
SACJ 57 December 2015
Research Article

Upper bounds on the performance of
discretisation in reinforcement learning
Michael Mitchley
School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg

ABSTRACT
Reinforcement learning is a machine learning framework whereby an agent learns to perform a task by maximising its
total reward received for selecting actions in each state. The policy mapping states to actions that the agent learns is
either represented explicitly, or implicitly through a value function. It is common in reinforcement learning to discretise a
continuous state space using tile coding or binary features. We prove an upper bound on the performance of discretisation
for direct policy representation or value function approximation.

Keywords: Reinforcement learning, tile coding, performance bounds, average case analysis

Categories: Mathematics of computing ~ Discretization, Mathematics of computing ~ Probability and statistics, Computing
methodologies ~ Markov decision processes, Computing methodologies ~ Sequential decision making

Email:
Michael Mitchley michael.mitchley@wits.ac.za (CORRESPONDING)

Article history:
Received: 4 Nov 2014
Accepted: 8 Dec 2014
Available online: 10 Dec 2014

1 INTRODUCTION

Reinforcement learning is a branch of machine learning wherein an agent is not given an explicit
task to perform. Instead, an agent must learn optimal behaviour from knowledge of its current state,
and rewards or punishments given for performing actions, and achieving new states. This optimal
behaviour is encoded in a policy, a mapping from states to actions that seeks to maximize the reward
obtained over time. Commonly, this is both found and represented using a value function, storing
the expected reward of each state or state-action pair. When the state space is large, or continuous,
we can no longer define values or policies per state. Instead, we must approximate the policy or
value function. It is common to simply discretise the state space in this case, using a tile coding
basis scheme, binary features or similar. Within a tile (or binary feature—we will use the term tile to
indicate a set of states treated as the same through a piecewise constant function, regardless of how
that tile is derived) an agent cannot distinguish between neighbouring states. If the optimal action
to select varies across a tile, an incorrect action will be selected by the agent for a portion of the tile.
This paper aims to quantify that error rate, and provide upper bounds on the performance of tile
coding and discretisation schemes in reinforcement learning.

Mitchley, M. (2015). Upper bounds on the performance of discretisation in reinforcement learning. South African
Computer Journal 57, 24–31. http://dx.doi.org/10.18489/sacj.v0i57.284

Copyright © the author(s); published under a Creative Commons NonCommercial 4.0 License (CC BY-NC 4.0).
SACJ is a publication of the South African Institute of Computer Scientists and Information Technologists. ISSN 1015-7999
(print) ISSN 2313-7835 (online).

mailto:michael.mitchley@wits.ac.za
http://dx.doi.org/10.18489/sacj.v0i57.284
http://creativecommons.org/licenses/by-nc/4.0/

Mitchley: Upper bounds on the performance of discretisation. . . 25

2 BACKGROUND

Reinforcement learning is a machine learning framework in which agents are given rewards or
punishments based on their behaviours. The agents seek to maximise their rewards subject to
a possible discount of future rewards against immediate gains. The advantage of this learning
framework becomes apparent when one considers tasks wherein good behaviour (or equivalently,
bad behaviour) can be recognised, but it is difficult to codify that behaviour.

If reinforcement learning were applied to the game of checkers, for example, good behaviour
may be taking an opponent’s pieces, or simply winning games. Bad behaviour could be losing pieces,
or losing games. It is, however, difficult to codify what a good game of checkers looks like as a series
of rules.

If an agent has a way of maximising its own rewards through repeatedly playing games of
checkers, it will eventually learn to play well. Checkers is a Markov game, since knowing the current
state is sufficient for choosing the next move; the state would be the position of each piece on the
board, and the available actions at each state would be the legal moves that could be made. Checkers
has a discrete state space, although it is very large.

