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ABSTRACT

An integration of traditional verification techniques and formal specifications in software engineering is presented.

Advocates of such techniques claim that mathematical formalisms allow them to produce quality, verifiably correct, or

at least highly dependable software and that the testing and maintenance phases are shortened. Critics on the other

hand maintain that software formalisms are hard to master, tedious to use and not well suited for the fast turnaround

times demanded by industry. In this paper some popular formalisms and the advantages of using these during the

early phases of the software development life cycle are presented. Employing the Floyd-Hoare verification principles

during the formal specification phase facilitates reasoning about the properties of a specification. Some observations

that may help to alleviate the formal-methods controversy are established and a number of formal methods successes

is presented. Possible conditions for an increased acceptance of formalisms in software development are discussed.
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ory, Vampire, verification, Z

1 INTRODUCTION

Formal methods in computing are considered to
be the use of mathematical descriptions and
techniques to develop (mainly) software systems
through the use of formal specifications. This view
stems from the 1980s and is prominent in amongst
others, the book by Jim Woodcock and Mar-
tin Loomes [1]. However, procedural approaches
to mathematical software development have their
roots in the late 1960s already, owing to the work
of Robert Floyd [2] and C.A.R. Hoare [3].

Of course, mathematical-based techniques in
computing are much wider than just software de-
velopment — automata theory [4] or relational
database theory [5] are further examples of math-
ematical formalisms early on in computing. Nev-
ertheless, the definition of ‘formal methods’ that is
assumed in this paper is the one that embraces the
use of mathematics in developing software.

Advocates of formal methods claim that such
techniques facilitate the production of quality, ver-
ifiably correct, or at least highly dependable soft-
ware and that the testing and maintenance phases
are shortened. Critics on the other hand main-
tain that software formalisms are hard to mas-
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ter, tedious to use and not well suited for the fast
turnaround times demanded by industry. Hence,
the use of formalisms in software development has
been a topic of a hot debate [6, 7].

In this paper some of these issues are addressed
and it is argued that a formal-methods approach
may be vital in the construction of correct soft-
ware systems. A further contribution of this work
lies in the integration of an abstract specification,
constructed early on in the software development
life cycle (SDLC) with traditional verification tech-
niques normally applied during later phases.

The layout of the paper is: In Section 2, some
of the early approaches to mathematical software
development are presented and it is shown how
the application of these could be crucial. Mov-
ing the mathematical rigour to an earlier phase in
the SDLC presents some unique opportunities for
identifying and removing errors early on in the de-
sign. To this end the idea of a formal specification
phase embedding aspects of early mathematical ap-
proaches are presented in Section 3. An example of
a Z specification is presented in Section 4 and the
benefits to be gained in reasoning about the prop-
erties of a formal specification are considered.

Automated reasoning assistants may usefully
be employed to aid the reasoning process and an
early reasoner is discussed briefly in Section 5, fol-
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lowed by the advances made by automated theo-
rem provers in Section 6. The challenges brought
about by set-theoretic reasoning are considered in
Section 7 and it is shown that heuristics may fur-
ther facilitate the reasoning process. Sections 8
and 9 address next-generation reasoners and nota-
tional complexities respectively. In Section 10 some
formal-methods success stories are presented and
we take a look in Section 11 at the conditions that
formal methods in software engineering may have to
meet in order to become a viable option in indus-
try in future. Important observations are presented
throughout. A summary concludes this paper.

2 FORMAL SOFTWARE DEVELOPMENT
- PROCEDURAL APPROACHES

The work of Robert Floyd [2] and C.A.R. Hoare [3]
together constitute some of the earliest writings on
the formal verification of computer programs. Es-
sentially Floyd defined rules for the construction of
flowcharts while Hoare defined a number of similar
deduction rules, based on the notions of precon-
ditions, postconditions and statements for proving
the correctness of programming constructs. These
constructs were assignments, sequences of state-
ments, conditionals (consequence) and looping con-
structs, all part of modern high-level languages like
C or Java [8].

Examples of the verification of some of these
constructs are presented next.

