
Research Article – SACJ No. 48, June 2012

31

A Study of Evolutionary Algorithm Selection

Hyper-Heuristics for the One-Dimensional Bin-

Packing Problem

Nelishia Pillay1

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, South Africa.

ABSTRACT

Hyper-heuristics are aimed at providing a generalized solution to optimization problems rather than producing the best result for one or
more problem instances. This paper examines the use of evolutionary algorithm (EA) selection hyper-heuristics to solve the offline
one-dimensional bin-packing problem. Two EA hyper-heuristics are evaluated. The first (EA-HH1) searches a heuristic space of
combinations of low-level construction heuristics for bin selection. The second (EA-HH2) explores a space of combinations of both
item selection and bin selection heuristic combinations. These EA hyper-heuristics use tournament selection to choose parents, and
mutation and crossover with hill-climbing to create the offspring of each generation. The performance of the hyper-heuristics is
compared to that of each of the low-level heuristics applied independently to solve this problem. Furthermore, the performance of both
hyper-heuristics is also compared. The comparisons revealed that hyper-heuristics in general perform better than any single low-level
construction heuristic in solving the problem. In addition to this it was found that the hyper-heuristic exploring a space of both item
selection and bin selection heuristic combinations is more effective than the hyper-heuristic searching a space of just bin selection
heuristic combinations. The performance of this hyper-heuristic was found to be comparable to other methods applied to the same
benchmark sets of problems.

CATEGORIES AND SUBJECT DESCRIPTORS

I.2. [Computing Methodologies]: Artificial Intelligence.

GENERAL TERMS

Algorithms, Theory

KEYWORDS

Hyper-heuristics, one-dimensional bin-packing, evolutionary algorithms

1 pillayn32@ukzn.ac.za

1. INTRODUCTION
The one-dimensional bin-packing problem requires a set of
items to be stored in bins, each having the same capacity, with a
minimum number of bins being used. This problem has
numerous real-world applications including machine
scheduling, LSVI chip layout, one-dimensional stock cutting,
cable-length optimization, and processor task allocation. Hence,
this problem has been fairly well-studied and various methods
such as genetic algorithms, tabu search, and simulated
annealing have been applied to this domain. These methods
have generally focused on producing the best result for one or
more problems in a benchmark problem set. Hyper-heuristics
on the other hand aim at providing generalized solutions to
problems instead of producing best results [18]. The advantage
of this is that solutions are found for a set of problems instead
of the best solution for one or two problems in the set. This
paper examines the use of constructive selection hyper-
heuristics to solve the offline one-dimensional bin-packing
problem. The hyper-heuristics presented in this paper employ
an evolutionary algorithm to explore a space of low-level

construction heuristic combinations. Two hyper-heuristics, one
that searches a heuristic space of bin selection heuristic
combinations (EA-HH1), and a second that explores a heuristic
space of both item and bin selection heuristic combinations
(EA-HH2), are examined. To the best of the author’s
knowledge, item selection heuristics have not previously been
defined for this domain. The performance of both hyper-
heuristics is compared in solving problems from the
Faulkenauer and Scholl benchmark sets. The solutions produced
by both hyper-heuristics are also compared to those obtained by
using each low-level heuristic independently in solving these
problems.

The following section presents the one-dimensional bin-
packing problem. Hyper-heuristics is introduced in section 3
and an overview of previous work applying hyper-heuristics to
solve the one-dimensional bin-packing problem is provided.
Section 4 describes the evolutionary algorithm hyper-heuristics
implemented to solve this problem and section 5 specifies the
experimental setup used to evaluate the hyper-heuristics. The
performance of the hyper-heuristics in solving the one-
dimensional bin-packing problem is discussed in section 6. The

 Research Article – SACJ No. 48, June 2012

32

32

findings of this study are summarized in section 7 together with
future extensions of the research presented.

