
Research Article – SACJ No. 53, August 2014 1

Weak factor automata: The failure of failure factor oracles?

Loek Cleophas∗, Derrick G. Kourie†, Bruce W. Watson†

∗FASTAR Research Group (http://www.fastar.org), Department of Computer Science, University of Pretoria, Private
Bag X20, 0028 Hatfield, Pretoria, Republic of South Africa, http://www.cs.up.ac.za
†FASTAR Research Group (http://www.fastar.org), Department of Information Science, Stellenbosch University, Private
Bag X1, 7602 Matieland, Republic of South Africa, http://www.informatics.sun.ac.za

ABSTRACT

In indexing of, and pattern matching on, DNA and text sequences, it is often important to represent all factors of a

sequence. One efficient, compact representation is the factor oracle (FO). At the same time, any classical deterministic

finite automaton (DFA) can be transformed to a so-called failure one (FDFA), which may use failure transitions to replace

multiple symbol transitions, potentially yielding a more compact representation. We combine the two ideas and directly

construct a failure factor oracle (FFO) from a given sequence, in contrast to ex post facto transformation to an FDFA. The

algorithm is suitable for both short and long sequences. We empirically compared the resulting FFOs and FOs on number

of transitions for many DNA sequences of lengths 4 − 512, showing gains of up to 10% in total number of transitions, with

failure transitions also taking up less space than symbol transitions. The resulting FFOs can be used for indexing, as

well as in a variant of the FO-using backward oracle matching algorithm. We discuss and classify this pattern matching

algorithm in terms of the keyword pattern matching taxonomies of Watson, Cleophas and Zwaan. We also empirically

compared the use of FOs and FFOs in such backward reading pattern matching algorithms, using both DNA and natural

language (English) data sets. The results indicate that the decrease in pattern matching performance of an algorithm using

an FFO instead of an FO may outweigh the gain in representation space by using an FFO instead of an FO.

KEYWORDS: algorithmics, dictionary, pattern matching, DNA sequences

CATEGORIES: H.3.1, F.2.2, J.3

1 INTRODUCTION AND BACKGROUND

In recent decades, growing quantities of DNA and pro-
tein sequence data have been and are being generated,
increasing the need for compact and efficient represen-
tations to store and search such data [1, 2]. Similar
developments can be found for natural language pro-
cessing as well.

One important data representation is that of all
factors of a given sequence or string of characters
(nucleotides or proteins). Factors are contiguous sub-
sequences of a given sequence or string, and they play
a role in at least two important algorithmic problems
related to string processing in general and DNA pro-
cessing in particular. Firstly, factors that occur multi-
ple times within a given DNA sequence may indicate
interesting genetic phenomena such as tandem repeats
and micro-satellites [3]. To detect such factors, an
index representing all the factors of a given sequence
can be constructed in such a way that it provides infor-
mation about repeated factors, including where they
are located in the given sequence [1, 4].

Secondly, one is often interested in finding the oc-
currences of a given relatively short pattern or keyword

Email: Loek Cleophas loek@fastar.org, Derrick G. Kourie
derrick@fastar.org, Bruce W. Watson bruce@fastar.org

in a long subject string on the fly, because the subject
string may not be available at pre-processing time,
or because one wants to find the occurrences of the
pattern in multiple such subjects.1 Among the most ef-
ficient approaches for such pattern matching are those
that require to know that a subsequence read in the
subject text is not a factor of the pattern [5, 6, 7, 8].
For a given position in the subject, such efficient pat-
tern matching algorithms read backward from that
position, trying to match (the reverse of) the pattern
against what is read; if it can be determined that what
has been read backward so far is not a (reverse) factor
of the pattern, certainly no match of the pattern will
be found by reading further backward, and a forward
jump or shift to another position in the subject can
be made, using the knowledge of what was read to al-
low shifts that skip over some positions of the subject
string.

The factor oracle (FO) (and its variations) pro-
vides one particular data structure for efficient factor
representation [9]. In fact, the language recognized by
an FO constructed for a sequence or string p may rec-
ognize slightly more than just the factors of p, but that
does not pose a problem per se for the two algorithmic
problems mentioned:

1For simplicity’s sake, we consider the case of a single subject
and a single pattern here.

2 Research Article – SACJ No. 53, August 2014

• For pattern matching, reading backward slightly
further than necessary does not influence correct-
ness, and the idea is that the loss in efficiency
by doing so is traded off for the gain in memory
space by using an FO instead of an exact factor
automaton.

• For indexing, various tricks can be applied during
oracle construction to distinguish non-factors from
factors [1].

The benefits of using oracles instead of exact factor
automata lay in a number of properties of the factor
oracle: it has just m + 1 states, has between m and
2m − 1 transitions, is acyclic, and for each state all
transitions leading to the state are on the same symbol
(i.e. the automaton is homogeneous). These properties
allow for a more compact, efficient representation than
an exact factor automaton, which in most cases will
have more states and transitions (while also being
acyclic).

In the context of string pattern matching automata,
so-called failure transitions arose in the 1970s [10, 11],
with [12] considering further optimizations, and fi-
nally [13] giving a general definition of a Failure Deter-
ministic Finite Automaton (FDFA) and a general con-
struction algorithm for obtaining one given a complete
DFA. Failure transitions differ from symbol transitions
and resemble epsilon transitions in not consuming an
input symbol, but may only be taken if the current
state has no symbol transition for the given input sym-
bol. If two states in a classical finite automaton share
a set of outgoing symbol transitions, under certain
conditions one such transition set may be replaced by
a failure transition from the one to the other state.
This leads to space savings at the cost of extra string
processing time at runtime, since zero or more failure
transitions followed by a symbol transition are taken,
versus a single symbol transition in the classical DFA
case. The FDFA construction algorithm given in [13]
takes a complete DFA as input, and uses a heuristic
involving the construction of a formal concept lat-
tice to replace sets of symbol transitions by failure
arcs. Björklund et al. [14] recently showed that even
without changing the state set from DFA to FDFA,
the problem of minimizing the number of transitions
by replacing symbol transitions by failure transitions
is NP-complete, but can be approximated efficiently
within a factor of 2

3 .

Due to the above results, a different approach from
ex post facto replacement of sets of symbol transitions
by failure transitions was taken by the authors of [15].
They adapted the FO construction algorithm of [16]
to directly create an FDFA called the failure factor or-
acle (FFO). Initially this approach, as well as a similar
approach for the factor storacle of [17], was applied
to compare the sizes of factor oracles, factor storacles,
and their respective directly constructed failure alter-
natives [15]. This was done on generated and English
language patterns (dictionary words). We recently dis-
covered that for the FFO, the construction algorithm
used in the original manuscript of [15] was suitable
for short keywords only, possibly leading to cycles and

live-lock situations even during construction of the au-
tomata, but only for longer keywords than those used
in that manuscript.