Reinforcement learning problems are typically modelled as Markov decision processes described
by the tuple (S, A, P,R ,γ), where S ⊆ Rn is a state space, A is a finite set of actions, P(s′|s, a) is the
probability density of transitioning to state s′ after having performed action a in state s,R(s′, a) is the
expected reward received for executing such a transition, and γ ∈ (0, 1] is the discount factor. The
agent is required to learn a policy πmapping states to actions, that maximizes the return (discounted
future sum of rewards) at time t: Rt =

∑∞
i=0 γ

i+tRi+t .
One method of finding this policy is to define a value function Qπ which is the value of each

state-action pair defined recursively as

Qπ(s, a) = E[R(s, a, s′) + γQπ(s
′,π(s′))],

which can be understood as the expected reward from executing action a in state s plus the decayed
value of the successor state s′. Intuitively, the value function measures the ‘goodness’ of performing
each action in each state. In checkers, a state where several pieces could be taken might have a high
value associated with it. The policy maximising the return can then be found as

π(s) = arg max
a

Q(s, a).

Domains like the game of checkers have discrete state spaces, where a value could, in principle,
be defined uniquely for each state. When the state space is continuous, state variables take on real
values, with the number of state variables being called the dimensionality of the domain. An example
of this is a robot with multiple actuated joints—each joint position (and perhaps joint velocity)
would be a separate continuous state variable, making a state s a real-valued vector in S ⊂ Rd (most
typically scaled onto the unit hypercube [0, 1]d). If the state space S is not scaled, and can take on
any real value, we can easily consider a nonlinear folding of the real numbers onto the unit interval.

When the state space is continuous, we cannot directly define a value for each state, and so we must
approximate Q. The most common form of approximation is linear value function approximation,

http://dx.doi.org/10.18489/sacj.v0i57.284

http://dx.doi.org/10.18489/sacj.v0i57.284

Mitchley: Upper bounds on the performance of discretisation. . . 26

where each Q(s, a) = Va(s) is represented as a weighted sum of a collection of m basis functions Φ:

V (s) =w ·Φ(s) =
m
∑

i=1

wiφi(s).

This approximation is linear in the components of the parameter (or weight) vector, w, which results
in simple update rules and a quadratic error surface, but can represent complex value functions
because the basis functions themselves can be arbitrarily complex.

A common basis function scheme is tile coding, a coarse coding technique (Sutton & Barto,
1998) where a set of piecewise constant functions is used to approximate a value function. In their
simplest form, these functions are a discretisation of the state space, acting as indicator functions
for an exhaustive, disjoint partitioning of the states. The tiles themselves are binary, activating if
a state is within that tile. By multiplying each tile φi by a weight wi, and summing, a linear value
function is obtained. The tiles can be of any shape, but typically one divides the state space in each
dimension into right angled tiles of equal width. If one wishes to use a single tiling with n partitions
per dimension, this results in nd tiles of equal size across the state space.

Multiple tilings may be used, with different discretisation levels or tile shapes for each tiling,
producing an overlapping set of basis functions. Typically, the different tilings are at the same
discretisation level, but are offset from each other (Whiteson, Taylor & Stone, 2007). The value
functions that can be represented using a multiple tiling can always be represented using a single
tiling, although the speed of learning for the single tiling may be different. The number of tilings
needed to achieve good performance grows exponentially with the number of dimensions (Wu &
Meleis, 2009). Other basis schemes include the polynomial basis (Lagoudakis & Parr, 2003), radial
basis functions, and the Fourier basis (Konidaris, Osentoski & Thomas, 2011).

The major drawback of fixed bases is that the number of basis functions grows exponentially with
the dimension of the state space; an order n polynomial basis has (n+ 1)d basis functions (similarly
for an order n Fourier basis, or k = n+1 radial basis functions per dimension). This has led to feature
selection approaches (Kolter & Ng, 2009; Johns, Painter-Wakefield & Parr, 2010; Painter-Wakefield
& Parr, 2012) that use a fixed basis as a feature dictionary but select only a small subset of basis
functions to compactly represent the value function, and thereby accelerate learning.

Adaptive schemes also mitigate the curse of dimensionality. Early work by Moore (1994) dealt
with finding a path to a defined goal region in a high dimensional continuous space, achieved
via an adaptive resolution approach to discretisation, wherein an agent responds to a coarsely
discretised tile with high error by splitting that tile up. Whiteson et al. (2007) also use an adaptive
tile coding technique, splitting tiles adaptively and thus reducing the level of generalization over
time. Geramifard, Doshi-Velez, Redding, Roy and How (2011) introduced an adaptive feature
selection procedure for binary features. Here, the potential worth of each feature combination is
computed, and those feature combinations with a sufficiently high potential are added to the feature
set. Nonlinear approaches to discretisation adaptation also exist (Uther & Veloso, 1998; Lin & Wright,
2010).

