
Research Article – SACJ No. 48, June 2012   
 

 

31 

A Study of Evolutionary Algorithm Selection 

Hyper-Heuristics for the One-Dimensional Bin-

Packing Problem 

Nelishia Pillay1  

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, South Africa. 

ABSTRACT 

Hyper-heuristics are aimed at providing a generalized solution to optimization problems rather than producing the best result for one or 
more problem instances. This paper examines the use of evolutionary algorithm (EA) selection hyper-heuristics to solve the offline 
one-dimensional bin-packing problem. Two EA hyper-heuristics are evaluated. The first (EA-HH1) searches a heuristic space of 
combinations of low-level construction heuristics for bin selection. The second (EA-HH2) explores a space of combinations of both 
item selection and bin selection heuristic combinations. These EA hyper-heuristics use tournament selection to choose parents, and 
mutation and crossover with hill-climbing to create the offspring of each generation. The performance of the hyper-heuristics is 
compared to that of each of the low-level heuristics applied independently to solve this problem. Furthermore, the performance of both 
hyper-heuristics is also compared.  The comparisons revealed that hyper-heuristics in general perform better than any single low-level 
construction heuristic in solving the problem.  In addition to this it was found that the hyper-heuristic exploring a space of both item 
selection and bin selection heuristic combinations is more effective than the hyper-heuristic searching a space of just bin selection 
heuristic combinations. The performance of this hyper-heuristic was found to be comparable to other methods applied to the same 
benchmark sets of problems.   
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1. INTRODUCTION 
The one-dimensional bin-packing problem requires a set of 
items to be stored in bins, each having the same capacity, with a 
minimum number of bins being used. This problem has 
numerous real-world applications including machine 
scheduling, LSVI chip layout, one-dimensional stock cutting, 
cable-length optimization, and processor task allocation. Hence, 
this problem has been fairly well-studied and various methods 
such as genetic algorithms, tabu search, and simulated 
annealing have been applied to this domain. These methods 
have generally focused on producing the best result for one or 
more problems in a benchmark problem set. Hyper-heuristics 
on the other hand aim at providing generalized solutions to 
problems instead of producing best results [18]. The advantage 
of this is that solutions are found for a set of problems instead 
of the best solution for one or two problems in the set.  This 
paper examines the use of constructive selection hyper-
heuristics to solve the offline one-dimensional bin-packing 
problem. The hyper-heuristics presented in this paper employ 
an evolutionary algorithm to explore a space of low-level 

construction heuristic combinations. Two hyper-heuristics, one 
that searches a heuristic space of bin selection heuristic 
combinations (EA-HH1), and a second that explores a heuristic 
space of both item and bin selection heuristic combinations 
(EA-HH2), are examined. To the best of the author’s 
knowledge, item selection heuristics have not previously been 
defined for this domain. The performance of both hyper-
heuristics is compared in solving problems from the 
Faulkenauer and Scholl benchmark sets. The solutions produced 
by both hyper-heuristics are also compared to those obtained by 
using each low-level heuristic independently in solving these 
problems.  

The following section presents the one-dimensional bin-
packing problem. Hyper-heuristics is introduced in section 3 
and an overview of previous work applying hyper-heuristics to 
solve the one-dimensional bin-packing problem is provided. 
Section 4 describes the evolutionary algorithm hyper-heuristics 
implemented to solve this problem and section 5 specifies the 
experimental setup used to evaluate the hyper-heuristics. The 
performance of the hyper-heuristics in solving the one-
dimensional bin-packing problem is discussed in section 6.  The 
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findings of this study are summarized in section 7 together with 
future extensions of the research presented. 

2. THE ONE-DIMENSIONAL BIN-
PACKING PROBLEM 
The one-dimensional bin-packing problem (BPP) involves 
placing a set of items of different sizes into one or more bins.  
All the bins have the same capacity and the main aim of the 
problem is to minimize the number of bins used to store all the 
items. There are two versions of the bin-packing problem, 
namely, the offline BPP and the online BPP [21]. In the offline 
version the size of all the items is known before the placement 
process begins.  In the online version the size of each item is 
only known when it is being placed. Initially, sequential 
construction methods employing low-level construction 
heuristics were used to find solutions to this problem. This led 
to the derivation of a number of low-level construction 
heuristics for this domain including first-fit [9], best-fit [3], 
next-fit [13], worst-fit [6], better-fit [3] and Djang and Finch2 
[19] heuristics. These heuristics are bin selection heuristics and 
are used to determine which bin to place the next item in. 
Variations of these heuristics have also been implemented in 
which the items to be stored are sorted in decreasing order 
according to size and allocated accordingly, e.g. first-fit 
decreasing and best-fit decreasing [21]. 