We therefore adapted the original construction al-
gorithm, using an improved construction algorithm for
directly constructing an FFO, an algorithm which is
suitable for sequences of any length, including those
typically seen in the context of DNA processing. Both
of these direct failure oracle construction algorithm
variants do not necessarily result in FDFAs that are
language equivalent to the FO for the same keyword,
but the improved algorithm does terminate regardless
of sequence length, and results in automata recogniz-
ing at least all factors of the given sequence. We in
fact show that the resulting FFOs satisfy most of the
important properties of the FO: recognizing at least
all factors of the given sequence, having m+ 1 states,
having between m and 2m− 1 transitions, and being
homogeneous (apart from failure transitions). We also
show however that both our original construction and
our improved construction do not always result in an
acyclic automaton, but that the introduction of a cycle
is rare and in case of the improved construction algo-
rithm does not prevent the use of the resulting FFO
for pattern matching.

We empirically compared the resulting automata
on number of transitions, using DNA sequences with
lengths in the range 4− 512 as input to the FO con-
struction algorithm as well as to the improved FFO
construction algorithm. The results show gains of
up to 10% in total number of transitions, with fail-
ure transitions also needing less space to present than
symbol transitions, thus leading to larger savings in
representation size. Similar results for natural lan-
guages (English) were initially reported in [15] and are
discussed and compared as well. Preliminary results
on sequence processing runtimes when using FFOs
originally showed these to be multiples of those when
using FOs, i.e. the gain in space is traded off for a
substantial loss in running time, but partial memoiza-
tion already leads to drastic runtime improvements.
With such partial memoization, the FFOs were also
used in a variant of the FO-using backward oracle
matching algorithm [9]. We discuss and classify this
pattern matching algorithm in terms of the keyword
pattern matching taxonomies of Watson, Cleophas,
and Zwaan [7, 18, 19]. We also empirically compared
the use of FOs and FFOs in such backward reading
pattern matching algorithms, using both DNA and nat-
ural language (English) data sets. The results indicate
that the decrease in pattern matching performance
of an algorithm using an FFO instead of an FO un-
fortunately may outweigh the gain in representation
space by using an FFO over an FO. The resulting re-
search was previously presented as a conference paper
as [20]. In the current article, we extend the results
with empirical evaluation of FFOs versus FOs in practi-
cal string/sequence processing settings, i.e. when used
in the efficient pattern matching algorithms mentioned
above (so-called backward (reading) pattern matching
algorithms).

Research Article – SACJ No. 53, August 2014 3

The rest of this paper is organized as follows. The
next subsection gives some basic definitions. Section 2
briefly recalls the suffix-based factor oracle construc-
tion algorithm of [16] as well as some of the properties
of the resulting FOs. Section 3 briefly recalls FDFAs
and related definitions, before Section 4 presents our
improved suffix-based FFO construction algorithm,
generalizing the algorithm from an earlier version
of [15], and showing which properties of the original
FO hold and which do not hold for this FFO. Section 5
presents empirical results contrasting the size of the
FO and FFO for DNA sequences of various lengths.
Section 6 discusses backward oracle pattern match-
ing, its adaptation to FFOs instead of FOs, as well
as the algorithm’s classification in a taxonomy of key-
word pattern matching algorithms. Section 7 discusses
the results of benchmarking the effect of using FFOs
versus FOs in both rudimentary sequence processing
and efficient pattern matching algorithms. Finally, in
Section 8 we provide some concluding remarks.

1.1 Preliminaries

A string p = p1...pm of length m is a sequence of
characters from an alphabet V . A string u is a factor
(resp. prefix, suffix) of a string v if v = sut (resp.
v = ut, v = su), for s, t ∈ V ∗. We will use pref(p),
suff(p) and fact(p) for the set of prefixes, suffixes and
factors of p respectively. A prefix (resp. suffix or factor)
is a proper prefix (resp. suffix or factor) of a string p if it
does not equal p. These notions are extended to a set of
strings P = {p1,p2,...,pr} in the usual way. We will use
≤p to denote that a string is a prefix of another string.
For p 6= ε we use p�n and p�n for p’s rightmost and
leftmost min(n, |p|) characters respectively. Similarly,
we use p�n and p�n for p minus its rightmost or leftmost
min(n, |p|) characters respectively.

2 SUFFIX-BASED CONSTRUCTION OF THE
FACTOR ORACLE

The factor oracle construction algorithm presented
in [16], repeated as Algorithm 1 here, essentially con-
sists of two parts: first, a ‘skeleton’ automaton having
exactly m+ 1 states and m transitions and recognizing
pref(p) is constructed; secondly, a path is constructed
for each of the suffixes of p in order of decreasing length,
such that eventually at least pref(suff(p)) = fact(p)
is recognized. If such a suffix of p is already recognized,
no transition needs to be constructed. If on the other
hand the complete suffix is not yet recognized there is
a longest recognized prefix of such a suffix.

A transition on the next, non-recognized symbol
is then created, from the state in which this longest
recognized prefix of the suffix is recognized, to the
unique state from which recognition of the remainder
of that suffix is certain to lead to state m+ 1.

Figure 1 shows the FO for abbc, while Figure 2
shows the one for abcaabaababc.

Factor oracles are known to have a number of
important properties [9, 16]:

0 1
a

2

b

4

c

b
3

b

c

c

Figure 1: Factor oracle (with initial state 0) for abbc,
with 7 transitions, recognizing abc 6∈ fact(p).

• They recognize at least all factors of the keyword.

• They are acylic. This property ensures that the
only keyword of length m recognized is p itself,
simplifying the use of FOs in backward pattern
matching as mentioned in the introduction: if
the algorithm has read m characters backwards
successfully using the FO, we are certain that a
match of p (in reverse) has been detected.

• They have exactly m+1 states (vs. typically more
than m+ 1 for exact factor automata).

• They have between m and 2m− 1 transitions (vs.
typically more for exact factor automata).

• They are homogeneous, meaning that for each
state, all transitions to the state are on one and
the same symbol.

These properties ensure that FOs can be repre-
sented efficiently compared to exact factor automata
and DFAs in general. It should be noted that the above
algorithm is O(m2) and that an O(m) construction
algorithm for FOs exists, given in [9]. The reasons we
focus on the first algorithm here are threefold: this
algorithm is much easier to understand, makes most of
the mentioned properties obvious, and it formed the
basis for our improved FFO construction in Section 4.
It is an open question whether the O(m) algorithm
of [9] could be adapted to yield the same FFOs as
constructed by our construction.

3 FAILURE DETERMINISTIC FINITE
AUTOMATA

As discussed in the introduction, an FDFA is a DFA,
but may have so-called failure transitions in addition
to normal symbol transitions. Such a transition is
allowed to be taken if and only if processing of the
current symbol from the current state using a symbol
transition is not possible, and may replace multiple
symbol transitions of a classical DFA, saving on the
number of total transitions as well as transition rep-
resentation space. Formally, F = (Q,Σ, δ, f, F, s) is
an FDFA if f : Q → Q is a possibly partial function
and D = (Q,Σ, δ, F, s) is a DFA [13] (with state set Q,
alphabet Σ, transition function δ ⊆ Q× Σ→ Q, final
state set F ⊆ Q and start state s ∈ Q).

As in [13], Σq = {a : δ(q, a) 6= ⊥} is used to denote
symbols labelling out-transitions of state q, and /Σq for
Σ\Σq i.e. the symbols not labelling any out-transition
of state q.

