in terms of how to confidently address the security of software

applications in order to protect the information to be stored, processed and transmitted by them, thereby increasing their associated

levels of trust. The purpose of this paper is therefore to address some key aspects relating to the security and trustworthiness of a

software application functioning within the intended environment. These key aspects include those relating to the security controls

implemented and installed by the software developers and those involving the actual usage of the security controls implemented.

CATEGORIES AND SUBJECATEGORIES AND SUBJECATEGORIES AND SUBJECATEGORIES AND SUBJECT DESCRIPTORSCT DESCRIPTORSCT DESCRIPTORSCT DESCRIPTORS

D.2.1. and K.6.5.

GENERAL TERMSGENERAL TERMSGENERAL TERMSGENERAL TERMS

Security

KEYWORDSKEYWORDSKEYWORDSKEYWORDS

Secure software, trusted software, information security, secure software development, common criteria.

1
 Lynn.Futcher@nmmu.ac.za

2
 Rossouw.vonSolms@nmmu.ac.za

1. INTRODUCTION

The Internet has created a fundamental and radical change in

the role that software plays in the world today. No longer does

software simply support back offices and home entertainment -

it has become deeply intertwined in our everyday lives and is

regarded as the lifeblood of many organisations [1]. In the

current Internet-dominent era, virtually all computers (including

servers, desktop personal computers, cellular phones and other

mobile devices) are interconnected. In this way software today

provides immediate, global access to information, it enables

electronic commerce and it automates supply chains. It has also

become an integral part of our household appliances, cars and

home security systems. The problem is that these interconnected

computers and networks can be attacked at various points,

putting the associated information at risk. A substantial portion

of these attacks on systems occur through exploiting

vulnerabilities in the software that forms an integral part of the

system. This raises the question of ‘Why do these vulnerabilities

exist in software?’.

Unfortunately software often is developed with minimal

concern for security. According to Viega and McGraw [1], this

could possibly be attributed to the demanding constraints of

project management, including time, cost and resources. In

today’s economic environment, these are still primary

contributing factors. In addition, security goals are often

believed to clash directly with many of the goals of modern

software development methodologies which tend to pay specific

attention to the needs, wants, and limitations of end-users. The

goals of users may include functionality, usability, efficiency

and simplicity. Many software developers do not possess the

knowledge and expertise necessary to cater to the security goals

of an application. Furthermore, Howard and LeBlanc [2]

suggest that security is boring and is often seen as a

functionality disabler. For many developers it means not being

able to do something new and exciting. This, together with the

fact that security is difficult to measure, means that security

aspects are often neglected during the development process.

This eventually leads to vulnerabilities in the software product.

It is evident that for many organisations, security is still

considered as something that ‘gets in the way’ and costs money,

while offering little or no financial return. However, there are

many arguments supporting the development of secure

software. First and foremost, secure products suggest quality in

terms of confidentiality (protection from disclosure), integrity

(protection from alteration) and availability (protection from

destruction) [3]. The failure to design and build secure

software, from the perspective of the software developer, leads

to more work in the long run and a bad reputation for the

developers, users, company and company’s clients. This, in

turn, can lead to the loss of sales for an organisation as

customers switch to a competing product perceived to have

2 Research Article ─ SACJ, No. 47., July 2011

 2

better security support. Users, on the other hand, do not want

their systems to be infected by viruses, their credit card

information or their personal data to be compromised. Software

applications are therefore expected to securely process, transmit

and store sensitive user and corporate information. Today, it

can be rightly argued that users and information owners are

demanding more secure software applications and now consider

such systems as a right and not a privilege. Software systems

must therefore be trusted to process, store and transmit all

related sensitive information in a secure manner. However, it is

apparent that a problem exists in terms of how to confidently

address the security and trustworthiness of software

applications thereby meeting the needs of all the stakeholders,

including the information owners, software developers and

users.