Various methods have been applied to solving the one-
dimensional bin-packing problem. One of the earliest 
contributions to this field is the grouping genetic algorithm 
developed by Faulkenauer [10] to solve the one-dimensional 
bin-packing problem. The GA employs the steady-state control 
model and uses the tournament selection method with a 
tournament size of two to select parents. Instead of evolving a 
population over a set number of generations, the steady-state 
control model replaces poorly performing individuals with the 
newly created offspring. The fitness of each individual is a 
function of the fullness of each bin, the maximum capacity of 
the bin and the number of bins used to store the items. The 
mutation, crossover and inversion operators are used to create 
offspring. Jing et al. [12] apply a genetic algorithm in 
combination with the next-fit heuristic to solve a variation of 
the one-dimensional bin-packing problem in which each bin has 
a different capacity. The fitness function is the same as that 
used in the Faulkenauer study [10]. Crossover and mutation are 
used to create offspring. Ulker et al. [22] also use a grouping 
genetic algorithm, employing linear linkage encoding for 
representation purposes, to obtain solutions to the one-
dimensional BPP.  An initial population of potential solutions is 
created using the first-fit heuristic. Tournament selection is used 
to choose parents.  Smart mutation and crossover are applied to 
the chosen parents to create the offspring of each generation. 
The fitness of each individual is calculated using the evaluation 
function proposed by Faulkenauer [10]. The method was 
successfully applied to two of the Faulkenauer data sets. 

Kasap et al. [14] use a neural network together with the first 
fit decreasing heuristic to solve one-dimensional bin-packing 
problems from the Scholl benchmark set. The bin-packing 
problem is modeled as a neural network. The neural network 
has a dummy and output node layer and between both these 
layers is an item layer and bin layer. This approach was found 
to find the minimum number of bins for a majority of the 
problems. 
                                                                    
2 This refers to a heuristic algorithm developed by Djang and Finch [19] 

which first allocates items, with the largest items receiving priority, 
until three-quarters of the bin is full.  At this stage different 
combinations of items are examined to fill the bin. 

 Flezar et al. [11] firstly apply a minimum bin slack heuristic 
to create an initial solution to the problem.  This solution is then 
optimized using variable neighbourhood search.  

Lewis [15] presents the bin-packing problem as a minimum 
grouping problem and proposes a hill-climbing grouping 
algorithm to solve this problem. The algorithm firstly creates an 
initial solution using the first-fit descending heuristic. The hill-
climbing algorithm improves this initial solution by performing 
swaps between bins. The algorithm was successfully applied to 
the set of Faulkenauer benchmark problems.  

Loh et al. [16] uses a weight annealing approach, similar to 
simulated annealing, to solve the one-dimensional bin-packing 
problem. As with methods previously described an initial 
solution is created using the first-fit decreasing heuristic and 
then improved using weighted annealing. The method 
outperformed existing approaches applied to this problem.  

Valerio de Carvalho [23] represents the one-dimensional bin-
packing problem as a flow formulation model which a branch-
and-bound algorithm is applied to. A linear relaxation of the 
model is also examined. This method produced results 
comparable to other methods applied to the Faulkenauer 
problem set.  

Hybrid approaches have also been used to solve the one-
dimensional bin-packing problem. Alvim et al. [1] solve the 
one-dimensional BPP using a hybrid method incorporating the 
use of tabu search, lower bounding strategies and load 
distribution based on dominance. Kao et al. [13] take a hybrid 
approach, combining simulated annealing and genetic 
algorithms, to solve the one-dimensional BPP. The fitness of 
each potential solution was the inverse of the number of bins 
used and the known minimum for the problem instance. The 
approach was applied to ten problems with a maximum bin 
capacity of 1000 and item weights in the range 1 to 999.  This 
hybrid method produced competitive results when compared to 
the performance of the first-fit heuristic. Scoll et al. [21] present 
a hybrid approach, namely BISON, to solve the one-
dimensional bin-packing problem which combines a variation 
of the branch and bound algorithm MTRP with new bounds and 
dominance rules, tabu search and a depth-first search branch 
and bound method.  BISON was applied to three data sets and 
was found to outperform the standard MTRP in solving these 
problems. 

3. HYPER-HEURISTICS 
Most of the research aimed at solving combinatorial 
optimization problems has focused on developing methods that 
produce the best solutions for one or more problem instances of 
benchmark sets rather than providing a generalized solution to 
the problem. Hyper-heuristics have been developed with this in 
mind and focus on producing general solutions to problems 
instead of optimal solutions for a few problem instances [5]. 
This is achieved by exploring a heuristic space rather than a 
solution space. The heuristic space is comprised of low-level 
heuristics or combinations of heuristics. These heuristics can be 
constructive, i.e. they are used in the construction of a solution 
to the problem, or perturbative, i.e. they represent moves that 
improve an initially created potential solution to the problem 
[5]. Construction heuristics are domain dependent, e.g. the first-
fit, best-fit, next-fit and worst-fit heuristics for the one-
dimensional bin-packing problem and the largest degree, largest 
weighted degree, largest enrolment and saturation degree for 
university course and examination timetabling problems [9, 18]. 
Hyper-heuristics employ methodologies such as variable 
neighbourhood search, tabu search and genetic programming to 
either select a low-level heuristic or combination of heuristics 
or generate a new low-level heuristic for a problem domain. 
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Thus, in addition to being either constructive or perturbative, 
hyper-heuristics are also classified as selection or generation 
hyper-heuristics [8]. The study presented in this paper 
investigates the use of construction, selection hyper-heuristics 
for solving the one-dimensional bin-packing problem. 