The right language of an FDFA’s state, say of state

q in FDFA F = (Q,Σ, δ, f, F, s), denoted by
−→
L (F , q),

4 Research Article – SACJ No. 53, August 2014

Algorithm 1 Build Oracle(p = p1p2...pm)

1: for i from 0 to m do
2: Create a new final state i
3: for i from 0 to m− 1 do
4: Create a new transition from i to i+ 1 on symbol pi+1

5: for i from 2 to m do
6: Let the longest path from state 0 that spells a prefix of pi...pm end in state j and spell out pi...pk

(i− 1 ≤ k ≤ m)
7: if k 6= m then
8: Build a new transition from j to k + 1 on symbol pk+1

� �
�

�

�

�

�

�
�

�

�
�

�

�
� �

�
� �

�
�

��

�

�
�

��
� �

��
�

Figure 2: Factor oracle (with initial state 0) for abcaabaababc, with 17 transitions, and recognizing for example
bcaababc 6∈ fact(p).

is defined in [13] as
−→
L (F , q) =

−→
L δ(F , q) ∪

−→
L f(F , q),

where

−→
L δ(F , q) =

 ⋃
b∈Σq

b ·
−→
L (F , δ(q, b))

∪{{ε} if q ∈ F
∅ otherwise

−→
L f(F , q) =

{−→
L (F , f(q)) ∩ (/ΣqΣ

∗) if f(q) 6= ⊥
∅ otherwise

Thus, the right language of an FDFA in state q,

written
−→
L (F , q), consists of three components: (1)

all strings that can be generated from that state by
making a conventional DFA transition to the next
state on one of the out-transition symbols in Σq; (2)

ε if q is final; and (3) those words in
−→
L (F , f(q)) (the

right language of the next state as determined by the
failure function at q) that begin with a symbol not
in Σq, because any word beginning with a symbol in
Σq would already have caused a conventional DFA
transition from q. (Such a recursive definition of right
language is well-formed, as it is essentially a set of
right-linear grammar equations whose solution is the
right languages of the states.)

Given the definition of right languages of FDFA
states, the language of an FDFA F , denoted by L(F),

is then defined in [13] as
−→
L (F , s), where s denotes the

start state of F .

The definition of FDFAs leads to potential compli-
cations in the presence of cycles of failure transitions.
More precisely, such failure cycles are problematic if,
for one or more symbols, no state on the failure cycle
has an out-transition labelled by this symbol. In [13]
such a cycle is called a divergent failure cycle, and the
FDFA construction algorithm presented there ensures
these are not created.

4 SUFFIX-BASED CONSTRUCTION OF A
FAILURE FACTOR ORACLE

In [15], failure transitions were introduced during con-
struction of FFOs. The original version of the con-
struction algorithm discussed there does not result in
any cycles for short keywords such as those considered
in the experiments discussed in [15], but the conjecture
that the resulting automata are always acyclic, and as a
result that no (divergent) failure cycles are introduced,
turned out not to be true in general: while experiment-
ing with longer keywords, we encountered situations
where backward failure transitions are created. While
this is not problematic per se, it also turned out that
under certain (relatively rare) conditions, a pair of
states might end up with failure transitions between
them, and with the construction algorithm getting into
a live-lock because neither state has an outgoing sym-
bol transition on the next symbol to be processed. To
solve this problem, we adapted the original algorithm
to the improved FFO construction algorithm, also pre-
sented below. Several solutions to the problem were
considered:

• Detecting such a live-lock and explicitly failing
to construct an FFO in such cases. This has the
major disadvantage that for some keywords, the al-
gorithm cannot construct an automaton (although
a classical FO could be used in such cases).

• Detecting the creation of a failure cycle, created
by inserting a failure transition to say a state
k, and in such cases constructing an appropriate
symbol transition to state k + 1 instead. This
seems computationally expensive because of the
need to detect cycles.

• Preventing the creation of failure cycles without
the need for cycle detection, by only creating for-
ward failure transitions; in other cases, instead of

Research Article – SACJ No. 53, August 2014 5

Algorithm 2 Build Failure Oracle(p = p1p2...pm)

1: for i from 0 to m do
2: Create a new final state i
3: for i from 0 to m− 1 do
4: Create a new transition from i to i+ 1 on symbol pi+1

5: for i from 2 to m do
6: Let the longest recognized prefix of pi...pm be recognized in state j and spell out pi...pk (i− 1 ≤ k ≤ m),

and let the longest failure transition path from j end in state j′

7: if k 6= m then
8: if k > j′ then
9: Build a new failure transition from j′ to k

10: else
11: Build a new symbol transition on symbol pk+1 from j′ to k + 1

� �
�

�
�

��
� �

��
�

�
�

�
� �

�
�

��
�

����
�

����
�

��
�

��
� � �

�

��
�

Figure 3: Failure factor oracle (with initial state 0) for ababcdbaacbabacab, having a self-transition on symbol c
for state 15.

creating a backward failure transition to a state k,
create an appropriate symbol transition to state
k + 1 instead. This clearly prevents failure cycles
and hence divergent failure cycles from being cre-
ated, without being computationally expensive.
This option is therefore the one chosen in Algo-
rithm 2.

For the inner if . . . else in Algorithm 2, note that
k 6= j′ since otherwise pi...pk is not the longest recog-
nized prefix of pi...pm. Hence, for the else-case k < j′

and k + 1 ≤ j′ so the constructed symbol transition is
either a backward one or a self-loop.

Figure 4 shows the FFO for abbc, while Figure 3
shows the one for ababcdbaacbabacab.

� �
�

�
�

�
�

�
�

Figure 4: Failure factor oracle (with initial state 0) for
abbc, with 7 transitions, recognizing abc 6∈ fact(p).

The FFOs constructed by Algorithm 2 have a num-
ber of important properties:

• Like FOs, they recognize at least all factors of the
input keyword. This is easy to see: lines 1− 4 of
the algorithm construct a ‘skeleton’ recognizing
pref(p), while the for-loop of lines 5−11 considers
every non-empty proper suffix of p and ensures
it is recognized as well—and since all states are
final, all prefixes of such a suffix are recognized as
well.

• Like FOs, they have exactly m+ 1 states (created
in lines 1− 2).

• Like FOs, they have between m and 2m− 1 tran-
sitions: m are created in lines 3− 4, while at most

one is created per non-empty proper suffix in the
for-loop of lines 5− 11, and there are m− 1 such
suffixes.

• They are weakly homogeneous, i.e. for each state,
all symbol transitions to the state are on one and
the same symbol, but failure transitions to the
state may exist as well (unlike for FOs).

• Unlike FOs, they are not in general acyclic. In-
tuitively, this is relatively easy to see: it may be
that due to existing failure transitions, j′ may be
larger than k. Figure 3 shows an example of an
FFO with a cycle.

• Due to the possibility that j′ may be larger than
k, it may also occur that a transition needs to
be constructed while this is not the case for the
corresponding FO. As a result it is also possible,
somewhat counterintuitively, and unlike for FD-
FAs constructed from DFAs ex post facto, that
an FFO has slightly more transitions than the
corresponding FO. Figures 2 and 5 show the case
of keyword abcaabaababc, for which the FFO has
one more transition than the FO.