2.1 Hoare Logic: An Example

An expression of the form {P}S{Q} where P and
Q are properties of the program variables and S is
a program (a single statement or large code frag-
ment), is called a Hoare triple [3, 9]. P is called
the precondition and Q is known as the postcon-
dition of S . In this paper {P}S{Q} is interpreted
as follows: If statement S and all its associated
variables are defined in context and precondition
P is satisfied before the execution of S , execution
of S is guaranteed to terminate, and afterwards,
the program variables will satisfy Q [9]. This prop-
erty is defined as total correctness by Baber [10].
Over time proof rules for the verification of assign-
ment statements, the skip statement, conditionals,
sequential composition, looping constructs, proce-
dure calls, etc. were established. Details of some of
these appear in Appendix B.

Verification theory involving pre- and postcon-
ditions allows us to solve a rather common problem
in computing, namely, if the postcondition to a
code fragment is known, how does one determine
the precondition, i.e. where does one have to

start to ensure the end result? The answer to this
question is of value in requirements engineering
[11] as well; if a user states some requirements
(postcondition) and a software engineer suggests a
solution, then what should be in place beforehand
to ensure that the solution proposed will satisfy
the requirements of the user, i.e. what is the
precondition?

The following example illustrates an application of
two of the Floyd-Hoare verification rules.

Example 1

Suppose one has to calculate the precondition, P for
the sequence of statements x := x−1 and y := y−1,
given a postcondition {z − 1 ≤ y < x ≤ w}. A
solution may employ the Floyd-Hoare assignment
axiom (1) as well as their proof rule for sequential
composition (2) defined below.

{Q [x := e]} x := e {Q} (1)

{P}S1; S2{Q} ← {P}S1{R} ∧ {R}S2{Q} (2)

An application of (1) replaces all occurrences of x
in the postcondition Q with e, thereby obtaining
the precondition, indicated by Q [x := e].

In solving the given problem, the assignment
axiom is applied by replacing y with (y − 1) in the
postcondition Q to obtain an intermediate precon-
dition, say, P1 = z − 1 ≤ (y − 1) < x ≤ w . There-
after we apply sequential composition and equate
P1 as the postcondition for the first assignment
statement x := x − 1. Applying the assignment
axiom again in P1 gives one the final precondition
P = z − 1 ≤ (y − 1) < (x − 1) ≤ w which can
be simplified to z ≤ y < x ≤ w + 1. Therefore:
{z ≤ y < x ≤ w+1} x := x −1; y := y−1 {z −1 ≤
y < x ≤ w}.

An application of the assignment axiom delivers
what is known as a weakest precondition, indicated
by wp(S ,Q) [10] and one may usefully employ this
property to verify a given Hoare triple {P}S{Q}
where S may be an arbitrary system. The weakest
precondition with respect to S and Q is calculated
and a proof obligation P ⇒ wp(S ,Q) results. If
this proof obligation cannot be discharged, chances
are that the precondition P suspected beforehand
may be too weak, leading to problems further on
during development.

The triple {P}S{Q} is often referred to as a
specification for the particular program fragment.
The texts by Backhouse [9] or Baber [10] present
very detailed accounts of the theory and application
of these and other rules.
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2.2 Typing

An important extension to the arsenal of verifica-
tion tools is the notion of typing, mainly introduced
by Baber [10]. Traditionally the Assignment axiom
(e.g. (1) above) is defined without due concern of
the types of variables involved. Ignoring types may
have severe consequences as is evident in the disas-
ter that struck the European Space Commission’s
Ariane 5 space rocket during its first test flight on 4
June 1996. A lack of typed verification procedures
led to a 64-bit floating point number being assigned
to a 16-bit signed integer, resulting in an arith-
metic overflow and the initiation of a self-destruct
sequence of actions. The code was taken from an
earlier rocket model without regard to its precon-
dition. In the earlier model, the precondition was
always met, but in the Ariane 5, it was not [12].

Fortunately no human life was lost but the fi-
nancial loss was in the order of US$500 million [13].
The rocket was furthermore not insured.

It is very plausible that the use of Floyd-Hoare-
Baber (FHB) verification principles, especially the
use of typing could have prevented the Ariane 5 dis-
aster. This leads to our first observation regarding
the use of formal methods at the procedural level
of program construction:
• Observation #1 : The use of FHB techniques

may facilitate the correctness of real-life soft-
ware.

