
Research Article ─ SACJ, No. 45., July 2010 53

The effects of Professional and Pedagogical Program

Development Environments on Novice Programmer Perceptions

D.Vogts,1 A.P.Calitz2, J.H.Greyling3

Department of Computing Sciences, Nelson Mandela Metropolitan University, South Africa.

ABSTRACT

Novice programmers generally have difficulty learning to program and one of the problems contributing towards this is the program

development environment used at tertiary institutions. A number of pedagogical program development environments have been

developed specifically for novice programmers, but these have not been compared experimentally with professional program

development environments. A study was conducted that compared the perceptions of novice programmers using a representative

professional program development environment to a pedagogical program development environment during an Introductory

Programming module at a tertiary institution. It was found that the use of a pedagogical program development environment had a

positive effect on the feelings of achievement and learning while learning to program, while the perceived ease of using the program

development environment and the perceived difficulty of practical assignments were not affected.

CATEGORIES AND SUBJECT DESCRIPTORS

D.2.6 [Software Engineering]: Programming Environments – integrated environments;

K.3.2 [Computers & Education]: Computer and Information Science Education – computer-science education, curriculum.

KEYWORDS

novice programmers, perceptions, pedagogical program development environment, professional program development environment.

1
 Email: Dieter.Vogts@nmmu.ac.za

2
 Email: Andre.Calitz@nmmu.ac.za

3
 Email: Jean.Greyling@nmmu.ac.za

1. INTRODUCTION

Learning to program is a complex process and is one of the

reasons that have contributed to the world-wide decrease in IT-

enrollments [1]. While learning to program, numerous skills

and processes need to be learnt concurrently and many are

interrelated [2]. These include learning the syntax of a

programming language, learning to problem solve in a manner

unfamiliar to many [3] and learning how to use a program

development environment to construct, debug and execute

programs.

It has been stated that professional program development

environments, which are developed mainly for professional

programmers, are inappropriate to use when teaching novice

programmers to program [4]. Generally, novice programmers

feel that they need to “fight the compiler” in order to

successfully compile and execute a program, resulting in many

novice programmers thinking that programming is about

“getting the syntax right” and spending most of their time on

this task.

A number of professional program development

environments are configurable to a certain degree, making them

more usable to novice programmers. However, there are still

features required by novice programmers that have not been

addressed, such as experience appropriate help documentation

and error messages [5]. Therefore, even though professional

program development environments are becoming more

configurable, there is still a need for specialised program

development environments developed with pedagogical aims in

mind.

The perceived inappropriateness of professional program

development environments being used by novice programmers

learning to program has led to the development of many

pedagogical program development environments [6]. There are

different types of pedagogical program development

environments developed, that include:

• constrained programming languages and their associated

program development environments [7, 8] and

• program development environments customised for novice

programmers [4, 6, 9, 10], typically involving simple

GUIs and features specifically designed for novice

programmers.

Even though professional program development

environments are believed to be non-conducive to learning to

program, many educational institutions use professional

program development environments in Introductory

Programming modules. Tertiary institutions are often faced with

external pressures of having to teach programming in a program

development environment used “in the real world”.

Research needs to be conducted to provide an unbiased

comparison between pedagogical and professional program

development environments. Unfortunately, it is not possible to

54 Research Article ─ SACJ, No. 45., July 2010

say conclusively how much better, if at all, a pedagogical

program development environment is for a novice programmer

compared to a professional program development environment.

The reason for this is that very few comparative studies have

been conducted [11].

Comparative studies compare two or more program

development environments, while reducing the amount of

factors, other than the environments, that could bias the results

[12]. In a study comparing a pedagogical and professional

program development environment, the factors that can be

controlled include the presenter of the module, learning

material, pacing, programming language and practical

assignments. In these studies, it is possible to benchmark one

environment against another, without the findings having to be

kept in context of the study.

A comparative study was conducted at the Nelson Mandela

Metropolitan University to compare the effects of a

representative pedagogical program development environment

with a representative professional program development

environment on novice programmers learning to program. The

effects that were considered were:

• perceptions;

• academic performance; and

• programming behaviour of novice programmers.

The perceptions of novice programmers relate to how they

perceive different aspects of learning to program. It is related to

personal experiences of the novice programmer while

interacting with the program development environment and the

module content. It has been stated that the personal experiences

of people learning new content has an impact on the learning

process [13, 14]. Bad experiences can lead to poor levels of

motivation, resulting in lower levels of learning. It is

particularly true that in the early stages of learning new content

that self belief in one's ability to successfully complete tasks is

malleable. In other words, the initial experiences of a novice

programmer learning to program will impact on the self belief

and motivation of the novice programmer, which will in turn

affect the remainder of the learning process.