As we will see in the next section, both of the last two
situations—i.e. FFOs with cycles, and FFOs that are
larger than the corresponding FOs—are fairly rare in
practice, and even in the rare case that the FFO is
larger, it is larger by a small number of transitions—
typically just one.

It should be noted that, as mentioned in the intro-
duction, for any keyword, the FFO constructed by our
direct construction on the one hand and the FO on the
other hand may accept (slightly) different languages;
for example, the FFO in Figure 3 accepts all strings
of the form cn for n >= 2, while the corresponding
FO, not depicted, has no cycles and therefore cannot
accept all such strings.

6 Research Article – SACJ No. 53, August 2014

� �
�

�
�

�
�

�
�

�
�

�
�

�
�

���
�

���
� � �

��
�

Figure 5: Failure factor oracle (with initial state 0) for abcaabaababc, having 18 transitions.

Due to the potential presence of cycles in FFOs,
another property of the FO is potentially violated,
namely that the automaton accepts exactly one string
of length m = |p|, namely the keyword itself. This
property is relevant in the efficient, backward-reading
keyword pattern matching algorithms mentioned in
the introduction: assuming the property holds, if m
characters have successfully been read backward from a
given position, one is certain to have detected a match
of p. This is no longer guaranteed in the presence
of cycles. In case any non-forward symbol transition
was added during FFO construction for a particular
keyword, the pattern matching algorithm using this
automaton will therefore need to keep track of whether
any non-skeleton transition has been used; if none have
been used, and m characters have successfully been
read backward, a match of p is still guaranteed to have
been detected. Such use of any non-skeleton transition
is easily detected.

5 EMPIRICAL RESULTS ON SIZE OF (FAIL-
URE) FACTOR ORACLES

We implemented the FO and FFO construction al-
gorithms in Java, and ran experiments using these
constructions to obtain information about the distri-
bution of the sizes of the resulting automata, and to
use the resulting automata for preliminary benchmark-
ing the running times when using these automata for
(rudimentary) string processing. (As construction is
typically done only once, and hence much more rarely
than string processing using the constructed automata,
construction times were not measured.) The bench-
marks were run on an 1.7 Ghz Intel Core i5 with 4 GB
of 1333 Mhz DDR3 RAM, running OS X 10.8.4.

The data set used was that of the DNA sequences
of the various chromosomes of Saccharomyces cere-
visiae (strain S288c) as available at [21], concatenated
across chromosomes to yield a single sequence of length
12156677.2 For each of m = 4, 8, ..., 2048, the resulting
sequence was cut into subsequences of length m, and
duplicates were removed from the resulting datasets.
For small values of m (i.e. m = 4, 8), (almost) all pos-
sible subsequences on the alphabet Σ = {A,C,G, T}
occur, while for larger values of m far fewer of the |Σ|m
possible sequences occur in the data set.

Figure 6 depicts the distribution and average
for the number of transitions of the FO and the
FFO, for m = 4, 8, ..., 512 respectively. (Results for
m = 1024, 2048 are similar and omitted.) The re-

2Although such concatenation may introduce artefacts, this
is not a problem in our benchmarking context.

2 3 4 5 6 7 8 9

2

4

6

8

10

n

S
av

in
g
s

(i
n

%
)

Savings for lengths m = 2n

Figure 7: Average savings in number of transitions for
failure factor oracles versus factor oracles for keyword
lengths m = 2n for n = 2, ..., 9.

sults clearly show different distributions for the two
automata kinds, with the average (depicted using dot-
ted line) of the various distribution curves for the FFOs
being smaller than for the FOs of the same keyword
length. The distribution of the difference in number
of transitions of the FFO and FO for the respective
keywords in the data set are depicted in Figure 8, using
a logarithmic scale on the y-axis, and in percentages of
the total number of automata for keywords of a given
length. The average savings in number of transitions
between FOs and FFOs are shown as a percentage
of the average number of FO transitions in Figure 7,
ranging from a mere 1.5% for m = 4 to around 10%
for most other cases. In addition to these savings in
number of transitions, many transitions for the FFO
cases will be failure transitions, which are cheaper to
represent than symbol transitions, yielding additional
savings above and beyond the percentages indicated.

We also measured the occurrence among the test
set of cases with one or more backward or self-symbol
transitions created. These turn out to become less
rare with increasing keyword length. For m = 4, 0
cases occur; for m = 8, 0; for m = 16, 1 (making
< 0.001% of the unique sequences of that length in
the data set); for m = 32, 47 (ca. 0.01%); for m = 64,
119 (0.06%); for m = 128, 161 (0.17%); for m = 256,
144 (0.30%); for m = 512, 106 (0.45%); for m = 1024,
79 (0.67%); for m = 2048, 55 (0.93%). However, the
results comparing the size difference between the FO
and the FFO for each keyword also indicate that it
is very rare for an FFO to be larger than the FO for
the same keyword—see the rare −1 size differences in

Research Article – SACJ No. 53, August 2014 7

4 5 6 7

0

50

100

150

Number of transitions

N
u

m
b

er
of

ke
y
w

or
d

s
(2

56
in

to
ta

l)

m = 4

8 9 10 11 12 13 14 15

0

1

2

3

·104

Number of transitions

N
u

m
b

er
o
f

ke
y
w

or
d

s
(6

5
37

8
in

to
ta

l) m = 8

16 18 20 22 24 26 28 30

0

1

2

·105

Number of transitions

N
u

m
b

er
of

ke
y
w

or
d

s
(7

49
92

0
in

to
ta

l) m = 16

32 36 40 44 48 52 56 60 63

0

5

·104

Number of transitions

N
u

m
b

er
of

ke
y
w

or
d

s
(3

78
37

4
in

to
ta

l) m = 32

64 72 80 88 96 104 112 120

0

1

2

3

·104

Number of transitions

N
u

m
b

er
o
f

ke
y
w

or
d

s
(1

89
70

5
in

to
ta

l) m = 64

128 144 160 176 192 208 224

0

0.5

1

·104

Number of transitions

N
u

m
b

er
of

ke
y
w

or
d

s
(9

49
09

in
to

ta
l) m = 128

288 320 352 384 416

0

1,000

2,000

3,000

Number of transitions

N
u

m
b

er
of

ke
y
w

or
d

s
(4

74
7
7

in
to

ta
l) m = 256

576 640 704 768 832

0

500

1,000

Number of transitions

N
u

m
b

er
of

ke
y
w

or
d

s
(2

37
41

in
to

ta
l) m = 512

Factor oracle Failure factor oracle

Figure 6: Distribution of number of transitions for the two automaton types, for DNA sequences of lengths
m = 2n for n = 2, ..., 9.

8 Research Article – SACJ No. 53, August 2014

Figure 8, and the absence of larger negative values in
that figure. The figure also shows that the distribution
curves are not single smooth curves, but have relatively
more weight towards the left side; this is particularly
visible for m = 64 and above and presumably due
to such (extra) backward or self-symbol transitions
becoming necessary. Note however that the data sets
for larger m-values are relatively limited compared to
the set of possible DNA keywords of such lengths, as
also evidenced by the distributions’ gaps (for m = 128
and above) and outliers (for m = 64 and above); thus,
it may also be that larger negative size differences than
−1 do occur for certain keywords.