In the next section it is shown how mathematical
formalism may be applied to an earlier phase of the
Software Development Life Cycle (SDLC) and we
argue that it may further facilitate correctness and
enhance software development processes.

3 FORMALISING THE SPECIFICATION
PHASE

Appendix A illustrates the traditional Software De-
velopment Life Cycle (SDLC) and shows how far
in the development cycle, namely the coding and
implementation phases the pure Floyd-Hoare ver-
ification rules were typically used. Notably, these
techniques were developed for program constructs
only and not the whole of the SDLC activities of
that time.

It is quite possible that an error discovered
through verification activities during the coding
and implementation phases may be traced back
to errors during the requirements or specification
phases. Early work by Barry Boehm [14] supports
this claim. Figure 1 illustrates that discovering and
correcting errors later in the life cycle, e.g. dur-
ing the implementation or integration phases turn
out to be more costly than fixing errors during an
earlier phase.

Boehm’s work was followed more than a decade
later by similar case studies regarding the cost of
fixing errors progressively later in the SDLC. The
later results are shown in Appendix C. This data
was gathered, from amongst other projects, dur-
ing an extensive revamp of a compiler. All errors
observed at the end of the design phase were cat-
egorised. It is reported that roughly 13% of the
faults were inherited from the previous version of
the compiler. Of the remaining errors, 16% were
introduced during the specification phase and the
remaining 71% were introduced during the design
phase [15, 16]. These figures call for more atten-
tion to be paid to earlier phases since errors tend
to snowball through to later phases.

3.1 Embedding FHB in Requirements

The cost effects illustrated by Boehm [14] and
Bhandari et al. [15], together with Observa-
tion #1 above support the idea of applying for-
mal correctness-preserving techniques during ear-
lier phases. The Floyd-Hoare-Baber approach can
usefully be applied to, for example, the specifica-
tion phase as well (refer Appendix A). In essence a
specification of a system defines what the resultant
system must do rather than saying how it is to be
achieved.

The idea of using mathematical formalisms dur-
ing specification led to the development of a mul-
titude of formal specification languages. Examples
of these are VDM [17], RAISE [18], Z [19, 20] and
B [21] to name but a few. One of the benefits to
be realised through the use of a formal specification
is that the specifier may reason formally about the
properties of the system to be built at a very early
stage in the development process [22]. Translat-
ing a natural-language statement of requirements
into a mathematically formal specification helps one
to identify ambiguities, omissions, etc. Any errors
or omissions discovered in the user requirements
could therefore be rectified earlier, leading to re-
duced costs.

The specification language Z [19, 20] emerged
as a popular choice and enjoyed a fair amount of
industrial acceptance (refer Section 10). Z is based
on two fundamental concepts in mathematics and
computing: set theory and logic. The following sec-
tion introduces Z and presents some advantages of
specification formalisms.

4 FORMAL SPECIFICATION USING Z

Mathematical set theory [23] is a basic, yet deep,
underlying commodity in computing. For example,
any good text on relational databases shows that
databases are based on functions — given a person’s
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Figure 1: Effect of fixing errors during the life cycle. (Adapted from Boehm [14])

ID number (a key), the system returns the record
for the person. It is no coincidence therefore that
Z specifications are essentially set-theoretic speci-
fications. In fact, Z is based on a strongly-typed
fragment of Zermelo-Fraenkel set theory [23], ex-
pressed in suitable first-order languages augmented
by schema notation. The B system [21] is also based
on set theory, mainly because it was was developed
from Z. The schema notation arose, according to
Hoare, as a mechanism to separate visually the for-
mal parts of a specification from the semi-formal
and informal documentation around them [24, 25].

A schema is generally divided into two parts:

• a section in which variables (called compo-
nents) together with their types are intro-
duced, and

• a predicate in which constraints are placed on
the values of the variables.

In the following section a partial Z specification is
constructed from a requirements definition. The
development is an enhanced version of a system in
[26].

4.1 A Specification

Design a Z specification for a system to enable a sea
port authority to keep track of oil tankers arriving
and docking at its berths. If a tanker arrives, and
there is an open berth, it is allocated to the tanker,
else the tanker joins the back of a queue, waiting to
be berthed. Information to be kept include the berths

maintained by the port authority, all tankers known
to the authority, a queue of all tankers waiting to be
berthed and a record of which tanker occupies which
berth.