The purpose of this paper is to address some key aspects

related to the security and trustworthiness of a software

application functioning within a specific environment. Section

2 introduces the notion of secure and trusted software, while

Section 3 focusses on secure software development by referring

to software development and information security standards and

best practices. Section 4 takes a closer look at existing

evaluation frameworks and criteria that provide a conceptual

grounding for the key aspects proposed for secure and trusted

software. These key aspects are described in Section 5.

2. SECURE AND TRUSTED SOFTWARE

Attacks on software have increased dramatically since the

1980s. Traditional perimeter defenses such as firewalls,

intrusion detection and anti-virus systems are no longer able to

stop these software attacks as hackers increasingly focus on the

software layer [4]. Security has therefore become an essential

requirement for software developers. However, since traditional

software development methodologies do not pay much attention

to security aspects, addressing software security problems

effectively is often difficult. The majority of security

weaknesses exploited by viruses, worms and other malware can

be attributed to poor software design [1,5]. These weaknesses,

however, are not intentionally introduced by software

developers.

It is apparent that there is far more to software security than

avoiding the often discussed problem of buffer overflows.

According to Pfleeger [6], secure software applications need to

be correct, complete and exact. A software application is correct

if it meets the requirements for which it was designed; complete

if it meets all the specified requirements; and exact if it

performs only those operations specified by the requirements

[6]. McGraw [7] defines software security as ‘the idea of

engineering software so that it continues to function correctly

under malicious attack’. Viega and McGraw [1] further state

that the problem of security is relative and that there is no such

thing as 100% security. In addition, they suggest that software

security can be seen as a measurement of how robust a specific

software application is with respect to a particular security

policy and that auditing is an essential part of software security.

The Software Assurance Forum, established jointly by the

United States Department of Homeland Security and

Department of Defence, defines secure software as that which

exhibits the properties of dependability, trustworthiness,

resilience and conformance [8]. These are stated as software

assurance objectives. While dependability refers to the level of

confidence that the software, when executed, will function only

as intended, trustworthiness depends on the extent to which no

exploitable vulnerabilities or malicious logic exist in the

software. Resilience, on the other hand, relates to the ability of

the software to recover quickly to an acceptable level of

operation, if compromised in any way. Conformance requires

that the software conforms not only to the requirements

specified but also to relevant standards and procedures [8].

From the literature studied, it is evident that a consistent

approach to providing secure and trustworthy software is

needed. Addressing the security and trustworthiness of software

applications is difficult since the traditional software

development lifecycle (SDLC) does not particularly take

security into consideration. In the past, software developers

generally focused on core functionality and features. Security

was typically only addressed as an afterthought and in a very ad

hoc manner [9,10]. The following section addresses secure

software development by referring to various software

development and information security standards and best

practices.

3. SECURE SOFTWARE DEVELOPMENT

Many organisations produce software development and

information security standards. The Institute for Electrical and

Electronic Engineers (IEEE), the National Institute for

Standards and Technology (NIST), the International Standards

Organisation (ISO), the American National Standards Institute

(ANSI), the American Department of Defense (DoD), the

British Standards Institute (BSI), the Common Request Object

Broker Architecture (CORBA) and the Object Management

Group (OMG) are all well known sources of such standards.

Secure software is a software development problem [4]. The

idea of integrating security into the software development

lifecycle has been widely addressed. This stems from the fact

that security cannot be added on as an afterthought, but must be

considered from the outset. According to NIST [11], integrating

information security requirements into the SDLC is the most

efficient and cost-effective method of ensuring that the

organization’s protection strategy is reflected in the information

systems needed to support the processes of the organization.

Security needs to be considered throughout the software

development lifecycle regardless of which methodology is

followed.

3.1 Software Development Standards and Best
Practices

The IEEE regularly publishes software development standards

and ANSI works closely with the IEEE in developing industrial

software development standards. Similarly, the DoD publishes

military standards for software and the BSI serves as a rich

source of standards concerning every aspect of software

development. ISO standards cover design and description in

ISO 6593; documentation in ISO 9127; and software quality

management in the ISO 9000 series. ISO/IEC (International

Electrotechnical Commission) JTC1 SC7 is responsible for the

standards related to software quality and software engineering.