Apart from the DNA data set used for the bench-
marking reported above, we also benchmarked the
FFOs and FOs in terms of size for two other data sets,
as reported in [15, p. 184-188]:

• The first set consisted of all generated strings of
length m over an alphabet of size m, for values
of m in the range of 4..9. (Strings of length < 4
are not considered, as for every string of such
length the factor oracle and factor storacle do not
differ.) The benchmark results in [15] show that
for this data set, FFOs often have one or two fewer
transitions than FOs for the same keyword, and
FFOs never have more transitions. Furthermore,
no backward transitions and hence no cycles are
introduced for any of these FFOs.

• The second data set was obtained from [22]:

“A list of 109582 English words compiled and
corrected in 1991 from lists obtained from
the Interociter bulletin board. The original
read.me file said that the list came from Pub-
lic Brand Software. This word list includes
inflected forms, such as plural nouns and the
-s, -ed and -ing forms of verbs.”

As for the set of generated strings, words of length
< 4 were ignored. Figure 9 shows the distribution
of the set (including words of length < 4)3. As
reported in [15, p. 188], “Comparing failure factor
oracles to factor oracles, the savings are 1.07%
on average for length 5, 4.932% for length 9, and
8.913% for length 15” and “the percentage of
savings increases with increasing word length.”
As with the set of generated strings, the FFO
typically saves one or a few transitions over the
corresponding FO, and never has more transitions
than the FO.

6 BACKWARD PATTERN MATCHING USING
(FAILURE) FACTOR ORACLES

Factor oracles are used in what has been called the
Backward Oracle Matching algorithm, first described
in [9]. That algorithm is part of a large group of
efficient keyword pattern matching algorithms, in-
cluding the Boyer-Moore and Commentz-Walter al-
gorithms [23, 24, 25, 26]. All of these algorithms share

3Taken from [15] with correction, as the original incorrectly
excluded the single word of length 25 in the data set.

1 3 5 7 9 11 13 15 17 19 21 23 25 28

0

0.5

1

1.5

2

·104

Word length

N
u

m
b

er
of

w
or

d
s

Figure 9: Distribution of lengths of the list of English
words. No words of lengths 24, 26 − 27 or of length
over 28 occur. Words of length < 4 were not used for
benchmarking.

a common approach: they move through the text to
be searched from left to right, and at a given position
try to match backward, that is from right to left, in
order to ascertain whether the keyword appears, and
if not, how far to move forward in the text, depending
on what has been read.

In [7, 18, 19, 27], Cleophas, Watson and Zwaan
report on different versions of a taxonomy of (single
and multiple) keyword pattern matching algorithms,
with a major branch devoted to such backward match-
ing algorithms. Such a taxonomy classifies algorithms,
and is typically depicted as a graph, with nodes cor-
responding to algorithms (ranging from abstract to
concrete), and branches to the addition of an algo-
rithm detail to obtain a new algorithm, which is shown
to be a correct refinement or extension of its parent
algorithm. The root node of the taxonomy corresponds
to a highly abstract algorithm: essentially a precondi-
tion and postcondition defining the keyword pattern
matching problem, with a symbolic statement S in
between to establish the postcondition given the pre-
condition. With the addition of details in order, more
and more concrete algorithms are added, leading to
either previously published algorithms or to completely
new ones.

The taxonomy graph is depicted in Figure 10, taken
from [7, 18]. Cleophas et al. [7, 18] describe the tax-
onomy, including all details, and show how the (sin-
gle keyword) Backward Oracle Matching algorithm
can be classified as part of the taxonomy. The algo-
rithm is identified by detail sequence (p+, s+, gs=fo,
egc=rfo, ssd, nfs, one, okw):

• okw at the end of the sequence indicates that the
algorithm solves the keyword pattern matching
problem for the case of One Keyword.

Research Article – SACJ No. 53, August 2014 9

0 1

101

102

Difference in number of transitions

P
er

ce
n
ta

ge
of

au
to

m
at

a

m = 4

0 1 2 3

100

101

Difference in number of transitions

P
er

ce
n
ta

ge
o
f

au
to

m
at

a

m = 8

0 1 2 3 4 5 6 7 8−1
10−4

10−2

100

102

Difference in number of transitions

P
er

ce
n
ta

ge
o
f

a
u

to
m

at
a

m = 16

−1 1 3 5 7 9 11 13 15 17
10−4

10−3

10−2

10−1

100

101

Difference in number of transitions

P
er

ce
n
ta

ge
of

au
to

m
at

a

m = 32

−1 1 3 5 7 9 11 13 15 17 19 21 23

10−3

10−2

10−1

100

101

Difference in number of transitions

P
er

ce
n
ta

ge
of

au
to

m
at

a

m = 64

−1 3 7 11 15 19 23 27 31 35 39

10−3

10−2

10−1

100

101

Difference in number of transitions

P
er

ce
n
ta

ge
of

au
to

m
at

a

m = 128

0 8 16 24 32 40 48 56 64 72
10−3

10−2

10−1

100

101

Difference in number of transitions

P
er

ce
n
ta

ge
of

au
to

m
at

a

m = 256

0 16 32 48 64 80 96 112

10−2

10−1

100

Difference in number of transitions

P
er

ce
n
ta

ge
o
f

au
to

m
a
ta

m = 512

Factor oracle vs. failure factor oracle

Figure 8: Distribution of difference in number of transitions for factor oracle versus failure factor oracle, for DNA
sequences of lengths m = 2n for n = 2, ..., 9.

10 Research Article – SACJ No. 53, August 2014

P

+

S

+

E

AC

AC-

OPT

AC-

FAIL

KMP-

FAIL

LS

OKW

INDICES

GS

NLAU OLAU

NFS

OPT

BMCW NLA

CW

CW

BM

BM

OKW

SP

LMIN

SSD

EGC

BMH

BMH

GS

S F FO (SO)

EGC

RSA RFA RFO (RSO)

OBM

INDICES

OKW

MO

SL

MI

MO

FWD REV OM

SL

NONE SFC FAST SLFC

LSKP

Aho-Corasick

Commentz-Walter

Boyer-Moore

Knuth-Morris-Pratt

Figure 10: ([7, 18]) A taxonomy of keyword pattern
matching algorithms.

• p+ indicates that the algorithm processes the
text by moving through it from left to right, i.e. it
considers prefixes of the text of increasing length.

• s+ indicates that given a position in the text,
a match attempt is made by reading backward,
i.e. given a prefix of the text, suffixes of this prefix
are considered in increasing length.

• gs=fo refers to Guard Strengthening, by only
reading backwards from a given position as long as
what is read is part of the Factor Oracle language
for the (reversed) keyword(s), and egc=rfo refers
to the use of a Reverse Factor Oracle for Efficient
Guard Computation.

• ssd indicates the use of a Safe Shift Distance
upon a mismatch, i.e. whenever what has been
read backwards is not in the factor oracle language
for the keyword(s). A shift distance is safe if it is
guaranteed to shift forward by at least 1 position,
and not to shift past the next occurrence of the
keyword(s) in the text.