There has not been much research into the use of 
construction, selection hyper-heuristics for the one-dimensional 
bin-packing problem. There are two studies that examine 
construction, selection hyper-heuristics for this domain. The 
first study uses a learner classifier system to generate condition-
action rules for heuristic selection [20]. The rules use four low-
level heuristics, namely, first-fit decreasing, next-fit decreasing, 
the Djang and Finch heuristic with 3 items and the Djang and 
Finch heuristic with 5 items. The only study implementing a 
genetic algorithm to explore a heuristic space is that conducted 
by Ross et al. [19].  Each chromosome is a variable length 
string comprised of numbers representing the size of items still 
to be placed and the heuristic to choose a bin i.e. first-fit 
decreasing, next-fit decreasing or the Djang and Finch heuristic. 
The first five numbers represent the proportion of huge, large, 
medium and small items still to be packed and the number of 
remaining items to be packed. The sixth number represents the 
heuristic. The GA implements the steady-state control model.  
Tournament selection with a tournament size of 2 is used to 
choose parents which two crossover and three mutation 
operators are applied to, to create the next generation. The 
fitness of each chromosome is a measure of the performance of 
the chromosome in solving a set of five problems compared to 
using the individual heuristics to solve the problems.   

There has been research conducted into using hyper-
heuristics, other than construction, selection hyper-heuristics, to 
solve the one-dimensional bin-packing problem. For 
completeness these are included. Burke et al. [6,7] have 
implemented a generative hyper-heuristic to induce low-level 
construction heuristics for this problem. The hyper-heuristic 
uses genetic programming to evolve construction heuristics. 
Each element of the population is a parse-tree representing the 
heuristic and is comprised of elements from the function set and 
terminal set.  The function set includes addition, multiplication, 
protected division and the absolute value operators. The 
terminal set consists of constants representing the 
characteristics of the problem, namely, the fullness of the bin, 
i.e. the sum of the size of the items in the bin, the size of the 
next item to place and bin capacity. The fitness of each parse 
tree was calculated to be the difference of the number of bins 
used and the ratio of the sum of the size of each piece in a bin 
divided by the total bin capacity.  The fittest heuristic evolved 
by the GP system was found to perform the same function as 
the first-fit heuristic.   

Some research has also been conducted into the use of 
selection perturbative hyper-heuristics to solve the one-
dimensional bin-packing problem. Bai et al. [2] have used a 
simulated annealing selection hyper-heuristic to explore the 
heuristic space comprised of perturbative low-level bin-packing 
heuristics, e.g. shift, split, exchange.  The hyper-heuristic uses 
stochastic selection strategies in combination with short-term 
memory. Burke et al. [4] have proposed a perturbative hyper-
heuristic framework, namely, Hyperflex. Initial solutions to the 
bin-packing problem are created using the first-fit heuristic and 
are improved using the perturbative hyper-heuristic. The moves 
or perturbative heuristics used by the hyper-heuristic include 
two mutational heuristics, two create and ruin heuristics, a 
repack with best-fit heuristic and three local search heuristics.   

It is evident from the survey presented in this section that 
there has not been much research conducted into the use of 
construction, selection hyper-heuristics to solve this problem. 
The only study using evolutionary algorithms to explore a 

heuristic space is that conducted by Ross et al. [19] in which a 
genetic algorithm is used to search a space of chromosomes 
where each chromosome is a string of numbers representing the 
number of items still to be placed, the sizes of these items and 
the bin selection heuristic. A different approach, which is 
similar to the construction hyper-heuristics implemented by Els 
et al. [8] and Pillay [18] for the university course and 
examination timetabling problems respectively, is taken in this 
study. The following section describes these construction, 
selection hyper-heuristics implemented. 

4. THE EA HYPER-HEURISTICS 
This section describes the hyper-heuristics used in this study to 
solve the one-dimensional bin-packing problem. In the first EA 
hyper-heuristic (EA-HH1), each chromosome is a string 
consisting of letters representing the low-level construction 
heuristics that will be used to decide which bin to place the next 
item in when creating a solution. This study differs from that 
conducted by Ross et al. [19, 20] in that item selection 
heuristics are introduced and the study investigates the use of a 
hyper-heuristic optimizing a space of combinations of both item 
and bin selection heuristics (EA-HH2) in solving the one-
dimensional BPP.  

The evolutionary algorithm implemented by both EA hyper-
heuristics employs the generational control model and is 
depicted in Figure 1. Note that the evolutionary process is 
terminated when a solution with a number of bins equal to the 
minimum is found. A minimum is specified for each problem in 
both the Faulkenauer and Scholl benchmark sets.  For example,  
for the Faulkenauer problems this is a theoretical minimum 
calculated to be the total capacity required divided by the 
capacity of a single bin. The minimum specified for each 
problem in the benchmark set is used as a termination criterion. 
The algorithm is given a preset number of generations within 
which to achieve this. Sections 4.1 and 4.2 describe processes 
of initial population generation, evaluation, selection, and the 
genetic operators for EA-HH1 and EA-HH2 respectively.  

 
 
 
 
 
 
 
 
 
 
 

 

 

4.1 EA-HH1 

This section presents the first hyper-heuristic implemented 
which searches a space of combinations of low-level bin 
selection heuristics such as first-fit and best-fit. Two versions of 
this hyper-heuristic, namely, EA-HH11 and EA-HH12, have 
been implemented. EA-HH11 uses the availability index to 
determine which item to store next and EA-HH12 uses the 
saturation degree to select the next item. The availability and 
saturation degree heuristics are defined in section 4.2.1. These 
heuristics are used instead of storing items in decreasing order 
of size. 