Software developers tend to follow various development

methodologies. These range from the classic waterfall model, to

Boehm’s spiral model, Capability Maturity Model Integration

(CMMI), the Team Software Process (TSP) and Personal

Software Process (PSP) to the more recently adopted agile

methods and Comprehensive Lightweight Application Security

Process (CLASP). However, there is little evidence that any of

these methods create more secure software [12]. According to

Howard and Lipner [12], the primary difference between

Microsoft’s Secure Development Lifecycle (SDL) and CMMI,

TSP and PSP is that whereas SDL focuses solely on security

and privacy, CMMI, TSP and PSP are mainly concerned with

Research Article ─ SACJ, No. 47., July 2011 3

improving the quality and consistency of development

processes in general. CMMI, TSP and PSP neglect to make any

specific provisions or accommodations for security [12].

More recently, agile development methods have become

popular for developing software. These methods attempt to

reduce the overall risk of software development projects by

building software in very rapid and short iterations, called

sprints or timeboxes. Although the Microsoft Solutions

Framework (MSF) for Agile Software Development adds some

security checklists and threat modeling, it is very superficial and

focuses only on some basic programming practices for security.

Howard and Lipner [12] claim that there is no reason why SDL

cannot be adopted by agile methods of software development.

However, according to Goerzel [8], just because software

performs information security-related functions, it does not

mean that the software itself is secure. The functionality

provided by a software application needs to be measurable,

observable and testable [13].

It is evident that few software development methodologies

actually cater for security and those that do state mostly ‘what’

must be addressed and not ‘how’. Thus, a lot is left to the

software developer to interpret and to determine. In addition,

few real guidelines exist to provide assistance as to what is

correct and what is enough when integrating security into

software applications.

3.2 Information Security Standards and Best
Practices

The National Institute of Standards and Technology (NIST) is a

measurement standards laboratory which is a non-regulatory

agency of the United States Department of Commerce. NIST

publications address specific security considerations and

therefore provide an excellent source of security standards and

best practices. For example, risk assessment is addressed in

NIST SP 800-30 ‘Risk Management Guide for Information

Technology Systems’ [14] and security in the SDLC is

addressed in NIST SP 800-64 ‘Security Considerations in the

Information System Development Life [11].

According to NIST [11], regardless of the type of software

development methodology used by an organisation, information

security must be integrated into the SDLC from the earliest

stages to ensure appropriate protection of the information to be

transmitted, processed, and stored by the system. In addition,

NIST promotes risk management as playing a critical role in

protecting an organisation’s information assets from IT-related

risk [15]. NIST therefore supports an integrated approach to

secure software development that specifically addresses risk

management and in so doing enables security to be planned,

built in and deployed as an integral part of the development

process.

However, articulation of the desired system security

properties is essential to integrating security into the SDLC.

These system security properties are commonly referred to as

‘security requirements’ [16]. Although there are many ways to

express these requirements, NIST [16] refers to using the

concepts described in the Common Criteria for Information

Technology Security Evaluation [17], ISO/IEC 15408, also

known as the CC. In addition to articulating the security

requirements of a system, NIST [16] further states that ‘the

correct and effective use of information security controls is a

fundamental building block of information security’. However,

a certain level of assurance is required to provide confidence

that the security controls identified will operate correctly and

effectively in the intended operational environment.

The CC is useful in that it not only provides a standard

vocabulary and format for stating the security requirements of a

system. It also provides various levels of assurance of a product

or information system that is to be trusted [16]. The following

section provides further discussion of the CC and it’s relevance

in developing trusted and secure software applications.