The following specific requirements are inferred:

(1) A tanker cannot simultaneously be in the
queue and in a berth.

(2) The tankers queueing will all be different.

(3) A tanker will queue only if all the berths are
full.

(4) The tankers occupying berths will all be differ-
ent.

(5) Two tankers cannot occupy the same berth.

The first step in constructing a Z specification is
to identify the data types that are involved in the
spec. These are called the basic types and two such
types may be inferred from the above requirements
definition:

[Tanker ,Berth]

Note that it is customary in Z to use singular deno-
tations for sets. Next the state of the system is spec-
ified, in essence showing what the system contains
and what its prevailing properties are. The state is
indicated by Oil Tanker Control below.(The num-
bers in brackets label the formal counterparts of the
informal requirements (1) to (5) above).)



44 Research Article — SACJ, No. 45., July 2010

Oil tanker control
berths : PBerth
known : PTanker
waiting : seqTanker
docked : Tanker 7� Berth (4), (5)

ranwaiting ∩ dom docked = ∅ (1)
#waiting = #(ranwaiting) (2)
#waiting > 0⇒ (berths = ran docked) (3)
ran docked ⊆ berths
ranwaiting ∪ dom docked ⊆ known

Schema Oil tanker control defines four state com-
ponents, namely, berths, known, waiting (a se-
quence) and docked (a partial injective function).
These represent respectively the set of all berths
at the port authority, the set of all tankers that
are known to the port authority, the set of all
tankers waiting to be berthed and the set of all
(tanker , berth) pairs for tankers already berthed.
The symbol P denotes a set-theoretic powerset. The
conditions below the short dividing line represent
the state invariant.

Observe that every state component (e.g.
berths) is typed, hence the FHB typing mechanism
is captured during the specification phase already.
However, Z as a specification tool is different from
the Floyd-Hoare-Baber style presented in Section 2,
since its notation employs set theory and first-order
logic rather than programming constructs. Z deals
with preconditions and postconditions but not the
programs, since these have not been designed yet.
In this sense, Z may be viewed as a “front end” to
FHB logic, which is used either to design programs
satisfying the Z specification or to verify that given
programs satisfy the Z spec.

A successful arrival of a tanker at the port is
captured by schema Arrive:

Arrive
∆Oil tanker control
tanker? : Tanker
report ! : Report

(ran docked ̸= berths ∧
(∃ b)(b ∈ berths ∧
b /∈ ran docked ∧
docked ′ = docked ⊕ {tanker? 7→ b}) ∧

waiting ′ = waiting ∧
known ′ = known ∧
report ! = OK )
∨

(ran docked = berths ∧
waiting ′ = waiting a ⟨tanker?⟩ ∧
docked ′ = docked ∧
known ′ = known ∧
report ! = wait)

The tanker that arrives is denoted by tanker?. ∆
indicates that, since a tanker arrives at the port
there is a possible change in the state. In Z a prime
(′) denotes the value of a variable after an opera-
tion. The symbol ⊕ is Z’s overriding operator —
it replaces tuples in a relation or a function where
the first coordinate matches the coordinate of the
overriding tuple. Concatenation of sequences is in-
dicated by a.

The first disjunct inside the predicate part spec-
ifies what happens when a tanker arrives and there
is at least one free berth. The berth is allocated
to the tanker. The second disjunct specifies what
happens if there is no free berth for the newly ar-
rived tanker — the tanker is added to the back of
a waiting queue. Note that for the purposes of this
specification, Arrive does not specify any error con-
ditions. Schemas defining error conditions may be
specified separately and can be combined with the
other schemas using the schema calculus [27].

Next we show how an attempt at discharging a
proof obligation reveals an omission in the specifi-
cation.

4.2 The Utility of Proof

Recall that the state of the system is given by
Oil Tanker Control above. Part of the invariant
of the after state resulting from operation Arrive
is:

ranwaiting ′ ∪ dom docked ′ ⊆ known ′ (3)

A proof of the above property would confirm that
Arrive preserves part of the system invariant.