Through this adaptive work, there is an intrinsic assumption that too-coarse discretisation results
in poor performance due to a lack of representational ability, particularly in areas of the state space

http://dx.doi.org/10.18489/sacj.v0i57.284

http://dx.doi.org/10.18489/sacj.v0i57.284

Mitchley: Upper bounds on the performance of discretisation. . . 27

where the agent must choose from a set of actions. We thus find an upper bound on the performance
of discretisation in continuous state spaces, to quantify when a discretisation is too coarse.

3 UPPER BOUND ON PERFORMANCE

We define the decision set D(a) for action a as the set of all states s such that the optimal policy
π∗(s) = a, i.e. D(a) = {s|π∗(s) = a}. We define the decision set of a specific tile with domain ω as
Dω(a) = {s|s ∈ω, π∗(s) = a}, where the domain of a tile is the set of all states for which the tile
may be nonzero. We note that domain ω is not assumed to be any specific shape, or assumed to be
contiguous, and so the results presented here are generalisable for any form of discretisation. For
deterministic policies and actions, Dω(a)∩ Dω(b) = D(a)∩ D(b) = ;.

3.1 Assumptions
We will assume for now an agent capable of two actions, a and b (with extension to m actions). We
also assume a deterministic environment.

3.2 Results
Lemma 1. A tile can only encode one action across its domain ω regardless of whether the tile is used
to encode the policy directly, or a state-action value function.

Proof. Suppose an agent encounters state s ∈ω. If the tile encodes a policy directly in some way,
then the policy must be constant across all states in ω. If a state-action value function Q(s, a) is
used with one tile per action across domain ω, then the policy must select the action that maximises
the value, i.e. argmaxa Q(s, a). However, maxa Q(s, a) is constant for any s ∈ ω, since each tile is
constant for any s ∈ω. Thus, the policy across all states in ω is constant.

Lemma 2. If a tile with domain ω and there exists an action a such that Dω(a) =ω, then the tile can
perfectly encode optimal policy π∗ on that domain.

Proof. Every state in the tile is within the decision set of action a for that tile’s domain, and so a tile
can perfectly encode the value function necessary to generate policy π∗.

Lemma 3. If a tile with domainω has decision sets Dω(a)∪Dω(b) =ω with Dω(a) 6= ; and Dω(b) 6= ;.
If the agent enters a state within the domain of the tile, it has a probability β of landing in Dω(a) and a
probability (1− β) of landing in Dω(b). If we assume the decision boundaries are distributed such that
all possible values of the probability β are equally likely, i.e. the decision sets are, on average, uniformly
but not necessarily contiguously distributed within a tile, then E(β) = 0.5.

Proof. The expected probability of a uniform distribution is 0.5. We make no assumption here about
the distribution or coverage of the sets Dω(a) and Dω(b).

http://dx.doi.org/10.18489/sacj.v0i57.284

http://dx.doi.org/10.18489/sacj.v0i57.284

Mitchley: Upper bounds on the performance of discretisation. . . 28

Theorem 1. Suppose that a tile with domain ω has decision sets Dω(a)∪ Dω(b) =ω with Dω(a) 6= ;
and Dω(b) 6= ;, with probability β of landing in Dω(a) and a probability (1− β) of landing in Dω(b).
Suppose, without loss of generality, that β ≥ 0.5. Then, the agent will select a suboptimal action with
probability at least (1− β).

Proof. From Lemma 1, a tile may only encode a single action. Suppose that action a is the optimal
action to encode with the tile. Then, regardless of whether state s ∈ Dω(b) or s ∈ Dω(a), a greedy
agent will select action a. In particular, for s ∈ Dω(b) occurring with probability (1−β), the optimal
action is b, yet a is selected.