Create an initial population 
Repeat 
   Evaluate the population. 
   Select parents for the next generation. 
   Apply mutation and crossover to the chosen 
   parents to create offspring. 
 
Until a solution with the minimum number of bins is 
found OR the generation limit is reached.  

Figure 1. Evolutionary algorithm implemented by  
EA-HH1 and EA-HH2 
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4.1.1 Initial population generation 

Each element of the population is a variable length string 
consisting of characters representing the low-level bin selection 
heuristics. The following bin selection heuristics were used as 
these were the most commonly cited in the literature: 
 
• First-fit (f) –The item to be placed is allocated to the first 

bin that has sufficient space for it to fit into. 
• Best-fit (b) – The item is placed into the bin that will have 

the smallest residual space once the item is placed into it. 
• Next-fit (n) – If the item does not fit into the current bin, 

i.e. the last bin to be created, it is placed in a new bin. 
• Worst-fit (w) – The item to be placed is allocated to the bin 

with the largest residual space once the item is placed into 
it. 

 
Trial runs indicated that the “decreasing” [21] variation of 

these heuristics performed better than the standard heuristics 
and thus this variation was implemented. The decreasing 
version of these heuristics requires that items be sorted in 
decreasing order of size and be allocated accordingly. 

Duplicate chromosomes are not permitted in the initial 
population and thus the initial population has a variation of 
100%. An example of an element of the population is bbfnw.  
Using this chromosome to create a solution to the problem, the 
first two items will be allocated to a bin chosen using the best-
first heuristic, the third item using the first-fit heuristic, the 
fourth item the next-fit heuristic and the worst-fit heuristic will 
be used to choose a bin for the last item. The length of the 
chromosomes is variable and chosen to be between the range of 
one and the maximum number of items to be scheduled. If the 
length of the chromosome is smaller than the number of items 
to be stored, the heuristics are reapplied from the beginning of 
the string. An explanation of how the fitness of each 
chromosome is calculated is explained in the following section. 

4.1.2 Fitness evaluation and selection 

The fitness of each chromosome is determined by using it to 
solve the one-dimensional bin-packing problem for the 
particular problem instance. As described in the previous 
section each chromosome is used to decide which heuristic to 
use when selecting a bin to place an item into. The fitness of a 
chromosome is a function of the number of bins used to store 
the items in the solution.  Previous studies [10, 22] have found 
that using the number of bins as a fitness measure is not 
effective as the resulting fitness landscape contains numerous 
local optima that use one more than the optimal number of bins. 
Faulkenauer et al. [10] proposed the following evaluation 
function which is generally used to assess solutions for the one-
dimensional BPP: 

 
 
 
 
where: N - is the number of bins  
          C – maximum capacity of a bin 
 Fi – is the fullness of the bin 
 
The fullness of a bin is the sum of the sizes of the items in 

the bin. This evaluation function is used to calculate the fitness 
of the chromosomes.  A fitter individual has a higher fitness 
value, i.e. the fitness is maximized. 

The tournament selection method is used to select parents to 
apply genetic operators to. Individuals are randomly chosen 
from the population to form a tournament. The most appropriate 
size of the tournament is problem dependant. An individual may 

be chosen more than once to be an element of the same 
tournament. The fittest element of the tournament is deemed the 
winner and becomes a parent of the next generation. Selection 
is with replacement so an individual can be chosen as a parent 
more than once.  

4.1.3 Genetic operators 

The mutation and crossover operators are used to create the 
offspring of each generation.  

The mutation operator randomly replaces a low-level 
heuristic in a copy of the parent with a newly created heuristic 
substring. The length of the substring is randomly chosen to be 
between 1 and the length of the parent and is created using the 
same method used to create each element of the initial 
population. An example is illustrated in Figure 2. 

 
 
 
 
 
 
 
 
The mutation point is randomly chosen to be 4.  The 

substring rooted at this point, namely, n is replaced with the 
newly created substring. Note that the newly created substring 
could have been an n which reduces the mutation operator to 
reproduction. A version of this operator incorporating hill-
climbing was also tested. The hill-climbing mutation only 
accepts mutations of the parent that are fitter than the parent. If 
the first mutation operation does not result in a fitter offspring, 
the offspring is discarded and the process is repeated until a 
fitter offspring is produced.  A limit is set on the number of 
attempts at producing a fitter offspring in order to prevent 
convergence to a local optimum and high runtimes. A value of 
30 was found to be sufficient for the study.  If a fitter offspring 
is not found within the 30 attempts, the offspring created on the 
thirtieth attempt is returned as the result of the mutation. In trial 
runs conducted the hill-climbing mutation operator performed 
better than the standard mutation operator and thus it was 
decided to use the mutation operator incorporating hill-
climbing. 

The crossover operator is applied to two parents chosen 
using tournament selection. Crossover points are randomly 
selected in copies of both the parents and the fragments divided 
by the crossover points are swapped.  An example is illustrated 
in Figure 3. 

 
 
 
 
 
 
 
The crossover point is randomly chosen to be 3 in the first 

parent and 2 in the second parent. Copies of the parents are 
“crossed over” at these points producing two offspring.  
Previous work with EA hyper-heuristics of this type has 
revealed that returning the fitter of the two offspring is more 
effective than returning both offspring [17]. The same approach 
is adopted in this study and the crossover operator returns one 
offspring.  As with the mutation operator, the use of hill-
climbing in the crossover operator was found to produce better 
results. In this case if the offspring is not fitter than both parents 
than the process is repeated.  Again, a limit was set on the 
number of attempts at producing a fitter offspring and a value of 
30 was also sufficient for crossover. 