Suppose the first disjunct of Arrive holds, i.e.,
ran docked ̸= berths, meaning there is a berth
available when a new tanker arrives. Discharging
(3) reduces to proving the following:

(1) ranwaiting ′ ⊆ known ′

(2) dom docked ′ ⊆ known ′

Case (1) holds, since:

if ranwaiting ⊆ known [before state invariant]

then ranwaiting ′ ⊆ known [waiting ′ = waiting ]

i.e. ranwaiting ′ ⊆ known ′ [known ′ = known]

Case (2) however reveals a problem:

dom docked ′

= dom (docked ⊕ {tanker? 7→ b})
[∃ b ∈ (berths − ran docked)]

= dom docked ∪ dom{tanker? 7→ b} [law of ⊕]

Considering the 1st operand of the above union:

dom docked ⊆ known [invariant before state]
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i.e. dom docked ⊆ known ′ [known ′ = known]

The last part to prove is:

dom{tanker? 7→ b} ⊆ known ′

i.e. {tanker?} ⊆ known ′ [definition of dom]

i.e. tanker? ∈ known ′

It follows that for tanker? to be an element of
known ′, the precondition of Arrive has to be aug-
mented with tanker? ∈ known, i.e. the precondi-
tion has to be strengthened.

Further investigation reveals that the precon-
dition needs to be strengthened even more, since
it has to provide for the case that a newly arrived
tanker must not already be queued or docked. Such
details would form part of a more robust version of
Arrive.

This exercise reveals a very important benefit
of a formal specification and a formal-methods ap-
proach, leading to our second observation:

• Observation #2 : A formal-methods approach
may facilitate the discovery of errors in the
specification, e.g. weak preconditions to oper-
ations. This could be vital to FHB verification
procedures during later phases of the SDLC.

4.3 Is it Worth the Effort?

The above proof obligation was discharged on paper
through sheer human effort. Fortunately there are
automated reasoning assistants available to facili-
tate proofs like the above. In fact, most resolution-
based reasoners would successfully discharge the
above proof obligation (provided of course the pre-
condition has been sufficiently strengthened). For
example, the Otter reasoner written by William C.
McCune [28] has little difficulty in finding a proof
of the above property.

Much research went into the development of au-
tomated or at least semi-automated reasoners over
the past couple of decades. In Section 9, an exam-
ple is presented of a proof obligation that humans
tend to have difficulty with, simply because of over-
whelming mathematical notation. The proof turns
out to be easy, however, for a reasoning assistant.
The opposite may also occur. Often a theorem that
is easily proven by a trained mathematician is hard
for a reasoner. Example 4 in Section 7 presents such
a problem.

The following section briefly introduces an early
reasoner and it is shown how time consuming it was
to prove a simple property. Thereafter some of the
advances made over the past couple of decades in
the area of automated reasoning are considered. In
particular the utility of heuristic reasoning is illus-
trated.

5 EARLY REASONERS

The paper by Woodrow (Woody) Bledsoe in the
collection compiled by Jörg Siekmann and Gra-
ham Wrightson [29] gives an account of an early
theorem-proving program called PROVER. The
prover would divide a problem into subproblems
through two routines called SPLIT (for general
mathematical problems) and REDUCE (for prob-
lems in set theory). The subproblems were then
passed on to a resolution procedure to perform the
necessary proofs.

The divide-and-conquer approach was very nec-
essary, as Bledsoe wrote: “Resolution, when used,
is relegated to the job it does best, proving rela-
tively easy assertions”. The capabilities of these
early provers were limited, as pointed out again by
Bledsoe: “But this ability [dividing a problem into
subproblems], which is really an overall planning
capacity, is still severely limited”.

An example of the operation of the split and
reduce routines is given below.

Example 2

Suppose a specifier wishes to prove (x ∈ (A∪B)→
P) where A, B and P have been defined before. The
reduce routine would rewrite the proof obligation
as ((x ∈ A ∨ x ∈ B) → P) whereafter SPLIT
would divide it into two subproblems (x ∈ A →
P) and (x ∈ B → P). The resolution procedure
would subsequently attempt to refute each of the
two subproblems.