Suppose b is the optimal action to encode with the tile (this can occur if the return associated
with action b is greater than that for action a across ω). Then, the incorrect action according to
optimal policy π∗ is selected across Dω(a) with probability β ≥ (1−β). Thus, a suboptimal action is
selected with probability at least (1− β).

Corollary 1. If a wrong decision is made with probability min (β , (1− β)), and β is uniformly distrib-
uted, then E (min (β , (1− β))) = 0.25.

Proof. Integrating min (β , (1− β)) across all values of β gives the result above.

Theorem 2. If the agent has a choice of m = |A| actions, with the decision sets and tile domains defined
as before. From Lemma 1, only one action can be encoded per tile. Suppose that action a is the optimal
action to encode for that domain of the m actions, with the agent landing in Dω(a) with probability β .
Then, in extension of Corollary 1, the agent will select a suboptimal action with expected probability
1− Hm

m where Hm =
∑m

i=1
1
i is the m-th harmonic number.

Proof. As all points in the tile are equally likely, this is equivalent to finding one minus the expected
maximum of an m dimensional symmetric Dirichlet distribution, i.e. considering x sampled from
{X |X ∈ [0, 1]m, ||X ||1 = 1} and finding 1−E(||x ||∞), which give the result above.

Corollary 2. If some proportion α of the nd tiles in a tile coding for m = |A | actions are uniformly
randomly divided by a decision boundary, and each tile covers an area of 1

nd units, the resulting policy
across the domain must select a nonoptimal action with probability 1− Hm

m for αnd of the tiles.

Proof. Proof follows from Theorem 2.

3.3 Discussion
As the number of tiles per dimension n grows, the tile coding will get more accurate, and fewer
tiles will straddle decision boundaries. There is a relationship between α and n, which can be
characterised if some assumptions are made about the nature of the decision boundaries. If we
assume the decision boundaries are d − 1 dimensional manifolds embedded in the d dimensional
state space, then the number of tiles on this manifold will grow in O(nd−1), whereas the total number
of tiles will be nd . The proportion of tiles on a decision boundary α is then in O(1

n). Under this

assumption, an incorrect decision is made with probability O(1− Hm
m

n) assuming uniform distribution
across the state space. As n→∞, this error decreases to zero.

http://dx.doi.org/10.18489/sacj.v0i57.284

http://dx.doi.org/10.18489/sacj.v0i57.284

Mitchley: Upper bounds on the performance of discretisation. . . 29

Figure 1: The Discontinuous Room domain, with start state shown in green

Figure 2: Optimal policy for Discontinuous Room, with decision boundaries in red

3.4 Case Study
Discontinuous room is a continuous state gridworld with a narrow gap to the goal room (Konidaris
et al., 2011), as shown in Figure 1.

The room is 6 units high (we will call this y) and 10 units wide (x), with a wall from [0, 3]
to [8, 3]. The agent may move half a unit north, south, east or west. The start position is (1, 1),
and the goal position is (1, 4.5), although the agent need only be within one unit of this goal. The
agent is rewarded −1 for every time step taken, and 1000 upon reaching the goal state. The agent’s
position is represented using a two dimensional state, rescaled to be between zero and one.

We can thus determine the optimal policy for the agent. This policy is shown in Figure 2, with
the decision boundaries shown in red. The dotted red lines indicate boundaries with overlapping
optimal actions, as more than one action is optimal.

For this example however, we will assume the actions and decision boundaries shown in Figure
3, and compute the number of tiles along the decision boundaries, α and the expected number of
incorrect decisions, for a number of tiling resolutions.

We see from Table 1 that the number of tiles on the boundary does appear to grow linearly with
the number of tiles along each dimension. Furthermore, the upper bound on the probability of an
incorrect decision decreases in inverse proportion to the number of tiles per dimension. When one
uses at least five tiles per dimension, the expected error probability is approximately 10% across the
whole state space. While the error decreasing with the number of tiles used may be obvious, we

http://dx.doi.org/10.18489/sacj.v0i57.284

http://dx.doi.org/10.18489/sacj.v0i57.284

Mitchley: Upper bounds on the performance of discretisation. . . 30

Figure 3: Simplified policy, with decision boundaries in red

Tiles per dim. 1 2 3 4 5
Total tiles 1 4 9 16 25
Tiles on boundary 1 3 3 5 5
α 1 0.75 0.33 0.31 0.2
1− Hm

m
n 0.48 0.24 0.16 0.12 0.1

Table 1: Fraction tiles encoding incorrect actions for Discontinuous Room

have previously been unable to quantify the amount of error decrease.