4. TRUSTED SECURITY EVALUATION
CRITERIA

The Common Criteria [17] is currently the international

standard (ISO/IEC 15408) for computer security and has

superceded the Trusted Computer Security Evaluation Criteria

(TCSEC) and the Information Technology Security Evaluation

Criteria (ITSEC). The purpose of the CC is to allow software

developers to specify their security requirements, to specify the

security attributes of their products, and to allow evaluators to

determine if the products actually meet the security

requirements initially identified. According to the CC, these

security requirements are categorised according to functional

and assurance requirements. Functional requirements define the

desired security behaviour and can be equated to how

strenuously the security controls actually perform their function

in the intended environment. Assurance requirements, on the

other hand, are the basis for gaining confidence that the chosen

security controls are effective and correctly implemented.

The CC [17] uses specific terminology for evaluation which

needs to be understood. The Target of Evaluation (TOE) is

basically the product or system to be evaluated. For the

purposes of this paper, the TOE refers to the particular software

application being developed. The Protection Profile (PP) is

determined by the specific security controls that form part of the

TOE. The PP needs to be evaluated at a desired assurance level.

In this way the PP (that constitutes all the security controls and

mechanisms) is supposed to provide the assurance of the TOE.

The Security Target (ST) is a specification of the security

requirements of a TOE and is to be used as a baseline for

evaluation. This begins by describing the assets and the

potential threats to those assets. In essence, this is the process of

some risk assessment. Having identified the specific risks to the

TOE, the ST then sets the benchmark for the security controls

and mechanisms required to respond to and counter these risks.

The aim of the evaluation process is to determine whether the

PP of the TOE meets the ST of the TOE.

Figure 1 clearly illustrates some of the key security concepts

and relationships used throughout the CC [17]. The purpose of

security is to protect assets. An asset is an entity which someone

(owner, user, threat agent) places a value upon. From a software

development perspective, assets are typically in the form of

information that can be stored, processed and transmitted via

software applications. It is therefore important that software

applications meet the security requirements laid down by the

owners of the assets implicated. Since threat agents (hackers,

malicious users) may also place value on the assets, they may

wish to abuse and/or damage the assets thereby leading to a loss

of confidentiality, loss of integrity or loss of availability. These

threats therefore increase the risk to the information assets

which require protection by the imposing of controls (also

referred to as security mechanisms, countermeasures or

safeguards). It is necessary to note that the risks to be managed

take on different levels of urgency and importance in different

situations. For this reason it is essential that the ST of a

software application be well defined, taking the particular

threats into account. For example, the ST for an electronic

4 Research Article ─ SACJ, No. 47., July 2011

 4

banking application and an electronic personal diary system

will differ significantly.

Owners

Controls

Risk

AssetsThreats

Threat agents

value

to

to

that

increase

give rise to

to reduce

impose

wish to minimise

wish to abuse and/or damage

Figure 1: Key Security Concepts and Relationships [17]

As already stated, the purpose of the CC is to allow software

developers to specify their security requirements, to specify the

security attributes of their products, and to allow evaluators to

determine if the products actually meet the security

requirements initially identified. Figure 2 therefore illustrates

some of the key evaluation concepts and relationships used

throughout the CC [17]. According to the CC, some form of

evaluation is required to provide confidence to the owners of

the information assets that the controls implemented are both

sufficient and correct thereby minimising the risk to these

information assets. These risks may be related to a loss of

confidentiality, loss of integrity or loss of availability of the

information assets concerned. The sufficiency of controls is

determined by the ST which clearly describes the assets

implicated together with their potential risks, whereas the

correctness of controls may be impacted by poor design and

inadequate implementation and testing. A problem exists in that

most information asset owners lack the know-how, expertise

and resources to determine the sufficiency and correctness of

the security controls implemented in software. They therefore

call for an evaluation in order to increase their confidence with

the software application in question [17].

From an assurance point of view, it is important that the PP

is tested for effectiveness and correctness. Effectiveness refers

to whether the security controls that form part of the PP are

sufficient enough to respond to the risks identified in the ST.