Academic performance pertains to how novice programmers

performed academically. It relates to the grades obtained, as

well as the throughput (pass rate) for the module. This is

important as many tertiary institutions are being required to

obtain specific levels of throughput.

Finally, programming behaviour relates to how novice

programmers performed the various tasks required during

programming. The behaviour examined included how often

novice programmers made mistakes, accessed help and how

frequently programs were compiled and executed.

The effect of the program development environment on

academic performance and programming behaviour of novice

programmers is reported elsewhere by the authors [15]. This

article examines how the perceptions of novice programmers

differed based on the choice of program development

environment used.

The representative pedagogical program development

developed, named SimplifIDE, is discussed in Section 2. The

design of the experiment is discussed in Section 3, while

Section 4 reports on the findings. Finally Section 5 contains a

discussion of the findings of the experiment.

2. SIMPLIFIDE

SimplifIDE [16] was created as a program development

environment that was representative of a number of existing

pedagogical program development environments. SimplifIDE is

a plugin for Borland© Delphi 6TM, which modifies the

behaviour of the professional program development

environment in the following different ways:

• the GUI was simplified, so that only the absolutely

necessary components were visible;

• automatic insertion of keywords using a language directed

editor;

• interactive structure error indicators (Figure 1a);

• hovering over an error indicator displayed a tool tip with a

message (Figure 1b) and a red arrow indicating the token

that caused the error to be reported (Figure 1c);

• code structure highlighting indicating related blocks of

code (Figure 1d);

• unknown identifiers were indicated with red underlining

(Figure 1e);

• upon compilation, help bubbles were displayed for

compile time errors, explaining the error in language

appropriate to novice programmers and providing links to

additional help documentation and lecture notes;

• wizards were added to assist in the creation of

programs/classes and functions/procedures/methods; and

• programming behaviour events were logged, as well as

snapshots of program code when these events occurred.

Figure 1. Screenshot of SimplifIDE Editor Pane [15]

The features of SimplifIDE were customisable on a per user

basis, allowing subjects to experience either the default

professional program development environment or the

pedagogical version. The representative pedagogical program

development environment used was SimplifIDE with all

features enabled, while the representative professional program

development environment only had event logging functionality

enabled.

3. EXPERIMENTAL METHODOLOGY

Subjects were chosen from the Introductory Programming

module offered at the Nelson Mandela Metropolitan University

in the Department of Computing Sciences, in order that they

could be considered novice programmers [2]. Additionally,

using a pre-experiment assessment, subjects were further

classified as high risk or low risk subjects. High risk subjects

were predicted to have a final grade of less than 65%, while low

risk subjects were predicted to have a final grade of greater than

or equal to 65%, where a final grade of 50% was required to

successfully complete the module. The reason for partitioning

subjects into high risk and low risk is due to the fact that

differences between these categories of subjects have been

reported in other studies [2].

Research Article ─ SACJ, No. 45., July 2010 55

Subjects were then randomly partitioned into the control

group that used the representative professional program

development environment and the treatment group that used the

representative pedagogical program development environment.

Within each group there were additional strata containing high

risk and low risk subjects. Care was taken to ensure that there

were not significant differences between groups and similar

strata between groups in terms of size, biographical data

collected and predicted final grades.

Subjects utilised the respective program development

environments on a weekly basis over the duration of the module

in order to complete practical assignments. The same lecturer,

module content, assignments and assessments were

administered to confine the differences between groups to being

only the program development environment used.

Each week, subjects from both groups were requested to

complete a short questionnaire regarding their perceptions of

the previous week's practical assignment. Subjects were asked

to indicate their feelings on:

• how much they had achieved;

• how much they had learnt;

• how easy the program development environment had been

to use; and

• how easy the practical task had been.

The questionnaires consisted of questions that were

answered using a five point Lickert Scale. Answers were in the

range from 1 to 5, where 1 indicated total disagreement and 5

indicated total agreement. The number of questions asked

remained limited to prevent subjects from not answering the

questionnaires due to lengthy questionnaires that needed to be

completed each week.

4. RESULTS

Data collected during the experiment was in both paper and

electronic format. Biographical information was collected using

paper-based questionnaires, while perception questionnaire

results were collected electronically.