If each of the proof attempts (x ∈ A→ P) and
(x ∈ B → P) yields a proof, the original conjecture
(x ∈ (A ∪ B) → P) holds. If either of the indi-
vidual proof attempts fails to produce a proof, the
combined conjecture cannot be inferred.

6 ADVANCES MADE BY AUTOMATED
REASONERS

Resolution-based reasoners made steady progress
since the 1980s. The OTTER (Organised Theorem-
proving Techniques for Effective Research) theorem
prover [30, 31] is one of the successes in this area. I
have used this reasoner extensively (OTTER eas-
ily discharges the proof obligation in Example 2
above), and so has one of the founders of Auto-
mated Reasoning, Larry Wos [31]. In fact, a vari-
ant of OTTER called EQP was used by its author
(McCune) to discharge a longstanding open conjec-
ture, namely, that Robbins Algebras are boolean
algebras [32]. The automated proof of this famous
conjecture made the front pages of national news-
papers worldwide [33], leading to our third obser-
vation:
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• Observation #3 : Automated reasoning assis-
tants may perform tasks that humans fail to
achieve.

7 CHALLENGES OF SET-THEORETIC
PROOFS

The fact that Z is based on set theory and first-
order logic brings about significant challenges when
one tries to reason about the properties of such
specifications. Set theory is highly hierarchical,
since an object (a set) at a very fine level of gran-
ularity may be an element of another (coarser) ob-
ject, which may in turn be a member of another,
even coarser object. Iterations through these levels
often give rise to much activity and the generation
of much irrelevant information [25]. If one, there-
fore, embarks on the use of an automated reasoner
to prove properties of these set-theoretic specifi-
cations, then one quickly encounters a number of
time- and space complexity problems [34, 35, 25].

A reasoner should avoid ‘opening up’ every set-
theoretic definition so that inferences can be made
at the appropriate level. Some definitions must,
however, be expanded. A key technique would be
to layer the deductions and to identify suitable oc-
casions for crossing from one layer to another. The
following example serves as an illustration.

Example 3

Consider the proof obligation:

A ⊆ B → P(A) ⊆ P(B) (4)

An automated reasoner attempting to prove (4)
should stay at the first level of powersets, e.g. P(A)
and not attempt to move to any 2nd or 3rd lev-
els, e.g. PP(A) or PPP(A). Humans readily avoid
such pitfalls but an automated reasoner cannot eas-
ily make such inferences.

Despite many theoretical advances, set theory
pose demanding challenges to automated reason-
ing programs [34, 35, 25]. These advances include
hyperresolution [36], set-of-support strategy [37],
paramodulation [38], resonance [39] and the hot-list
strategy [40] to name just a few.

There is, however, a further technique that is
rather useful, namely, the use of set-theoretic rea-
soning heuristics discussed below.

7.1 Heuristic Reasoning

It is generally recognised that heuristics would play
an important role in launching an attack on the
complexities of set theory, thereby increasing the
success rate of an automated reasoner [33]. An il-
lustration of one of these heuristics from [25] and

[22] in reasoning about mathematical set theory is
given in Example 4. All the proof attempts re-
ported on in the rest of this paper were done on
a 2.2 GHz Dual Core machine with 1GB RAM and
a clock speed of 800MHz.

Example 4

Suppose one has to prove:

P{0, 1} = {∅, {0}, {1}, {0, 1}} (5)

When writing the contents of sets in list notation,
e.g. the contents of the above set on the right-hand
side, one naturally tends to define these sets using
one or more levels of indirection by moving from
the various elements to a symbol representing the
collection of those elements. Therefore, we rewrite
the above set-theoretic equality to make the rele-
vant constructions explicit, i.e.:

A = {0} ∧ B = {1} ∧ C = {0, 1} ∧ D = P(C ) ∧
E = {∅,A,B ,C} → D = E (6)

The OTTER reasoner fails to find any proof for
(6) in 30 minutes. Suppose the complexity of the
information is reduced by eliminating the symbol
E and listing its contents directly, i.e.