• The particular shift distance used in Backward
Oracle Matching is based on the No-Factor Shift—
that is, the shift is based on the knowledge that
on a mismatch, the string read backwards using
the oracle (say aw) is certainly not a factor of the
keyword (since it was not recognized by the oracle),
while w may be (as it was recognized by the oracle).
As a result a shift by |p| − |w| is permitted; since
this shift may be 0, the maximum of this nfs and
the constant shift distance 1 (indicated by one)
is used as a safe shift distance.

The use of a failure factor oracle instead of a factor
oracle changes the classified Backward Oracle Matching
algorithm in small ways. Detail choices gs=fo and
egc=rfo need to be changed to new values, reflecting
the use of the FFO instead of the FO; we chose to
use gs=ffo and egc=rffo, i.e. failure factor oracle
instead of factor oracle. Somewhat implicitly, these
new detail choices (and hence the use of the FFO)
also imply that instead of a DFA with its transition
function, an FDFA with its transition function is used.

Assuming the above, (single keyword) Backward
Oracle Matching using a Failure Factor Oracle can be
represented in the taxonomy as Algorithm (p+, s+,
gs=ffo, egc=rffo, ssd, nfs, one, okw). Using
the algorithmic notation of [7, 18], we show a few
of the intermediate algorithms on the path from the
taxonomy root to this algorithm, to give the reader
a better idea of the taxonomy, the algorithms and
derivation steps in it, and how we place the new failure
factor oracle variant of Backward Oracle Matching in
the taxonomy.

Formally [7, 18] specify the keyword pattern
matching problem, given an alphabet V (a non-
empty finite set of symbols), an input string/sequence
S ∈ V ∗, and a finite non-empty pattern set P =
{p0, p1, . . . p|P |−1} ⊆ V ∗, as to establish

R : O =
(⋃

l, v, r : lvr = S ∧ v ∈ P : {(l, v, r)}
)
,

that is to let solution set O be the set of triples (l, v, r)
such that l, v and r form a splitting of input string S
in three parts: a left context, a keyword occurrence,
and a right context. For simplicity, we assume that
P 6= ∅ and that ε 6∈ P . Here, as in [7, 18], we use
the notation for quantifications as introduced by Gries
and Schneider in [28, Chapter 8].

For example, for keyword set P =
{CAT,CGT,GTA} and input string S =
CGTATTCAT , after algorithm termination set
O will contain three triples, i.e.

(ε, CGT, ATTCAT),
(C, GTA, TTCAT),
(CGTATT, CAT, ε).

By considering prefixes of sequence S in order of
increasing length, and considering suffixes of such a
prefix in order of increasing length as well, we obtain
the following basic algorithm. Operationally, the al-
gorithm moves through text S from left to right, its
position being between an initial part u and remaining
part r of S, with u’s length increasing and r’s length
decreasing.

From each current position, the algorithm reads
from right to left, reading suffixes v of u in order
of increasing length. Whenever the currently read v
is a keyword, the appropriate corresponding tuple is
added to the solution set. The resulting algorithm is
Algorithm (p+, s+):4

4The as G → S sa statement in this extension of GCL can
be read as the if-statement of most mainstream languages, or as
if G→ S [] ¬G→ skip fi in GCL.

Research Article – SACJ No. 53, August 2014 11

u, r : = ε, S;
O : = ∅;
{ inv ur = S

∧ O =

⋃ x, y, z : xyz = S
∧ xy ≤p u
∧ y ∈ P

: {(x, y, z)}

 }
do r 6= ε→

u, r : = u(r�1), r�1;
l, v : = u, ε;
{ inv u = lv }
do l 6= ε→

l, v : = l�1, (l�1)v;
as v ∈ P → O : = O ∪ {(l, v, r)} sa

od
od{ R }

To improve the algorithm, we may note that for
any sequence w, if w 6∈ fact(P) then any extension of
w on the left will not be an element of fact(P) either.
As a result, the inner repetition can terminate as soon
as (l�1)v 6∈ fact(P) holds, since then all suffixes of
u that are equal to or longer than (l�1)v are not in
fact(P) either and hence not in P .

The inner repetition guard can therefore be
strengthened to l 6= ε cand (l�1)v ∈ fact(P), which
makes v ∈ fact(P) an invariant of the inner repetition
as well.

To efficiently determine whether or not (l�1)v ∈
fact(P), a factor automaton can be used. Since
both FFO and FO recognize a superset of fact(P)
however, they may be used instead of such a factor
automaton, and function fact may be replaced by
e.g. factoracle or failfactoracle (the function yield-
ing the language of the FO respectively of the FFO for
a keyword) since (l�1)v 6∈ failfactoracle(P) (respec-
tively factoracle(P)) clearly implies (l�1)v 6∈ fact(P).
As we will see in the algorithm below, and as men-
tioned before, in fact the automata are built on PR,
the reverse of the keyword set P , as (l�1)v is read in
reverse, since the algorithm reads backward from its
current position.

When the inner loop terminates, a shift or jump of
more than position may be made, as already indicated
in the introduction. In the case of Backward Oracle
Matching, this shift is based on the value, or more
precisely the length, of v. To the basic algorithm
presented above, we add the guard strengthening, the
introduction of an FFO for efficient guard computation,
the safe shift distance, as well as the fact that a single
keyword is being considered for matching. This yields
Algorithm (p+, s+, gs=ffo, egc=rffo, ssd, nfs,
one, okw), as shown below, where k represents the
shift function yielding the safe shift distance, and δR
the transition function of the FFO for PR.

u, r : = ε, S;
O : = ∅;
l, v : = ε, ε;

{ inv ur = S

∧ O =

⋃ x, y, z : xyz = S
∧ xy ≤p u
∧ y = p

: {(x, y, z)}


∧ u = lv ∧ vR ∈ failfactoracle(pR)
∧
(
l = ε cor ((l�1)v)R 6∈ failfactoracle(pR)

)
}

do r 6= ε→
u, r : = u(r�k(v)), r�k(v);
l, v : = u, ε;
q : = δR(q0, l�1);
{ inv q = δ∗R(q0, ((l�1)v)R) }
do l 6= ε cand q 6= ⊥ →

l, v : = l�1, (l�1)v;
q : = δR(q, l�1);
as v = p→ O : = O ∪ {(l, v, r)} sa

od
od{ R }

The efficient determination of whether v = p is typ-
ically possible because the automaton used is such
that if |v| = |p| in the inner loop, this implies v = p.
This is the case whenever the only string of length |p|
recognized by the automaton is p itself.

This holds true for (exact) factor automata, as well
as for factor oracles: since they are acyclic, determinis-
tic, and heterogenous, transitions outside the skeleton
recognizing p always skip at least one state, hence p
is the only string of length |p| recognized. For failure
factor oracles, the same reasoning holds true if and
only if the FFO has no cycles; if an FFO does, false
matches may be detectedterms v of length |p| that do
not equal p—and additional vetting of matches might
be required if such false matches are unacceptable.

In practice, our extensive benchmarking in the
next section never encountered situations where such
a false match occurs, i.e. they seem at least very rare.
This is plausible, as the (repeated) use of cycles implies
the existence of repeated subsequences, without mis-
matchessomething that is unlikely for DNA, let alone
English text.