The data was collected and analysed using profile analysis

[17] to determine if any differences were evident over the

duration of the module. This involved:

• checking if there were any significant differences detected;

• if there were, then the locations of these were determined;

• if there were significant differences, then a check was

made to determine if the results of the two groups were

parallel (in other words, do both series move in the same

direction). A non-significant result was required to

indicate parallelism and

• if the series were parallel, determine if the series were on

different levels of the Lickert scale. A significant

difference indicates that the series are on different levels.

If all the tests succeed, then the profiles of the two groups

being compared are totally different. If not all the tests succeed,

then there is not necessarily a clear distinction between the two

groups.

4.1 Sample Population

Ninety eight subjects were in the initial experimental group and

were enrolled for the Introductory Programming module. After

withdrawals and module cancellations, there were 32 subjects in

the control group and 47 in the treatment group (Table 1).

 Control Group Treatment Group

Initial 44 54

Cancelled 10 (22%) 6 (11%)

Withdrawn 2 1

Final 32 47

Low Risk 15 19

High Risk 17 28

Table 1. Sample Distribution

A slightly larger treatment group was chosen initially to

ensure that after cancellations and withdrawals the groups

would be as close to one another in size as was possible. It was

thought that more subjects would withdraw from the treatment

group than the control group since the professional program

development environment was the prescribed program

development environment for the Introductory Programming

module.

The authors noted that very few subjects withdrew from the

experiment or cancelled the module in the treatment group.

Compared to the control group, only half the proportion of the

treatment group subjects withdrew from the experiment or

cancelled the module (Table 1).

4.2 Weekly Practical Tasks

Weekly practical sessions were scheduled for the duration of

the Introductory Programming module. At the beginning of

each practical session, subjects were asked to complete a

questionnaire reflecting on the previous week's practical

session. The responses for practical sessions 9 and 10 were

combined due to public holidays that occurred during the two

weeks. As the module progressed, the complexity of the

practical assignments increased and the last three practical

assignments (9+10 and 11) consolidated topics of the entire

module.

Subjects were asked whether they felt that they had achieved

“something” during that practical, a low rating indicated that

they felt they did not achieve anything, while a high rating

indicated that they felt they achieved a lot. This was a measure

of whether subjects felt that they had successfully completed

tasks.

Subjects in the high risk strata responded at a slightly lower

level than those in the low risk strata for both groups, but there

were no significant differences between strata within the control

group (p=0.2) and treatment group (p=0.16). Since there were

not significant differences between the high risk and low risk

strata, only the results on a per group basis are shown for

brevity in Figure 2. Significant differences are indicated with

shaded blocks, with the p value shown above.

Profile analysis of the per group responses indicated that

there were differences between multiple variables (p=0.03),

specifically practicals 9+10 (p=0.012) and practical 11

(p=0.003). The responses of each group were parallel (p=0.363)

and were not on the same level (p=0.010). Therefore the

treatment group and the control group had significantly

different perceptions about the level of achievement attained

during the practical sessions. Subjects in the treatment group

consistently felt that they achieved more than those in the

control group, whose feelings of achievement gradually

decreased over the duration of the module.

56 Research Article ─ SACJ, No. 45., July 2010

Figure 2. Perceived Achievement during Practical Sessions

Subjects were asked if they felt that they learnt something

during the week's practical tasks. A low rating indicated that

subjects felt they did not learn anything, while a high level

indicated that they felt they learnt a lot.

The responses of subjects in the high risk strata of each

group were slightly higher than those of subjects in the low risk

strata of the same group, but not significantly different for the

control group (p=0.17) or treatment group (p=0.22). The results

on a per group basis only are shown in Figure 3.

Figure 3. Perceived Learning during Practical Sessions

Profile analysis indicated that there were significant

differences between multiple variables (p=0.002), specifically

practical 5 (p=0.040), practical 8 (p=0.013), practicals 9+10

(p=0.002) and practical 11 (p=0.001). The responses of the

control group and treatment group were not parallel however

(p=0.016), due to the line segment between practicals 7 and 8.

In practical 7, the responses of the control group were higher

than that of the treatment group.

Unlike the perceptions of achievement, there is not a clear

separation between the control and treatment group's

perceptions on learning. There is strong evidence, however, to

suggest that subjects in the treatment group have a much more

positive perception of having learnt something than the control

group (4 out of 6 practical assignments were significantly

different). Similar to the perceived achievement, subjects in the

treatment group had a fairly consistent perception of learning

during the practical tasks, while subjects in the control group

had a gradual decrease in the perceptions of learning over the

duration of the module.

Figure 4. Perceived Ease of Use during Practical Sessions

Subjects were asked to indicate how easy they found the

designated program development environment to use. A low

rating indicated that the program development environment was

difficult to use, while a high rating indicated that it was easy to

use.