A = {0} ∧ B = {1} ∧ C = {0, 1} ∧
D = P(C )→ D = {∅,A,B ,C} (7)

With the above formulation OTTER finds a proof
in 4 minutes 5 seconds. This brought about an im-
portant heuristic proposed in [22], namely, to avoid
unnecessary levels of elementhood in set-theoretic
formulae by using the elements of sets directly.
Through the use of the divide-and-conquer tech-
nique, this last proof attempt may be streamlined
even further [22]. This example is therefore a case
where a human reasoner would easily verify the
truth of a formula but a machine experiences diffi-
culty with it.

The following observation emerges from the
above proof attempt:

• Observation #4 : The use of carefully selected
heuristics may facilitate automated reasoning,
a much needed activity in the process of con-
structing highly dependable software.

8 NEXT-GENERATION REASONERS

The Vampire theorem prover [41] is currently con-
sidered to be the benchmark for resolution-based
reasoners, owing to its consistent success at the
annual CADE ATP System Competitions (CASC)
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[42]. Details of recent CADE competitions ap-
pear at http://www.cs.miami.edu/∼tptp/CASC/.
Vampire also fails to find a proof of (6) in 30 min-
utes. For format (7), however, it finds a proof in
just 0.8 seconds [43].

The OTTER reasoner has since been de-
commissioned by McCune and replaced by
a more advanced reasoner, Prover9 [28] (see
also http://www.cs.unm.edu/∼mccune/prover9/).
Naturally an important project would be to mea-
sure the performance of Prover9 on the set-theoretic
proofs in [22].

The following section gives an example of a
proof attempt that a human may have difficulty
with, but which is easy for an automated reasoner.

9 NOTATIONAL COMPLEXITY

Suppose one has to show:

a ∈ B → P(a) ∈ PP
∪

(B) (8)

where
∪

represents set-theoretic distributive
union. For example,

∪
{{1, 2, 3}, {1, 4}, {2, 5, 6}} =

{1, 2, 3}∪{1, 4}∪{2, 5, 6} = {1, 2, 3, 4, 5, 6}. Despite
the notational complexity of (8), an automated rea-
soner (e.g. OTTER) has little difficulty in finding
a proof for it. Humans, however, may not find it
as easy. This in the opinion of the author portrays
the real power of formal methods in computing and
may very well lead to some alleviation of the con-
troversy surrounding formal methods, viz (compare
with Observation #3 above):

• Observation #5 : Automated reasoning assis-
tants may perform tasks that humans find
hard.

In looking through the proof attempts presented
in this paper one may be inclined to think that
an automated reasoner always finds symbolic proof
attempts (e.g. (8)) easy, but experiences difficulty
with enumerated (e.g. (5)) proof obligations. This
is however not the case, since OTTER fails to find
a direct proof of (for example) property (9) below.

A×
∪

(B) ⊆
∪
{A×X | X ∈ B} (9)

Some further heuristics are called for. Details ap-
pear in [22].

The following sections present some formal meth-
ods successes and consider possibilities for improv-
ing the chances of formal-methods practices being
accepted in industry.

10 SUCCESSES IN INDUSTRY

To date the use of formal methods resulted in a
number of industrial successes:

• Arguably the best documented example of the
use of Z is CICS (Customer Information Con-
trol System) [27]. Through the use of Z a
40% reduction in the number of errors usually
found was reported and it was estimated that a
huge saving in the total development cost was
achieved.

• The Inmos T800 Floating Point Transputer
system [44] was specified with Z and it also
resulted in cost savings and faster progress to-
wards the end product.

• The Paris Metro System [45] in France is an
impressive success story through the use of the
B-method [21]. B comprises a complete de-
velopment environment and has been devel-
oped from Z. For this system (supporting con-
ventional and driverless trains) approximately
100,000 lines of B specification was produced.
In the order of 28,000 proof obligations were
generated. During these proof attempts many
errors were found and corrected in the B spec.
A subsequent testing process did not find a sin-
gle error. Details appear in [46].

The following observation may be inferred from the
above (compare with Observation #1 in Section
2.2):

• Observation #6 : The use of formal methods
may result in cost savings of industrial software
projects.

11 THE FUTURE OF FORMAL METHODS

While the successes of the preceding case studies are
encouraging, much work remains before the general
use of formal methods may receive industrial accep-
tance. The following proposals to facilitate the in-
dustrialisation of formal methods may be distilled
from the literature, e.g. [45]:

(1) Incremental construction: It should be pos-
sible to build higher-level specifications from
provably correct lower-level ones. This prin-
ciple has generally been well mastered by tra-
ditional engineering disciplines, e.g. the con-
struction of a civil engineering artefact.