Parent: wnfnb  
New substring: bbw  
Offspring: wnfbbwb 

Figure 2. An example of mutation 

Parent 1: bbnff  Parent 2: wbnfw 
Offspring 1: bbbnfw Offspring 2: wnff 

Figure 3. An example of crossover 
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4.2 EA-HH2 

This section describes the second hyper-heuristic which 
searches a space of combinations of both bin selection and item 
selection heuristics. 

4.2.1 Initial population generation 

In this case each chromosome is comprised of two strings.  The 
first string, the bin selection heuristic combination, is 
essentially the chromosome described in section 4.1.1, i.e. a 
string combining bin selection heuristics. Note that the standard 
bin selection heuristics are used for EA-HH2, and not the 
decreasing variation of these heuristics. The reason for this is 
that a heuristic is used to choose which item to store next. The 
second string, the item selection heuristic combination, in the 
chromosome is comprised of the following item selection 
heuristics for this purpose: 

 
• Largest item (l) – The item with the largest size is 

allocated next. 
• Availability degree (a) – The first item that can fit 

into an existing bin is allocated next. Here the aim is 
to fill existing bins first, before opening a new bin. 

• Saturation degree (s) – The item that has the fewest 
number of bins available that it will fit in, is given 
priority. Here an analogy is taken from the 
examination timetabling domain where the saturation 
degree of an examination defines the number of 
feasible periods in the timetable the examination can 
be scheduled in [17]. 

 
Both strings are of variable length and the length of each 

string is randomly chosen, independently of each other, to be in 
the range of 1 and the number of items to be stored. If the 
length of either string is less than the number of items to be 
allocated, the string is wrapped around, beginning at the first 
character in the string again, i.e. the heuristics are applied in 
order again beginning with the first heuristic in the string. As 
with EA-HH1 duplicates3 are not permitted in the initial 
population. An example of an element of the population is 
wnlbbf;aasll. A solution to the problem constructed using this 
chromosome will result in the first item being chosen using the 
availability degree heuristic and the bin that it will be stored in 
will be selected using the worst-fit heuristic. Similarly, the sixth 
item to be stored will be chosen using the availability degree 
heuristic (as the string will be wrapped over) and the bin will be 
chosen according to the first-fit heuristic. The fitness of each 
chromosome is determined by using it to solve the instance of 
the bin-packing problem. EA-HH2 uses the same fitness 
function and selection method as EA-HH1 (described in section 
4.1.2). The following subsection describes the genetic operators 
used by EA-HH2. 

4.2.2 Genetic operators 

Two mutation and crossover operators were implemented for 
use with EA-HH2. The first set of mutation and crossover 
operators extend the hill-climbing mutation and crossover 
operators implemented by EA-HH1 to randomly select whether 
to mutate/recombine the bin selection heuristic combination/s or 
the item selection heuristic combination/s. The second set of 
operators are also a variation of the EA-HH1 hill-climbing and 
mutation and crossover operators in which both the bin heuristic 

                                                                    
3 A chromosome is a duplicate of a second chromosome if both the 

strings in the chromosome, i.e. the bin selection heuristic combination 
and the item selection heuristic combination, are the same. 

selection combination/s and the item selection combination/s 
are mutated and recombined respectively.  In order to ascertain 
which operators are more effective, EA-HH2 will be tested with 
both the first set, will be referred to as EA-HH21, and the 
second set, EA-HH22, of operators. 

5. METHODOLOGY 
This section describes the experimental setup used to test the 
EA hyper-heuristics. The performance of the EA hyper-
heuristics is compared in solving 50 one-dimensional bin-
packing problems. The performance of these hyper-heuristics is 
also compared to that of each of the low-level heuristics applied 
independently to solve these problems. The first 20 problems 
are taken from the Faulkenauer benchmark set [10]. In all 20 of 
these problems 120 items, with the size of each item ranging 
from 20 to 100, must be stored in a minimum number of bins, 
each of which has a maximum capacity of 150. The remaining 
30 problems are from the Scholl benchmark set [21]. This range 
of problems was chosen to test the hyper-heuristics on problems 
of varying complexity. The characteristics of these problems are 
listed in Table 1. 
 

Table 1. Characteristics of problems from the Scholl 
benchmark set 

Problem No. of 
Items 

Bin 
capacity 

Range of 
size of items 

1 50 100 1-100 
2 50 100 20-100 
3 50 100 30-100 
4 50 120 1-100 
5 50 120 20-100 
6 50 120 30-100 
7 50 150 1-100 
8 50 150 20-100 
9 50 150 30-100 

10 100 100 1-100 
11 100 100 20-100 
12 100 100 30-100 
13 100 120 1-100 
14 100 120 20-100 
15 100 120 30-100 
16 100 150 1-100 
17 100 150 20-100 
18 100 150 30-100 
19 200 100 1-100 
20 200 100 20-100 
21 200 100 30-100 
22 200 120 1-100 
23 200 120 20-100 
24 200 120 30-100 
25 200 150 1-100 
26 200 150 20-100 
27 200 150 30-100 
28 500 100 1-100 
29 500 100 20-100 
30 500 100 30-100 
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Table 2. Parameter values used by EA-HH1 and EA-HH2 
Parameter Value 
Population size 500 
Number of generations 50 
Tournament size 10 
Crossover rate 0.5 
Mutation rate 0.5 

 
The values of the genetic parameters used by both EA hyper-
heuristics are listed in Table 2. These values were determined 
empirically by performing trial runs. Population sizes of 100, 
500, 1000 were tested. A population size of 100 did not explore 
enough of the heuristic space, while a population of 1000 did 
not improve the performance of the EA hyper-heuristics. The 
evolutionary algorithm was found to converge within 50 
generations. Tournament sizes of 2, 4 and 10 were tested. A 
value of 10 produced the best results during trial runs.  