The results of the subjects perceived ease of using the

designated program development environment on a per group

basis are shown in Figure 4. Once again there were no

significant differences on a per strata basis in the control group

(p=0.56) and treatment group (p=0.18), therefore only the

results on a per group basis are shown.

Profile analysis indicated that there were no significant

differences amongst variables (p=0.122). Thorough

examination of Figure 4 shows that the responses are very close

to one another, although it would appear that subjects in the

treatment group found the program development environment

slightly easier to use than the control group. Both the treatment

and control group had a gradual decrease in the perception that

the designated program development environment was easy to

use over the duration of the module.

Subjects were also asked to indicate how easy they thought

the practical assignment was. A low rating indicated that they

thought the practical assignment was difficult and a high rating

that it was easy.

The results of the subjects perceived ease of completing the

practical tasks on a per group basis are shown in Figure 5. Once

again there were no major differences on a per strata basis in the

control group (p=0.2) and treatment group (p=0.23), therefore

only the results on a per group basis are shown.

Profile analysis showed that there were significant

differences amongst variables (p=0.038), specifically practical 5

(p=0.025). The responses of the control group and treatment

group were found to be parallel (p=0.05), but also on the same

level (p=0.316). Therefore the perceived ease of the practical

tasks was the same for both groups and the program

development environment used did not make a significant

difference. There is a gradual drop in the perceived level of

easiness of the practical assignments by both the treatment and

control groups over the duration of the module.

Research Article ─ SACJ, No. 45., July 2010 57

Figure 5. Perceived Ease of Practical Assignments during

Practical Sessions

Thorough examination of all the responses indicates that in

most cases the treatment groups mean responses were higher

than that of the control group, except for practical 7. During

that particular week, there were technical issues with the local

area network which lead to slow response times. This could

have resulted in the lower ratings by the treatment group who

were more affected by the slow response times than the control

group. A number of treatment group subjects commented about

the slow response times and occasional crashes during this

practical session.

5. DISCUSSION

Considering all perceptions, it appears that for both groups,

perceptions started off on relatively positive levels. Most of the

perceptions exhibited a gradual decrease in positivity, moving

toward neutrality (a rating of 3 on the Lickert scale), as the

module progressed. This phenomena is not unexpected as the

complexity of content increases as the module progresses.

There were no significant differences between the perception

levels of high risk and low risk subjects, unlike the related study

[15]. Therefore the ability level of the novice programmer did

not significantly affect their perceptions during the learning

process.

The perceived level of achievement attained during practical

assignments remained relatively constant for subjects in the

treatment group over the duration of the module. Subjects in the

control group, however, had a steady decrease in the perceived

level of achievement as the module progressed, with the mean

perceived level of achievement dropping below neutral for the

last practical assignment. The last two practical assignments, in

particular, exhibited significant differences between the

perceived levels of achievement for the control group and the

treatment group. Profile analysis indicated that the responses of

each group over the period were different, therefore the use of a

pedagogical program development environment while learning

to program can have a significant effect on the perceived level

of achievement of novice programmers while learning to

program.

The perceived level of learning that occurred during practical

assignments was not shown to be completely separate using

profile analysis. Considering the number of significant

differences detected (4 out of 6), there is strong evidence to

suggest that the program development environment used has an

impact on the perceived level of learning. For subjects using the

pedagogical program development environment, the perceived

level of learning remained relatively constant, while those using

the professional program development environment exhibited a

gradual decrease in perceived learning levels as the module

progressed. Therefore it would appear that the use of a

pedagogical program development environment can have a

positive effect on the perceived level of learning of novice

programmers learning to program.

The perceived ease of use of program development

environments by both groups was not significantly different.

Subjects using the pedagogical program development

environment had slightly higher mean levels of perceived ease

of use, with the largest difference occurring during the first

practical. One possible explanation of this is that subjects in

each group were novices, not having programmed or been

exposed to other program development environments before,

therefore they did not have a benchmark with which to compare

their designated program development environment against.

Another possible explanation is that since both the pedagogical

and professional program development environments used in

the study were basically text-based editors with support

features, it is possible that program development environments

built around text-based editors are of similar ease of use when

programming. Other metaphors of programming, such as iconic

programming [2], or different support features might be able to

change the perceived ease of use.

The perceived level of easiness of practical assignments was

not significantly different for the control and treatment groups,

in fact they are considered identical from the profile analysis

conducted. In addition to this, the perceived level of easiness

dropped as the module progressed and the module content

became more complex. Therefore it appears as if the program

development environment used does not affect how easy or

difficult novice programmers consider solving a problem to be.