4 CONCLUSION

When discretisation or tile coding are used in reinforcement learning in continuous state space
domains, there is an intrinsic loss of detail due to the representation of the policy or value function
as being piecewise constant. If the optimal policy π∗ changes over the domain of a tile, a suboptimal
action will be selected for a portion of the tile. If we assume these decision boundaries are uniformly
distributed within the affected tile, a suboptimal action is selected with probability 1− Hm

m within the
tile, where Hm =

∑m
i=1

1
i is the m-th harmonic number. If we further assume the decision boundaries

are d − 1 dimensional manifolds embedded in the d dimensional state space, and the proportion
of affected tiles α is in O(1

n) where n is the number of tiles per dimension, value function or policy

representation with tile coding will have an expected error probability of O(1− Hm
m

n), regardless of
the learning technique used. This indicates that the performance of tile coding and discretisation
schemes is bounded above.

ACKNOWLEDGEMENTS

This work was supported by the National Research Foundation grant number TTK14052667930.

http://dx.doi.org/10.18489/sacj.v0i57.284

http://dx.doi.org/10.18489/sacj.v0i57.284

Mitchley: Upper bounds on the performance of discretisation. . . 31

References

Geramifard, A., Doshi-Velez, F., Redding, J., Roy, N. & How, J. (2011, June). Online discovery of
feature dependencies. In Proceedings of the 28th International Conference on Machine Learning
(pp. 881–888). New York, NY, USA.

Johns, J., Painter-Wakefield, C. & Parr, R. (2010). Linear complementarity for regularized policy
evaluation and improvement. In Advances in neural information processing systems 23.

Kolter, J. & Ng, A. (2009). Regularization and feature selection in least-squares temporal difference
learning. In Proceedings of the 26th International Conference on Machine Learning (pp. 521–528).
http://dx.doi.org/10.1145/1553374.1553442

Konidaris, G., Osentoski, S. & Thomas, P. (2011). Value function approximation in reinforcement
learning using the Fourier basis. In Proceedings of the Twenty-Fifth Conference on Artificial
Intelligence (pp. 380–385).

Lagoudakis, M. & Parr, R. (2003). Least-squares policy iteration. Journal of Machine Learning Research,
4, 1107–1149.

Lin, S. & Wright, R. (2010). Evolutionary tile coding: an automated state abstraction algorithm for
reinforcement learning. In Proceedings of the AAI Workshop on Abstraction, Reformulation, and
Approximation.

Moore, A. (1994). The parti-Game algorithm for variable resolution reinforcement learning in
multidimensional state-spaces. In Advances in neural information processing systems 6 (pp. 711–
718).

Painter-Wakefield, C. & Parr, R. (2012). Greedy algorithms for sparse reinforcement learning. In
Proceedings of the International Conference on Machine Learning.

Sutton, R. & Barto, A. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.
Uther, W. T. & Veloso, M. M. (1998). Tree based discretization for continuous state space reinforcement

learning. In Proceedings of AAAI-98 (pp. 769–774).
Whiteson, S., Taylor, M. & Stone, P. (2007). Adaptive tile coding for value function approximation.

Computer Science Department, University of Texas at Austin AI-TR-07-339.
Wu, C. & Meleis, W. (2009). Function approximation using tile and Kanerva coding for multi-agent

systems. In Proceedings of Adaptive Learning Agents Workshop (ALA) in AAMAS.

http://dx.doi.org/10.18489/sacj.v0i57.284

http://dx.doi.org/10.1145/1553374.1553442
http://dx.doi.org/10.18489/sacj.v0i57.284

	Introduction
	Background
	Upper Bound on Performance
	Assumptions
	Results
	Discussion
	Case Study

	Conclusion