Trial runs were conducted with mutation and crossover rates 
in the range of 0 to 1, with 0.1 intervals. Creating half of each 
generation using mutation and the other half using crossover 
proved to be the most effective combination.  

The EA hyper-heuristics were written in Java using JDK 
1.6.0 and all simulations were run on an Intel Core 2 Duo 
processor with Windows XP. Due to the stochastic nature of 
evolutionary algorithms, 30 runs, each using a different seed for 
the random number generator, were performed for each EA 
hyper-heuristic for each problem. The performance of the 
hyper-heuristics are discussed in the following section. 

6. RESULTS AND DISCUSSION 
This section reports on the performance of the hyper-heuristics 
described in the previous section in solving the one-dimensional 
bin-packing problem. Section 6.1 examines the performance of 
a hyper-heuristic approach compared to using low-level 
heuristics in solving this problem.  A comparison of the two 
types of hyper-heuristics, namely, EA-HH1 and EA-HH2, is 
provided in section 6.2. Finally, section 6.3 compares the 
performance of the hyper-heuristics to methods producing the 
best results for the problems from both benchmark sets. 

6.1 Hyper-heuristics vs. low-level heuristics 

This section compares the performance of EA-HH1 with that of 
each of the heuristics applied independently to solve each of the 
50 problems. In the case where each heuristic is applied 
individually, the heuristic in question is used to select a bin for 
each item. The items to be allocated are sorted in descending 
order according to size and are stored in this order.  Figure 4 
shows the number of problems for which EA-HH1 and each of 
the low-level construction heuristics have produced solutions 

using the known minimum number of bins. It is evident from 
this bar chart that the EA-HH1 has performed better than the 
low-level construction heuristics, producing solutions with a 
minimum number of bins for 434 of the 50 problems while the 
best performing heuristic, namely, the worst-fit heuristic, 
produced solutions with the minimum number of bins for only 
32 of the problems. The best-fit, first-fit and next-fit heuristic 
produced solutions using the minimum number of bins for 30, 
29 and 0 of the problems respectively.  The best-fit, first-fit and 
worst-fit heuristics have produced similar results. 

Hypothesis tests were performed to ascertain the statistical 
significance of this result. The levels of significance, critical 
values, and decision rules for these tests are listed in Table 3 
and the hypotheses and Z-values in Table 4. 

 
 

Table 3. Levels of significance, critical values and decision 
rules 

Ρ Critical 
Value 

Decision Rule 

0.01 2.33 Reject Ho if Z >2.33 
0.05 1.64 Reject Ho if Z >1.64 
0.10 1.28 Reject Ho if Z >1.28 

 
Table 4. Hypotheses and Z values 

Hypothesis Z Values 

Ho: µEA_HH1 = µBF, Ha: µEA_HH1 > µBF 3.03 

Ho: µEA_HH1= µFF, Ha: µEA_HH1 > µFF 3.25 

Ho: µEA_HH1 = µNF, Ha: µEA_HH1 > µNF 17.35 

Ho: µEA_HH1 = µWF, Ha: µEA_HH1 > µWF 2.60 

 
The hypotheses that the EA-HH1 performs better than the 

low-level heuristics were found to be significant at the 1% level 
of significance for the best-first, first-fit, next-fit and worst-fit 
heuristics.  

6.2 Hyper-heuristics performance comparison 

Thirty runs were also performed for two variations of EA-HH1 
for the 50 problems. EA-HH1 stores items in decreasing order 
according to size and the items are allocated accordingly. The 
first variation of EA-HH1, EA-HH11 uses the availability 
degree heuristic defined in section 4.2.1 to choose the next item 
to store instead of placing items according to size. Similarly, the 
second variation EA-HH12 allocates items using the saturation 
degree heuristic defined in section 4.2.1. Thirty runs were also 
performed for both the versions of EA-HH2, namely, EA-HH21 
and EA-HH22 described in section 4.2, for each problem. 
Figure 5 illustrates the number of problems for which the 
hyper-heuristics were able to produce solutions that use the 
minimum number of bins and the success rate of the hyper-
heuristics in solving each of the problems over the 30 runs is 
listed in Table 5. The best success rates are highlighted in bold. 
The hyper-heuristics that search a heuristic space of both bin 
selection and item selection heuristics, namely, EAHH21 and 
EAHH22 appear to have performed better than the other three 
hyper-heuristics and produced solutions with the minimum 

                                                                    
4 Thirty runs are performed for each problem. For 43 of the problems at 

least one run has produced a solution using a minimum number of 
bins. Figure 4. Performance comparison 
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number of bins for all 50 problems. EA-HH1, EA-HH11, and 
EA-HH12 have produced solutions using the minimum number 
of bins for 43, 46 and 29 of the fifty problems respectively. 
 