2. THE ONE-DIMENSIONAL BIN-
PACKING PROBLEM
The one-dimensional bin-packing problem (BPP) involves
placing a set of items of different sizes into one or more bins.
All the bins have the same capacity and the main aim of the
problem is to minimize the number of bins used to store all the
items. There are two versions of the bin-packing problem,
namely, the offline BPP and the online BPP [21]. In the offline
version the size of all the items is known before the placement
process begins. In the online version the size of each item is
only known when it is being placed. Initially, sequential
construction methods employing low-level construction
heuristics were used to find solutions to this problem. This led
to the derivation of a number of low-level construction
heuristics for this domain including first-fit [9], best-fit [3],
next-fit [13], worst-fit [6], better-fit [3] and Djang and Finch2
[19] heuristics. These heuristics are bin selection heuristics and
are used to determine which bin to place the next item in.
Variations of these heuristics have also been implemented in
which the items to be stored are sorted in decreasing order
according to size and allocated accordingly, e.g. first-fit
decreasing and best-fit decreasing [21].

Various methods have been applied to solving the one-
dimensional bin-packing problem. One of the earliest
contributions to this field is the grouping genetic algorithm
developed by Faulkenauer [10] to solve the one-dimensional
bin-packing problem. The GA employs the steady-state control
model and uses the tournament selection method with a
tournament size of two to select parents. Instead of evolving a
population over a set number of generations, the steady-state
control model replaces poorly performing individuals with the
newly created offspring. The fitness of each individual is a
function of the fullness of each bin, the maximum capacity of
the bin and the number of bins used to store the items. The
mutation, crossover and inversion operators are used to create
offspring. Jing et al. [12] apply a genetic algorithm in
combination with the next-fit heuristic to solve a variation of
the one-dimensional bin-packing problem in which each bin has
a different capacity. The fitness function is the same as that
used in the Faulkenauer study [10]. Crossover and mutation are
used to create offspring. Ulker et al. [22] also use a grouping
genetic algorithm, employing linear linkage encoding for
representation purposes, to obtain solutions to the one-
dimensional BPP. An initial population of potential solutions is
created using the first-fit heuristic. Tournament selection is used
to choose parents. Smart mutation and crossover are applied to
the chosen parents to create the offspring of each generation.
The fitness of each individual is calculated using the evaluation
function proposed by Faulkenauer [10]. The method was
successfully applied to two of the Faulkenauer data sets.

Kasap et al. [14] use a neural network together with the first
fit decreasing heuristic to solve one-dimensional bin-packing
problems from the Scholl benchmark set. The bin-packing
problem is modeled as a neural network. The neural network
has a dummy and output node layer and between both these
layers is an item layer and bin layer. This approach was found
to find the minimum number of bins for a majority of the
problems.

2 This refers to a heuristic algorithm developed by Djang and Finch [19]

which first allocates items, with the largest items receiving priority,
until three-quarters of the bin is full. At this stage different
combinations of items are examined to fill the bin.

 Flezar et al. [11] firstly apply a minimum bin slack heuristic
to create an initial solution to the problem. This solution is then
optimized using variable neighbourhood search.

Lewis [15] presents the bin-packing problem as a minimum
grouping problem and proposes a hill-climbing grouping
algorithm to solve this problem. The algorithm firstly creates an
initial solution using the first-fit descending heuristic. The hill-
climbing algorithm improves this initial solution by performing
swaps between bins. The algorithm was successfully applied to
the set of Faulkenauer benchmark problems.

Loh et al. [16] uses a weight annealing approach, similar to
simulated annealing, to solve the one-dimensional bin-packing
problem. As with methods previously described an initial
solution is created using the first-fit decreasing heuristic and
then improved using weighted annealing. The method
outperformed existing approaches applied to this problem.

Valerio de Carvalho [23] represents the one-dimensional bin-
packing problem as a flow formulation model which a branch-
and-bound algorithm is applied to. A linear relaxation of the
model is also examined. This method produced results
comparable to other methods applied to the Faulkenauer
problem set.