Effectiveness therefore requires that the assets and threats

associated with the TOE be considered. Correctness is

determined by whether the security controls stated in the PP are

correctly implemented and installed [17].

Some of the drawbacks of the CC include the cost and

duration of performing formal evaluations [18]. In line with the

underlying principles of the CC, the following section addresses

some key aspects relating to the security and trustworthiness of

a software application to assist the various stakeholders in the

formal assessment of software applications.

5. KEY ASPECTS OF SECURE TRUSTED
SOFTWARE

Software trustworthiness may be defined as ‘the level of

confidence that a software application will fulfill the given set

of goals and requirements while remaining free from threats and

maintaining normal operation under all possible circumstances’

[19]. Trusted software therefore does what it is designed to do

Evaluation

Owners

Confidence

Controls Sufficient

Risk

Assets

Correct

provides

require

that

are

and

therefore

minimise

to

and

therefore

minimise

are

Figure 2: Key Evaluation Concepts and Relationships [17]

accurately and reliably. In addition, it should not allow anything

other than that which was designed as explicitly allowable. In

order for a software application to be trusted and deemed

secure, the following questions need to be satisfactorily

answered:

• Do the security controls function properly and are they

sufficiently strong in the given context?

• Are the security controls adequate, taking the related threats

into account?

• Are the security controls properly implemented and

installed to provide optimal operation and maximum

protection?

• Is correct user behaviour enforced?

These questions may be answered by addressing some key

aspects related to the security and trustworthiness of software

applications namely functionality, effectiveness, correctness and

usage.

From a functional point of view this means that the chosen

security controls must perform as expected when applied in the

intended environment. In addition they must be strong enough

to address the risk associated with the information assets

implicated. The functionality of a software application may

therefore be answered via the question ‘Do the security controls

function properly and are they sufficiently strong in the given

context? ‘.

The effectiveness of security controls relates to the extent to

which they do what they are supposed to do taking the

envisaged threat environment into account. According to

Howard and LeBlanc [2], the need for security and its strength

are context-driven. This means that different situations call for

different solutions. The risks to be managed take on different

levels of urgency and importance in different situations. The

key when developing secure software products is to design and

build them so that they are sufficiently secure for the

environment in which they will operate. A system that is secure

in one context may be completely insecure when placed in

another. The effectiveness of a secure software application may

be answered through the question ‘Are the security controls

adequate, taking the related threats into account? ‘.

Correctness relates to the correct implementation and

installation of the chosen security controls. It requires that this

is carried out in accordance with accepted standards and best

Research Article ─ SACJ, No. 47., July 2011 5

practices. Adherence to secure coding best practices and

carrying out security testing also address the correctness of

security controls. Correctness is best answered by asking ‘Are

the security controls properly implemented and installed to

provide optimal operation and maximum protection? ’.

It is argued that the usage of software is just as important as

the correctness of software itself [20]. Users are increasingly

required to use software applications in a safe and secure way.

One way to support the correct use of software is to provide

ongoing security training and education. Microsoft recommends

that tools and guidance should accompany software to support

secure and trusted usage. In addition, users need to be

encouraged to accept responsibility and become accountable for

their behaviour and actions. The question of usage may

therefore be answered by asking the question ‘Is correct user

behaviour enforced?’ draft

Figure 3, based on some of the key security and evaluation

concepts addressed in Figures 1 and 2, has been drafted by the

authors to clearly illustrate these important aspects of secure

and trusted software. This diagram shows that various

stakeholders call for trust in software. Firstly, information

owners would like to trust that their information will be

protected by the software applications that are responsible for

its storage, processing and transmission - thereby ensuring its

confidentiality, integrity and availability. Furthermore, software

developers would like to trust that the software they develop

will be used as intended by the users of their applications, and

users expect that the software they use will carry out their tasks

securely.