7 EMPIRICAL RESULTS ON BACKWARD
(FAILURE) ORACLE MATCHING

In addition to the results on number of transitions
as reported in Section 5, we also performed runtime
experiments with the constructed FOs and FFOs.

As a first step, we used the automata for basic
sequence processing: whenever the automaton gets
stuck, we assume there to be a symbol transition to
state 0, i.e. we reset the automaton to state 0 and
continue processing from the next symbol in the se-
quence onward. This initial rudimentary processing
was performed using FFOs constructed as per Section 5
from the DNA sequences of the various chromosomes
of Saccharomyces cerevisiae (strain S288c) as available
at [21]. The sequence to process using each of these

12 Research Article – SACJ No. 53, August 2014

FFOs was obtained by taking the first 1000000 charac-
ters of the 12156677 long concatenated sequence from
Section 5.

Initial time measures when using FFOs instead
of FOs were quite large, with FFOs using multiples
of the times measured for FOs. A number of reasons
contribute to these long running times:

• If we assume character frequency to be the same
for all four DNA characters, on average in 75% of
cases a failure transition lookup will be attempted
when processing a symbol (but the lookup might
not succeed, as it may well be that no failure
transition exists from the given state).

• In addition, ignoring the small chance that exter-
nal transitions added are symbol transitions (see
above—less than 1% of the external transitions),
the ratio of average number of transitions to the
keyword length m ranges from 155% (for m = 4)
to 136% (for m = 512) of m (cf. the dotted lines
for the average in the respective graphs). Since
failure transitions form a function, this means that
on average 36− 55% of states has a failure transi-
tion leading from it; hence there is a fairly high
chance that for every symbol to be processed, at
least one but possibly multiple failure transitions
in sequence will be processed.

• In particular, unless a keyword is of the form cm,
state 0 will have a failure transition, so after every
reset of the automaton, there’s a 75% chance that
that failure transition will be used.

Our initial attempts to improve on the running
times when using FFOs therefore implemented par-
tial memoization or caching of up to two states and
one transition label: state 0, the symbol labelling the
unique symbol transition from state 0 (leading to state
1), and the state to which the failure transition from
state 0 leads (if it exists) are all cached. Thus, when-
ever the automaton gets stuck, we can first lookahead
at the next symbol to be processed:

• If the lookahead symbol equals the cached symbol
labelling the transition from state 0 to state 1,
the automaton is moved to cached state 1 directly
and processing can continue with the sequence
position directly following the lookahead symbol
position.

• Otherwise, if the failure transition from state 0
exists and hence is cached, the automaton directly
moves to the cached destination state of the fail-
ure transition, and processing continues at the
lookahead symbol position in the sequence.

• Otherwise, if the failure transition from state 0
does not exist, the automaton is moved to the
cached state 0 and processing continues at the
lookahead symbol position in the sequence (which
in the next iteration of the processing will cause
the automaton to get stuck, as neither a matching
symbol transition nor a failure transition exists).

This partial memoization or caching approach sub-
stantially reduced processing time in our preliminary
runtime experiments, with results on small data sets

with limited numbers of runs showing that FFO pro-
cessing took 34− 88% more time than FO processing,
depending on keyword length.

Following these initial experiments, we imple-
mented and benchmarked true pattern matching algo-
rithms as well: both the Backward Oracle Matching
algorithm using FOs as well as the version using FFOs,
as described in Section 6, were implemented and bench-
marked. In the implementation of the version using
FFOs, the caching techniques described above were
applied.

The two pattern matching algorithms were bench-
marked on two data sets: the FOs and FFOS con-
structed for the DNA data set discussed in Section 5,
as well as the ones constructed for the English natural
language data set discussed there and in [15].

For the DNA data set, the single sequence to match
against was the same 106 character sequence used in
that Section. For the English data set, the single text to
match agains corresponded to the first 106 characters of
the raw file of Project Gutenberg’s EBook of Webster’s
Unabridged Dictionary [29].

For both data sets, various subsets of the data
sets were used for benchmarking; depending on the
subset chosen, the results were different, which is as
expected: depending on the particular keyword to
be matched against, different behaviour in terms of
transitions utilised during match attempts is expected.
Nevertheless, the various benchmark results show that
the use of FFO-based Backward Oracle Matching con-
sistently brings a penalty over the use of FO-based
Backward Oracle Matching. Depending on the subsets
selected, i.e. the keywords used, the time penalties
ranged from ca. 30% to over 100%—despite the use
of partial memoization / caching techniques for the
FFO-based algorithm (as discussed above).

Although the above benchmarking is limited in
terms of texts processed (just a single one) and sets
of keywords used to match, the results are such that
we believe their gist to hold true more generally: in
most cases, the use of failure factor oracles leads to
substantially increased running times compared to the
use of factor oracles. The case of DNA sequences of
length 4 forms the exception. It can be explained by
the fact that the FO version of the algorithm was not
enhanced with caching similar to that applied for the
FFO version. For this particular keyword length (4)
and alphabet size (4), the FFO version slightly outper-
forms the FO version as a result. For longer keywords,
and for the larger alphabet size of the English language,
this is not the case, as the number of failure transitions
used during processing increases to a level where the
caching no longer offsets this effect.

8 CONCLUSIONS AND FUTURE WORK

We have presented an improved construction algorithm
for directly constructing a failure factor oracle, an al-
gorithm that is suitable for sequences of any length,
including those typically seen in the context of DNA
processing. This direct FFO construction does not

Research Article – SACJ No. 53, August 2014 13

necessarily result in an FDFA that is language equiva-
lent to the corresponding FO, but it does result in an
automaton recognizing at least all factors of a given se-
quence. We empirically compared the resulting failure
and traditional (non-failure) factor oracle automata
on number of transitions, using DNA sequences with
lengths in the range 4 − 512. The results show that
the use of the improved FFO construction saves up to
10% in number of transitions—similar to the savings
shown in [15] for generated as well as English dictio-
nary data sets. In addition to these savings of up to
10% in number of transitions, it should be noted that
on average 36− 55% (depending on keyword length) of
an FFO’s transitions are failure transitions, which are
more compactly representable than symbol transitions.
Altogether this resulted in promising savings, given the
often large amounts of sequence data typically occur-
ring in DNA processing applications (as well as natural
language ones), particularly for the use of oracles as
indexes for (repeated) factor detection.

Processing time of FFOs for basic sequence pro-
cessing in our first empirical evaluations was drastically
worse than that of corresponding FOs, although the
use of partial memoization showed promise in sub-
stantially reducing this overhead. We also discussed
FO-based Backward Oracle Matching as well as its
FFO-based variant. Empirical evaluation of both algo-
rithms showed that even for this more realistic appli-
cation to pattern matching, and while employing the
partial memoization approach for the FFO-based vari-
ant, the latter had considerable overhead compared
to the FO-based algorithm. The results may thus
be called disappointing. As future work, it might be
worthwhile to consider more intelligent introduction of
failure transitions, e.g. not introducing a failure transi-
tion from the start state, since such transitions, while
saving lots of symbol transitions, are used far too often;
or more generally, introduce failure transitions only
there, where they can be expected not to be frequently
used. It is very well conceivable however that such ap-
proaches are better applied ex post facto to a classical
factor oracle, i.e. in the course of applying one of the
DFA-to-FDFA algorithms described in [13, 14].