Hybrid approaches have also been used to solve the one-
dimensional bin-packing problem. Alvim et al. [1] solve the
one-dimensional BPP using a hybrid method incorporating the
use of tabu search, lower bounding strategies and load
distribution based on dominance. Kao et al. [13] take a hybrid
approach, combining simulated annealing and genetic
algorithms, to solve the one-dimensional BPP. The fitness of
each potential solution was the inverse of the number of bins
used and the known minimum for the problem instance. The
approach was applied to ten problems with a maximum bin
capacity of 1000 and item weights in the range 1 to 999. This
hybrid method produced competitive results when compared to
the performance of the first-fit heuristic. Scoll et al. [21] present
a hybrid approach, namely BISON, to solve the one-
dimensional bin-packing problem which combines a variation
of the branch and bound algorithm MTRP with new bounds and
dominance rules, tabu search and a depth-first search branch
and bound method. BISON was applied to three data sets and
was found to outperform the standard MTRP in solving these
problems.

3. HYPER-HEURISTICS
Most of the research aimed at solving combinatorial
optimization problems has focused on developing methods that
produce the best solutions for one or more problem instances of
benchmark sets rather than providing a generalized solution to
the problem. Hyper-heuristics have been developed with this in
mind and focus on producing general solutions to problems
instead of optimal solutions for a few problem instances [5].
This is achieved by exploring a heuristic space rather than a
solution space. The heuristic space is comprised of low-level
heuristics or combinations of heuristics. These heuristics can be
constructive, i.e. they are used in the construction of a solution
to the problem, or perturbative, i.e. they represent moves that
improve an initially created potential solution to the problem
[5]. Construction heuristics are domain dependent, e.g. the first-
fit, best-fit, next-fit and worst-fit heuristics for the one-
dimensional bin-packing problem and the largest degree, largest
weighted degree, largest enrolment and saturation degree for
university course and examination timetabling problems [9, 18].
Hyper-heuristics employ methodologies such as variable
neighbourhood search, tabu search and genetic programming to
either select a low-level heuristic or combination of heuristics
or generate a new low-level heuristic for a problem domain.

Research Article – SACJ No. 48, June 2012

33

Thus, in addition to being either constructive or perturbative,
hyper-heuristics are also classified as selection or generation
hyper-heuristics [8]. The study presented in this paper
investigates the use of construction, selection hyper-heuristics
for solving the one-dimensional bin-packing problem.

There has not been much research into the use of
construction, selection hyper-heuristics for the one-dimensional
bin-packing problem. There are two studies that examine
construction, selection hyper-heuristics for this domain. The
first study uses a learner classifier system to generate condition-
action rules for heuristic selection [20]. The rules use four low-
level heuristics, namely, first-fit decreasing, next-fit decreasing,
the Djang and Finch heuristic with 3 items and the Djang and
Finch heuristic with 5 items. The only study implementing a
genetic algorithm to explore a heuristic space is that conducted
by Ross et al. [19]. Each chromosome is a variable length
string comprised of numbers representing the size of items still
to be placed and the heuristic to choose a bin i.e. first-fit
decreasing, next-fit decreasing or the Djang and Finch heuristic.
The first five numbers represent the proportion of huge, large,
medium and small items still to be packed and the number of
remaining items to be packed. The sixth number represents the
heuristic. The GA implements the steady-state control model.
Tournament selection with a tournament size of 2 is used to
choose parents which two crossover and three mutation
operators are applied to, to create the next generation. The
fitness of each chromosome is a measure of the performance of
the chromosome in solving a set of five problems compared to
using the individual heuristics to solve the problems.

