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If you were plowing a field, which would you rather use? Two strong oxen or 1024 chickens?

Seymour Cray

The use of graphics processing units (GPUs) in general-purpose computation (GPGPU) is a growing
field. GPU instruction sets, while implementing a graphics pipeline, draw from a range of single
instruction multiple datastream (SIMD) architectures characteristic of the heyday of supercomputers.
Yet only one of these SIMD instruction sets has been of application on a wide enough range of
problems to survive the era when the full range of supercomputer design variants was being explored:
vector instructions.

Supercomputers covered a range of exotic designs such as hypercubes and the Connection
Machine (Fox, 1989). The latter is likely the source of the snide comment by Cray: it had thousands
of relatively low-speed CPUs (Tucker & Robertson, 1988). Since Cray won, why are we not basing our
ideas on his designs (Cray Inc., 2004), rather than those of the losers? The Top 500 supercomputer
list is dominated by general-purpose CPUs, and nothing like the Connection Machine that headed
the list in 1993 still exists1.

In other words: given the lessons of the supercomputer era, why do GPGPU programmers have
to grapple with the complexities of instruction sets that we know fit very few problems based on
prior experience of highly data-parallel machines of the 1980s? The answer is that a GPU is a highly
substitutable part: CPU designers are constrained by the code base out there, whereas a GPU only
needs new graphics drivers to exploit a new, exotic instruction set. This means that GPU designers
are not constrained from trying out new ideas, including instruction modes that fit the very narrow
niche of implementing a graphics pipeline. Because GPUs are a huge market, these devices with
exotic, highly parallel instruction sets offer an enticing opportunity for those seeking more speedup
than is available in any other comparatively low-cost part.

How successful is GPGPU programming? Speedups reported in the GPGPU literature vary widely
from less than 10 (Merrill & Grimshaw, 2010; Hughes & White, 2013) to over 100 (Krüger, Maitre,
Jiménez, Baumes & Collet, 2010). Let us take this as our target: a speedup of over a conventional
CPU of up to about 100 – while keeping in mind the need to implement a graphics pipeline.
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An architecture with 100 cores that uses a relatively accessible programming model should in
principle be competitive with all but the best cases for GPGPU, provided each core is reasonably
fast. If we stick with a proven model, a shared-memory multiprocessor with a fast interconnect is
amenable to a wide range of programming problems including highly parallel problems, multitasking
workloads and moderately parallel problems (possibly using a subset of the CPUs). A reasonably
large on-chip SRAM to mask the speed gap of going off chip will also be necessary to sustain most
workloads (Machanick, Salverda & Pompe, 1998). If we add in vector instructions, the design can
still be kept relatively simple, making it possible to scale to this number of cores within the budget
of today’s high-end GPUs (7-billion transistors surpassed in 2012 (NVIDIA, 2012; Chen, 2013)).

Communication is an issue with anything but a small number of processors. Over about 64 cores,
uniform-latency interconnects become impractical; something closer to a traditional network with
variable latency becomes a better design compromise (Sewell et al., 2012). Network-on-chip (NoC)
(Hemani et al., 2000; Goossens, Dielissen & Radulescu, 2005; Pande, Grecu, Jones, Ivanov & Saleh,
2005; Ogras & Marculescu, 2013; Ginosar & Chatha, 2014) can scale to the required number of
processors (Bjerregaard & Mahadevan, 2006).

Intel has explored part of the design space with the Larrabee architecture, which was based on
multiple in-order multiple-issue Pentium cores with limited extra extensions to support graphics
(Seiler et al., 2008). A design using a simpler RISC instruction set without the complexity of multiple
issue would make it possible to implement more cores with the same transistor count. Intel abandoned
the Larrabee strategy; they more recently have introduced the Xeon Phi multicore coprocessor, which
features a specialist instruction set including vector modes to support high-performance computing
(Heinecke et al., 2013). Unlike the Phi, the idea here is to implement a design that can also implement
a graphics pipeline. The Phi is based on Intel Atom (a low-power variant of the x86 architecture)
cores with a vector unit added to each.

Intel’s latest Knights Landing version of the Phi features up to 72 cores, indicating that a design
of the scale contemplated here is feasible (Gardner, 2014).

What does a GPU pipeline do? In its original form it was a static sequence of stages; recent
designs are more programmable. The major stages are (Luebke & Humphreys, 2007):

• input – usually in the form of primitives, e.g., OpenGL, that provide vertices, which the pipeline
assembles into triangles

• model transformations – produces a stream of triangles in a unified coordinate system

• lighting – the triangles are coloured based on the lighting of the scene; this stage requires
vector computations

• camera simulation – the GPU projects the scene onto the film plane of a virtual camera,
producing a stream of triangles in screen coordinates; vector computation is again needed here

• rasterization – triangles that overlap screen pixels are calculated, and this is a highly parallel
stage since each pixel can be handled independently

http://dx.doi.org/10.18489/sacj.v0i57.347

http://dx.doi.org/10.18489/sacj.v0i57.347


Machanick: How General-Purpose can a GPU be? 115

• texturing – images called textures are added to the near-final pixel colouring; this is also a
highly parallel step and has a very regular memory access pattern

• hidden surfaces – pixels obscured by others have to be discarded, using a depth buffer that
records how close a pixel is to the viewer and hence whether it can overwrite another pixel in
the same spot on the screen

The main research question to be answered is whether the proposed design can implement a
competitive graphics pipeline, with roughly the same component count as a GPU. If the graphics
pipeline can be implemented with modes of parallelism no more exotic than a large number of
conventional cores possibly with vector units, GPGPU becomes truly general-purpose. The challenge
is to implement the highly parallel stages of the graphics pipeline and the aspects that lend themselves
to specialist memory without using features that are difficult to apply to general programming.

Further, if we can get this right, the new design can leverage the key advantage of a GPU: the
fact that it is a highly substitutable part in a large market. By contrast with the Xeon Phi (which only
targets the compute-intensive market), provided the design can gain a significant foothold in the
graphics market, it will achieve economies of scale that will make it viable for smaller niches like
supercomputers.

Narrowing the research question to testing viability of a graphics pipeline with such a design
avoids some of the harder questions, such as implementing a memory hierarchy for general workloads.
The value in starting with the graphics pipeline is simplification of simulation studies – rather than
simulating a workload with millions or billions of instruction executions spread over of the order of
100 cores, the simulation study only needs to show that the graphics pipeline can be implemented
with typical operations within required latency targets.

Simulation is possible with existing research simulators, such as Gem5, which includes a capability
of simulating a network with accurate timing (Binkert et al., 2011).

Finally, to show viability, enough of the logic needs to be designed to show that the proposed
design is competitive in terms of component count with a comparable GPU. Part of this can be done
by estimating CPU component count from previous designs of similar complexity, such as early RISC
designs. For example, the MIPS R4000 is a single-issue design with a full 64-bit instruction set,
and it required only 1.2-million transistors for the CPU and first-level cache (Mirapuri, Woodacre &
Vasseghi, 1992).
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