 

Table 5. Simulation results 

Problem 
EA-
HH1 

EA-
HH11 

EA-
HH12 

EA-
HH21 

EA-
HH22 

1 100% 100% 0% 100% 100% 
2 100% 100% 100% 100% 100% 
3 77% 100% 0% 100% 100% 
4 27% 93% 0% 93% 100% 
5 100% 100% 100% 100% 100% 
6 100% 100% 0% 100% 100% 
7 93% 100% 0% 100% 100% 
8 0% 73% 0% 23% 67% 
9 100% 100% 100% 100% 100% 

10 0% 0% 0% 27% 13% 
11 100% 100% 0% 100% 100% 
12 100% 100% 0% 100% 100% 
13 0% 10% 0% 3% 3% 
14 100% 100% 100% 100% 100% 
15 100% 100% 100% 100% 100% 
16 100% 100% 0% 100% 100% 
17 100% 100% 0% 100% 100% 
18 100% 0% 0% 100% 100% 
19 0% 100% 0% 100% 100% 
20 100% 100% 100% 100% 100% 
21 100% 100% 100% 100% 100% 
22 100% 100% 100% 100% 100% 
23 100% 100% 100% 100% 100% 
24 100% 100% 100% 100% 100% 
25 100% 100% 100% 100% 100% 
26 100% 100% 100% 100% 100% 
27 100% 100% 0% 100% 100% 
28 100% 100% 100% 100% 100% 
29 100% 100% 0% 100% 100% 
30 100% 100% 100% 100% 100% 
31 100% 100% 100% 100% 100% 

32 100% 100% 100% 100% 100% 
33 100% 100% 100% 100% 100% 
34 100% 100% 100% 100% 100% 
35 100% 100% 100% 100% 100% 
36 100% 100% 100% 100% 100% 
37 100% 100% 0% 100% 100% 
38 100% 100% 0% 100% 100% 
39 0% 0% 0% 100% 100% 
40 100% 100% 100% 100% 100% 
41 100% 100% 100% 100% 100% 
42 100% 100% 100% 100% 100% 
43 100% 100% 100% 100% 100% 
44 100% 100% 100% 100% 100% 
45 100% 100% 100% 100% 100% 
46 100% 100% 0% 100% 100% 
47 0% 0% 0% 83% 100% 
48 0% 100% 100% 100% 100% 
49 100% 100% 100% 100% 100% 
50 100% 100% 100% 100% 100% 

 
Hypothesis tests, namely, Z-tests, were conducted to test the 

significance of these results. The critical values and decision 
rules are listed in Table 3 and the hypotheses and Z-values are 
specified in Table 6. The performance of EA-HH21 and EA-
HH22 are the same, producing solutions using the minimum 
number of bins for all the problems. Thus, the hypothesis tests 
compare the performance of EA-HH22 to EA-HH1, EA-HH11 
and EA-HH12. 

 
Table 6. Hypotheses and Z values  

Hypothesis Z Values 

Ho: µEA_HH22 = µHH1, Ha: µEA_HH22 > µEA_HH1 2.82 

Ho: µEA_HH22= µHH11, Ha: µEA_HH22 > µHH11 2.33 

Ho: µEA_HH22 = µHH12, Ha: µEA_HH22 > µHH12 4.15 

 
The hypothesis that EA-HH22 performs better than EA-HH1 

and EA-HH11 was found to be significant at the 5% level of 
significance. The hypothesis that EA-H22 produces better 
results than EA-HH12 is significant at all levels of significance. 
The time taken by EA-HH1, EA-HH21 and EA-HH22 to evolve 
heuristic combinations that produce solutions using the 
minimum number of bins is listed in Table 7. The times are 
listed in milliseconds. 

Table 7. Hyper-heuristic runtimes 
Problem EA-HH1 EA-HH21 EA-HH22 

1 1000 2000 4000 
2 16 31 31 
3 76 1000 1000  
4 48000 76000 135000  
5 31 31 47 
6 218 3000 2000 
7 14 90000 119 
8 - 118 117 
9 16 16 16 

Figure 5. Hyper-heuristic performance 
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10 - 380000 179 
11 16 109 187  
12 3000 2000 3000 
13 - 5539000 235 
14 16 16 16 
15 16 31 78 
16 7000 1000  1000  
17 16  125 94 
18 9000 41000 42000 
19 - 187 141 
20 16 344 16 
21 16 16 15 
22 16 15 15 
23 16 16 16 
24 16 16 16 
25 16 16 16 
26 16 16 16 
27 32 15 64 
28 16 16 16 
29 391 1000 500 
30 16 16 35 
31 31 16 31 
32 16 15 16 
33 31 16 15 
34 16 47 63 
35 31 47 31 
36 32 16 78 
37 1000 31 344 
38 39 23000 18000 
39 - 8000 5000 
40 31 250 3000 
41 109 500 547 
42 110 328 235 
43 141 375 2000 
44 93 1000 259 
45 16 46 31 
46 - 32000  77000  
47 - 541000  9 
48 3000 21000 297 
49 578 20000 16000 
50 313 31 42000  