However, software applications tend to function in a specific

environment. Unfortunately, these environments are exposed to

risk since threat agents tend to operate within these

environments. This gives rise to threats which exploit existing

vulnerabilities in order to compromise the highly valued

information assets. This increases the risk associated with them

as the specific environment becomes exposed to the associated

risk. In order to reduce the risk associated with the information

assets implicated, software developers implement controls.

These controls, however, need to be functional, effective and

correct according to the environment in which they will operate.

From a security point of view, the security controls

implemented need to function appropriately, be suitably strong,

and be safe to use. The effectiveness of a security control,

however, can only be determined by considering the specific

environment in which it functions, taking the associated risk

into account. It may therefore be necessary to identify numerous

security controls in order to reduce this risk. This means that

although a control may be functional in its own right, it may not

be sufficient to mitigate the risk associated with the given

environment. Having determined the necessary security

controls, the correctness of these controls may be achieved

through accurate and correct implementation and installation.

This helps ensure the protection of the information assets

implicated. However, full protection can only be achieved by

the users of the software since they are ultimately responsible

for using the software in a secure and responsible manner. It is

therefore argued that responsibly usage is a further key aspect to

consider when discussing trusted software.

By taking into account the key aspects of functionality,

effectiveness, correctness and usage, it is evident that every

stage of the software development plays a vital role in ensuring

the security of software applications. For example, if a risk

analysis is not carried out in the beginning of the SDLC, then

effectiveness might suffer since the specific threat environment

would not have been considered. If some security mechanisms

or controls are self developed and the ST is quite ‘stringent’,

the functionality might suffer as the mechanisms may not be

strong enough to withstand attacks. Likewise, if functionally

sound security mechanisms are chosen, but poorly implemented

into the software or poorly installed, then correctness might

suffer and if the software is securely developed and the users do

not operate it in a secure manner, then usage will suffer.

Trust

call for

Software

g
e

ts
 d

e
ve

lo
p

e
d

 b
y

in

Specific

Environment

functioning in a

Risk

Threats

Information Assetswish to own well protected

exposing it to

implemented in

implement

Stakeholders
Software

Developers

to

to reduce

operate in

Information

Owners

give rise to

Usage

requires

responsible

by Security Controls

Functional

Effective

Correct

Threat Agents

Users

Vulnerabilities
exploit

that increase

in order to

compromise

Figure 3: Key Aspects of Secure Trusted Software

6. CONCLUSION

Based on the conceptual foundation provided by the CC, this

paper proposes functionality, effectiveness, correctness and

usage as fundamental aspects for secure and trusted software

applications. By considering these key aspects, a higher level of

security and trust could be provided for all stakeholders

including the information owners, software developers and

users of the software. Any methodology for secure software

development should therefore take into consideration these key

aspects of secure and trusted software as described in Section 5.

Although various aspects of secure software development have

been extensively researched, the integration of these aspects is

still lacking. For example, much of the literature studied refers

to the importance of defining security requirements, but this

only addresses the functionality of a software application and

not the other three elements. Many other sources focus

specifically on risk analysis and threat modeling, which impacts

the effectiveness of the system while others centre on secure

software principles and best practices or secure coding and

testing which all relate to correctness. Although the usage of

software applications is discussed in some organizational

policies and procedures, most software development

methodologies pay very little attention to this aspect. This paper

combines these aspects as fundamental to ensuring secure and

trusted software.

REFERENCES

[1] Viega, J., & McGraw, G. (2001). Building Secure

Software. Addison-Wesley.

[2] Howard, M., & LeBlanc, D. (2003). Writing secure code :

Practical strategies and techniques for secure application

coding in a networked world. Microsoft Press.

[3] Paul, M. (2008a). Software Security: Being Secure in an

Insecure World. Retrieved September 1, 2009, from The

International Information Systems Security Certification

Consortium Inc (ISC2):

http://www.isc2.org/uploadedFiles/(ISC)2_Public_Content

6 Research Article ─ SACJ, No. 47., July 2011

 6

/Certification_Programs/CSSLP/CSSLP_WhitePaper_3B.

pdf

[4] Taylor, J., & Reinstein, M. (n.d.). Application Security by

Design: Security as a Complete Lifecycle Activity.