As with the perceived ease of use of the program development

environment, a reason that the perceived level of easiness was

the same might be the fact that both environments were text-

based editors and inherently employ similar procedures and

processes. Another reason could be that neither of the program

development environments provided tools to assist novice

programmers in creating a solution to a problem, instead they

allowed novice programmers to simply to write, compile and

debug programs with no assistance during the problem solving

phase.

6. CONCLUSIONS

The motivation and self-belief of novices learning to program

are important aspects that should not be ignored during the

learning process. This study has shown that pedagogical

program development environments are beneficial to the

perceptions of novice programmers learning to program,

specifically the feelings of achievement and learning. The

program development environments used did not have any

significant effect on the perceived ease of using the program

development environment or the ease of completing practical

assignments.

More positive perceptions about programming and IT in

general, could help alleviate some of the problems experienced

in Introductory Programming modules worldwide. Therefore it

is important that appropriate program development

environments be used when learning to program.

REFERENCES

[1] Clear, T., Edwards, J., Lister, R., Simon, B., Thompson, E.

and Whalley, J. 2008. The teaching of novice computer

58 Research Article ─ SACJ, No. 45., July 2010

programmers: bringing the scholarly-research approach to

Australia. In Proceedings of the 10th Conference on

Australasian Computing Education, vol. 78, pp. 63–68.

[2] Cilliers, C.B., Calitz, A.P. and Greyling, J.H. 2005. The

Effect of Integrating an Iconic Programming Notation into

CS1. In Proceedings of ITiCSE’05.

[3] Hanks, B. and Brandt, M. 2009. Successful and

unsuccessful problem solving approaches of novice

programmers. In Proceedings of the 40th ACM technical

symposium on Computer Science Education, pp. 24–28.

[4] Reis, C. and Cartwright, R. 2004. Taming a Professional

IDE for the Classroom. In Proceedings of SIGCSE’04, pp.

156–160.

[5] Nienaltowski, M.H., Pedroni, M. and Meyer, B. 2008.

Compiler Error Messages: What Can Help Novices? In

Proceedings of the 39th SIGCSE Technical Symposium on

Computer Science Education.

[6] Kelleher, C. and Pausch, R. 2005. Lowering the Barriers to

Programming: A Taxonomy of Programming

Environments and Languages for Novice Programmers.

ACM Computing Surveys, vol. 37, no. 2, pp. 83–137.

[7] Ko, A.J. 2003. A Contextual Inquiry of Expert

Programmers in an Event-Based Programming

Environment. In Proceedings of CHI2003, pp. 1036–1037.

[8] Bloch, S. and Proulx, V. 2007. Teach Scheme, reach Java:

introducing object - oriented programming without

drowning in syntax: tutorial presentation. Journal of

Computing Sciences in Colleges, vol. 22, no. 6, pp. 88–89.

[9] Kolling, M., Quig, B., Patterson, A. and Rosenburg, J.

2003. The BlueJ System and its Pedagogy. Journal of

Computer Science Education, vol. 13, no. 4.

[10] van Tonder, M., Naude, K. and Cilliers, C.B. 2008.

Jenuity: a lightweight development environment for

intermediate level programming courses. In Proceedings of

13th Annual Conference on Innovation and Technology in

Computer Science Education.

[11] de Pascuale III, P. 2003. Implications on the Learning of

Programming Through the Implementation of Subsets in

Program Development Environments. Doctoral thesis,

Virginia Polytechnic Institute and State University.

[12] McIver, L. 2002. Evaluating Languages and Environments

for Novice Programmers. In Proceedings of 14th

Workshop of the Psychology of Programming Interest

Group, pp. 100–110.

[13] Zimmerman, B.J. 1995. Self-Efficacy and Educational

Development. Self-Efficacy Changing Societies, pp. 203–

231.

[14] Wiedenbeck, S. 2005. Factors Affecting the Success of

Non- Majors in Learning to Program. In Proceedings of

ICER’05.

[15] Vogts, D., Calitz, A.P. and Greyling,J.H. 2008.

Comparison of the effects of professional and pedagogical

program development environments on novice

programmers. In Proceedings of SAICSIT 2008, pp. 286–

295. (Oct 2008). DOI:

http://doi.acm.org/10.1145/1456659.1456692.

[16] Vogts, D. 2007. The Evaluation of a Pedagogical Program

Development Environment for Novice Programmers: A

Comparative Study. Doctoral thesis, Nelson Mandela

Metropolitan University.

[17] Stevens, J.P. 2009. Applied Multivariate Statistics for the

Social Sciences. 5th edn.