 
As can be anticipated in most cases EA-HH1 takes the least 

amount of time to execute, followed by EA-HH12 and EA-
HH22.  EA-HH1 only searches a space of bin selection 
combinations while EA-HH21 and EA-HH22 explore a space of 
both bin and item selection heuristics. Thus, it can be expected 
that EA-HH1 will have lower runtimes. Furthermore, EA-HH22 
applies mutation and crossover to both the bin selection and 
item selection heuristic combinations in each chromosome, 
while EA-HH21 randomly chooses which combination to apply 
the genetic operator to, and thus EA-HH22 will have higher 
runtimes than EA-HH21. However, in some cases EA-HH1 has 

taken longer to evolve an optimal combination compared to 
EA-HH21 and EA-HH22, e.g. problem 6.  Similarly, the 
runtime for EA-HH21 has been higher than EA-HH22, e.g. 
problem 10. This can possibly be attributed to a solution being 
found earlier during a run as a result of the heuristics contained 
in the evolved combinations or the use of both bin and item 
selection heuristics. Alternatively, this may occur as a result of 
the stochastic nature of evolutionary algorithms, resulting in the 
evolutionary algorithm following a different path for different 
random number generator seeds, thus causing a particular run to 
take longer in reaching an optimal area of the heuristic space.   

For each problem, the optimal heuristic combinations 
evolved on different runs were found to be different.  For 
example for problem 1 the heuristic combinations producing a 
solution using the minimum number of bins for one run were 
fnbwwnbwwwnfwwwwffbwffwfwwwbwfffbfwnww and sassalsa 
ss while for another run bnfwnfwbnfwnbbnwwwwwfwffwfbbnw 
wbwfwfnnwf and lalaaalassalaaalalslsassa were evolved.  This 
can again be attributed to the stochastic nature of evolutionary 
algorithms.  A different random number generator seed is used 
on each run resulting in the evolutionary algorithm following a 
different path and evolving different combinations of low-level 
heuristics. Furthermore, this also illustrates that there is more 
than one optimal heuristic combination for each problem.   

6.3 Performance comparison with other 
methods 

Section 2 provides an overview of the methodologies used to 
solve the one-dimensional bin-packing problem. This section 
compares the performance of both the hyper-heuristic 
approaches to those methods that have been able to generalize 
well and produce the best results for problems from both the 
Faulkenauer and the Scholl benchmark sets.  The comparison is 
empirical as these methods vary and even the concept of a run 
differs from one method to the next. Thus, the comparison is 
defined in terms of the number of problems (out of the 50 
problems) for which the method is able to produce an optimal 
solution. 

The methods producing a solution using the minimum 
number of bins for all 50 problems include: 
 
• The selection perturbative hyper-heuristic implemented by 

Bai et al. [2]. 
• The minimum slack heuristic and variable neigbourhood 

search used by Flezar et al. [15]. 
• The weighted annealing approach taken by Loh et al. [16]. 
 

Two types of hyper-heuristics, namely, EA-HH1, which 
searches a space of bin selection heuristic combinations and 
EA-HH2 which explores a space of bin selection heuristic 
combinations and a space of item selection heuristic 
combinations were implemented and evaluated in this study. 
Three versions of EA-HH1, each using a different heuristic to 
select an item for placement, were also tested.  The version of 
EA-HH1 using the availability degree heuristic to select an item 
performed the best of the three versions finding solutions using 
the minimum number of bins for 46 of the 50 problems.  EA-
HH2 was able to produce solutions using the minimum number 
of bins for all 50 of the problems. Thus, a hyper-heuristic 
searching both the space of bin selection and item selection 
heuristic combinations appears to be more effective for this 
domain.  Furthermore, this hyper-heuristic has produced results 
competitive to that of the best performing methods applied to 
these 50 problems. 
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7. CONCLUSION 
The main aim of the study presented in this paper is to 
investigate the use of hyper-heuristics in solving the one-
dimensional bin-packing problem. Two types of hyper-
heuristics, a hyper-heuristic searching the space of bin selection 
heuristics, and a hyper-heuristic exploring the space of bin 
selection heuristic combinations and item selection heuristic 
combinations were implemented. The performance of the 
hyper-heuristics in solving the one-dimensional bin-packing 
problem was compared to using each low-level heuristic 
independently to solve the one-dimensional bin-packing 
problem.  In addition to this the performance of the two types of 
hyper-heuristics was also compared. The individual heuristics 
and both types of hyper-heuristics were applied to solving fifty 
one-dimensional bin-packing problems. This study has revealed 
that hyper-heuristics produce much better results than each of 
the low-level heuristics in solving the one-dimensional bin-
packing problem.  

Furthermore, while previous work has only focused on using 
bin selection heuristics in solving this problem, this study 
introduces the use of item selection heuristics as well.  It is 
evident from the study that the use of item selection heuristics 
are also needed to solve the one-dimensional bin-packing 
problem and the use of different item selection heuristics 
produce different results. The hyper-heuristic evolving both bin 
and item selection heuristic combinations was found to achieve 
a higher success rate than the hyper-heuristic searching the 
space of bin selection heuristic combinations only.  This study 
has illustrated the effectiveness of hyper-heuristics and the need 
for item selection heuristics in solving the one-dimensional bin-
packing problem. The study has also revealed that there is more 
than one optimal heuristic combination for each problem.  

Future work will study the evolved heuristic combinations in 
more detail to identify any substring patterns and relationships 
between the problem characteristics and the evolved heuristic 
combinations.   
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