Retrieved March 8, 2010, from Security Innovation:

www.securityinnovation.com

[5] Ghosh, A. K., Howell, C., & Whittaker, J. A. (2002,

January/February). Building Software Securely from thew

Ground Up. IEEE Software , 14-16.

[6] Pfleeger, C. P. (2007). Computer Security. Retrieved

November 3, 2009, from AccessScience@McGraw-Hill:

http://www.accessscience.com/

[7] McGraw, G. (2004). Software Security. IEEE Security and

Privacy , 80-83.

[8] Goertzel, K. (2009, January 09). Introduction to Software

Security. Retrieved December 3, 2009, from Build

Security In: https://buildsecurityin.us-

cert.gov/daisy/bsi/547-BSI.html

[9] Viega, J. (2004, October 15). Security in the Software

Development Lifecycle. Retrieved April 13, 2010, from

IBM:

http://www.ibm.com/developerworks/rational/library/conte

nt/RationalEdge/oct04/viega/

[10] Paul, M. (2008b). The Need for Secure Software.

Retrieved September 1, 2009, from The International

Information Systems Security Certification Consortium Inc

(ISC2):

http://www.isc2.org/uploadedFiles/(ISC)2_Public_Content

/Certification_Programs/CSSLP/CSSLP_WhitePaper.pdf

[11] NIST. (2008a, October). SP 800-64: Security

Considerations in the Systems Development Life Cycle.

Retrieved October 14, 2009, from National Institute of

Standards and Technology: Special Publications (800

Series): http://csrc.nist.gov/publications/nistpubs/800-64-

Rev2/SP800-64-Revision2.pdf

[12] Howard, M., & Lipner, S. (2006). The Security

Development Lifecycle. Washington: Microsoft Press.

[13] SAFECODE. (2008, February). Software Assurance: An

Overview of Industry Best Practices. Retrieved December

7, 2009, from SAFECODE: Software Assurance Forum for

Excellence in Code:

http://www.safecode.org/publications/safecode_bestpractic

es0208.pdf

[14] NIST. (2002, July). SP 800-30: Risk Management Guide

for Information Technology Systems. Retrieved October

14, 2009, from National Institute of Standards and

Technology: Special Publications (800 Series):

http://csrc.nist.gov/publications/PubsSPs/sp800-

30.pdf.html

[15] NIST. (2008b, April). Managing Risk from Information

 Systems: An Organisational Perspective. Retrieved

 December 3, 2009, from National Institute of Standards

 and Technology : csrc.nist.gov/publications/drafts/800-

 39/SP800-39-spd-sz.pdf

[16] Stoneburner, G., Goguen, A., & Feringa, A. (2002, July).

 NIST Special Publication 800-30: Risk Management

 Guide for Information Technology Systems. Retrieved

 September 3, 2009, from National Institute of Standards

 and Technology (NIST):

 http://csrc.nist.gov/publications/nistpubs/800-30/sp800-

 30.pdf

[17] Common Criteria. (2009, July). Common Criteria for

Information Technology Security Evaluation. Retrieved

December 1, 2009, from Common Criteria:

http://www.commoncriteriaportal.org/files/ccfiles/ccpart1v

3.1r3.pdf

[18] Oracle. (2001, July). Computer Security Criteria: Security

Evaluations and Assessment. Redwood Shores, California,

USA.

[19] Tan, T., He, M., Yang, Y., Wang, Q., & Li, M. (2008). An

Analysis to Understand Software Trustworthiness. The 9th

International Conference for Young Computer Scientists

(pp. 2366-2371). IEEE Computer Society.

[20] Yee, K.-P. (n.d.). User Interaction Design for Secure

Systems. Retrieved December 7, 2009, from

http://people.ischool.berkeley.edu/~ping/sid/uidss.pdf