REFERENCES

[1] A. Lefebvre, T. Lecroq, H. Dauchel and J. Alexandre.
“FORRepeats: detects repeats on entire chromosomes
and between genomes”. Bioinformatics, vol. 19, no. 3,
pp. 319–326, 2003.

[2] C. S. Iliopoulos, D. G. Kourie, L. Mouchard, T. K.
Musombuka, S. P. Pissis and C. de Ridder. “An
algorithm for mapping short reads to a dynamically
changing genomic sequence”. J. Discrete Algorithms,
vol. 10, pp. 15–22, 2012.

[3] C. de Ridder, D. G. Kourie and B. W. Watson.
“FireμSat: An algorithm to detect microsatellites in
DNA”. In J. Holub and J. Zdárek (editors), Stringol-
ogy, pp. 137–150. Department of Computer Science
and Engineering, Faculty of Electrical Engineering,
Czech Technical University, 2006. ISBN 80-01-03533-
6.

[4] R. Kato. “Finding Maximal Repeats with Factor Ora-
cles”. Tech. Rep. TR-C190, Dept. of Mathematical and
Computing Sciences, Tokyo Institute of Technology,
2004.

[5] S. Faro and T. Lecroq. “The exact online string match-
ing problem: A review of the most recent results”.
ACM Comput. Surv., vol. 45, no. 2, p. 13, 2013.

[6] M. Crochemore and W. Rytter. Jewels of Stringology
- Text Algorithms. World Scientific Publishing, 2003.

[7] L. Cleophas, B. W. Watson and G. Zwaan. “A new
taxonomy of sublinear right-to-left scanning keyword
pattern matching algorithms”. Sci. Comput. Program.,
vol. 75, no. 11, pp. 1095–1112, 2010.

[8] G. Navarro and M. Raffinot. Flexible pattern matching
in strings: practical on-line search algorithms for texts
and biological sequences. Cambridge University Press,
2002.

[9] C. Allauzen, M. Crochemore and M. Raffinot. “Effi-
cient Experimental String Matching by Weak Factor
Recognition”. In Proceedings of the 12th conference on
Combinatorial Pattern Matching, vol. 2089 of LNCS,
pp. 51–72. 2001.

[10] A. V. Aho and M. J. Corasick. “Efficient string match-
ing: an aid to bibliographic search”. Communications
of the ACM, vol. 18, pp. 333–340, 1975.

[11] D. E. Knuth, J. H. Morris and V. R. Pratt. “Fast
pattern matching in strings”. SIAM Journal of Com-
puting, vol. 6, no. 2, pp. 323–350, 1977.

[12] M. Crochemore and C. Hancart. “Automata for Match-
ing Patterns”. In G. Rozenberg and A. Salomaa (edi-
tors), Handbook of Formal Languages, vol. 2. Springer,
1997.

[13] D. G. Kourie, B. W. Watson, L. Cleophas and F. Ven-
ter. “Failure Deterministic Finite Automata”. In Pro-
ceedings of the Prague Stringology Conference 2012.
Department of Theoretical Computer Science, Czech
Technical University, Prague, September 2012.

[14] H. Björklund, J. Björklund and N. Zechner. “Compact
representation of finite automata with failure transi-
tions”. Tech. Rep. UMINF 13.11, Ume̊a University,
2013.

[15] L. Cleophas, D. G. Kourie and B. W. Watson. “Weak
Factor Automata: Comparing (Failure) Oracles and
Storacles”. In Proceedings of the Prague Stringology
Conference, Prague, Czech Republic, September 2-4,
2013. September 2013.

[16] L. Cleophas, G. Zwaan and B. W. Watson. “Construct-
ing Factor Oracles”. Journal of Automata, Languages
and Combinatorics, vol. 10, no. 5/6, pp. 627–640, 2005.

[17] L. Cleophas and B. W. Watson. “On Factor Storacles:
an Alternative to Factor Oracles?” In Festschrift for
Bořivoj Melichar. Department of Theoretical Com-
puter Science, Czech Technical University, Prague,
August 2012.

[18] L. Cleophas, B. W. Watson and G. Zwaan. “A new
taxonomy of sublinear keyword pattern matching al-
gorithms”. Tech. Rep. 04/07, Department of Mathe-
matics and Computer Science, Technische Universiteit
Eindhoven, March 2004.

[19] B. W. Watson and G. Zwaan. “A taxonomy of sublin-
ear multiple keyword pattern matching algorithms”.
Science of Computer Programming, vol. 27, no. 2, pp.
85–118, 1996.

14 Research Article – SACJ No. 53, August 2014

[20] L. Cleophas, D. G. Kourie and B. W. Watson. “Effi-
cient representation of DNA data for pattern recog-
nition using failure factor oracles”. In Proceedings of
the South African Institute for Computer Scientists
and Information Technologists Conference (SAICSIT)
2013, pp. 369–377. 2013.

[21] http://www.dna-algo.co.za/downloads.htm.

[22] “English wordlist”. http://www.sil.org/

linguistics/wordlists/english.

[23] R. S. Boyer and J. S. Moore. “A fast string searching
algorithm”. Communications of the ACM, vol. 20,
no. 10, pp. 62–72, 1977.

[24] W. Rytter. “A Correct Preprocessing Algorithm for
Boyer-Moore String-Searching”. SIAM Journal of
Computing, vol. 9, no. 3, pp. 509–512, 1980.

[25] B. Commentz-Walter. “A string matching algorithm
fast on the average”. In H. A. Maurer (editor), Proceed-
ings of the 6th International Colloquium on Automata,
Languages and Programming, pp. 118–132. Springer,
Berlin, 1979.

[26] B. Commentz-Walter. “A string matching algorithm
fast on the average”. Tech. Rep. TR 79.09.007, IBM
Germany, Heidelberg Scientific Center, 1979.

[27] B. W. Watson. Taxonomies and Toolkits of Regular
Language Algorithms. Ph.D. thesis, Faculty of Com-
puting Science, Technische Universiteit Eindhoven,
September 1995.

[28] D. Gries and F. B. Schneider. A Logical Approach to
Discrete Math. Springer, New York, NY, 1993.

[29] “Project Gutenberg EBook of Webster’s Unabridged
Dictionary”, August 2009. EBook no. 29765. http:
//www.gutenberg.org/ebooks/29765.

http://www.dna-algo.co.za/downloads.htm
http://www.sil.org/linguistics/wordlists/english
http://www.sil.org/linguistics/wordlists/english
http://www.gutenberg.org/ebooks/29765
http://www.gutenberg.org/ebooks/29765

	 Weak factor automata: The failure of failure factor oracles?to 3em Loek Cleophas, Derrick G. Kourie, Bruce W. Watson to.44em.
	Introduction and Background
	Preliminaries

	Suffix-based Construction of the Factor Oracle
	Failure Deterministic Finite Automata
	Suffix-based Construction of a Failure Factor Oracle
	Empirical results on size of (Failure) Factor Oracles
	Backward Pattern Matching Using (Failure) Factor Oracles
	Empirical results on Backward (Failure) Oracle Matching
	Conclusions and Future Work