(2) Comparative analysis: It should be possible to
quickly construct and compare different speci-
fication techniques for a given problem, much
like the well-known prototyping paradigm.

(3) Integration: It ought to be possible to inte-
grate formal-methods components and tech-
niques into the existing SDLC (refer Appendix
A).

(4) High-level Tool support : More tool support for
the use of formal methods should be developed.
These tools should make suggestions, provide
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constructive feedback, etc. Reasoning about
specifications should be facilitated. The use of
heuristics together with an HCI-based library
of heuristic patterns should be useful in this
regard. Equally, the use of patterns to facil-
itate the reuse of previously generated proofs
should become possible.

(5) Lightweight techniques: The learning curve of
a formal method should be flattened. It is pos-
sible that many software engineers have been
turned off mathematics during any of their pri-
mary, secondary or tertiary education. Mea-
sures to change such attitudes ought be be de-
vised and implemented.

(6) Partial reasoning : It should be possible to
reason about partially constructed or partially
correct specifications, or in spite of errors still
present in the specification. An analogy would
be executing a program that is not yet fully
developed like in an interpreter-based environ-
ment.

(7) Measurable progress: It must be possible to
regularly measure the progress made by a for-
mal technique during development.

12 SUMMARY

An overview of formal software development from
the viewpoint of procedural verification techniques
and formal specifications was presented. The
Floyd-Hoare-Baber contributions to the verification
scene during the early years were presented and
these were linked with the specification phase of
the SDLC. The value of using the FHB techniques
in the construction of highly dependable software
was emphasised in relation to the Ariane 5 failure.

The importance of identifying and correcting
errors early on in development was acknowledged,
leading to the use of a formal specification. The
integration of a formal, abstract specification with
the FHB techniques has been proposed. One of the
advantages of using a formal specification is that
the software engineer may reason about the cor-
rectness of the specification, thereby improving the
spec.

Mathematical set theory on which many formal
specification languages are based, pose demand-
ing challenges to automated reasoners. The use
of heuristics may facilitate the task of discharging
proof obligations to increase confidence in the cor-
rectness of the specification. Humans and machines
have different theorem-proving strengths and may
usefully complement each other.

Throughout this paper observations were made
on the strength of the material presented. It is
hoped that these observations may go some dis-

tance in alleviating part of the controversy sur-
rounding the use of formal methods. Examples of
formal methods success stories in industry were also
presented.

The industrial use of formal methods neverthe-
less remains a contentious issue and guidelines that
may facilitate this process were given.
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APPENDIX A: A TRADITIONAL SOFTWARE DEVELOPMENT LIFE CYCLE  Requirements 

Specification 

Design 

Integration 

Maintenance 

Retirement 

Implementation 
(Coding) 

Floyd-Hoare techniques 
applied mainly at Coding and 
Integration phases 

The traditional, waterfall-like SDLC [16] is shown above. The ISO 12207 model contains a number of
additional processes, e.g. Architectural design, Qualification tests, etc. Details may be found in [47]. The
pure Floyd-Hoare verification techniques were applied closer to the end of the cycle. In this paper it is
suggested that the full FHB techniques be applied earlier in the cycle.
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APPENDIX B: FLOYD-HOARE-BABER VERIFICATION RULES

Skip Statement

{P} skip {P}

Assignment Axiom

{P [x := E ]} x := E {P}

Sequential Composition

{P}S {Q}, {Q}T {Q}
{P}S ,T {R}

Conditional Statement

{B∧P}S {Q},{¬B∧P}T {Q}
{P} ifB thenS elseT endif {Q}

Consequence Rule

P⇒P ′, {P ′}S {Q′},Q′⇒Q
{P}S {Q}

While Statement

{P∧B}S {P}
{P}whileB doS {¬B∧P}
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Figure 2: Cost of fixing errors during the SDLC (Bhandari et al. [15])

Later results on the effect of rectifying errors during the SDLC are depicted above. A similar trend as
before is observed, namely, the correction of errors as development progresses becomes increasingly more
expensive.