There has been research conducted into using hyper-
heuristics, other than construction, selection hyper-heuristics, to
solve the one-dimensional bin-packing problem. For
completeness these are included. Burke et al. [6,7] have
implemented a generative hyper-heuristic to induce low-level
construction heuristics for this problem. The hyper-heuristic
uses genetic programming to evolve construction heuristics.
Each element of the population is a parse-tree representing the
heuristic and is comprised of elements from the function set and
terminal set. The function set includes addition, multiplication,
protected division and the absolute value operators. The
terminal set consists of constants representing the
characteristics of the problem, namely, the fullness of the bin,
i.e. the sum of the size of the items in the bin, the size of the
next item to place and bin capacity. The fitness of each parse
tree was calculated to be the difference of the number of bins
used and the ratio of the sum of the size of each piece in a bin
divided by the total bin capacity. The fittest heuristic evolved
by the GP system was found to perform the same function as
the first-fit heuristic.

Some research has also been conducted into the use of
selection perturbative hyper-heuristics to solve the one-
dimensional bin-packing problem. Bai et al. [2] have used a
simulated annealing selection hyper-heuristic to explore the
heuristic space comprised of perturbative low-level bin-packing
heuristics, e.g. shift, split, exchange. The hyper-heuristic uses
stochastic selection strategies in combination with short-term
memory. Burke et al. [4] have proposed a perturbative hyper-
heuristic framework, namely, Hyperflex. Initial solutions to the
bin-packing problem are created using the first-fit heuristic and
are improved using the perturbative hyper-heuristic. The moves
or perturbative heuristics used by the hyper-heuristic include
two mutational heuristics, two create and ruin heuristics, a
repack with best-fit heuristic and three local search heuristics.

It is evident from the survey presented in this section that
there has not been much research conducted into the use of
construction, selection hyper-heuristics to solve this problem.
The only study using evolutionary algorithms to explore a

heuristic space is that conducted by Ross et al. [19] in which a
genetic algorithm is used to search a space of chromosomes
where each chromosome is a string of numbers representing the
number of items still to be placed, the sizes of these items and
the bin selection heuristic. A different approach, which is
similar to the construction hyper-heuristics implemented by Els
et al. [8] and Pillay [18] for the university course and
examination timetabling problems respectively, is taken in this
study. The following section describes these construction,
selection hyper-heuristics implemented.

4. THE EA HYPER-HEURISTICS
This section describes the hyper-heuristics used in this study to
solve the one-dimensional bin-packing problem. In the first EA
hyper-heuristic (EA-HH1), each chromosome is a string
consisting of letters representing the low-level construction
heuristics that will be used to decide which bin to place the next
item in when creating a solution. This study differs from that
conducted by Ross et al. [19, 20] in that item selection
heuristics are introduced and the study investigates the use of a
hyper-heuristic optimizing a space of combinations of both item
and bin selection heuristics (EA-HH2) in solving the one-
dimensional BPP.

The evolutionary algorithm implemented by both EA hyper-
heuristics employs the generational control model and is
depicted in Figure 1. Note that the evolutionary process is
terminated when a solution with a number of bins equal to the
minimum is found. A minimum is specified for each problem in
both the Faulkenauer and Scholl benchmark sets. For example,
for the Faulkenauer problems this is a theoretical minimum
calculated to be the total capacity required divided by the
capacity of a single bin. The minimum specified for each
problem in the benchmark set is used as a termination criterion.
The algorithm is given a preset number of generations within
which to achieve this. Sections 4.1 and 4.2 describe processes
of initial population generation, evaluation, selection, and the
genetic operators for EA-HH1 and EA-HH2 respectively.

4.1 EA-HH1

This section presents the first hyper-heuristic implemented
which searches a space of combinations of low-level bin
selection heuristics such as first-fit and best-fit. Two versions of
this hyper-heuristic, namely, EA-HH11 and EA-HH12, have
been implemented. EA-HH11 uses the availability index to
determine which item to store next and EA-HH12 uses the
saturation degree to select the next item. The availability and
saturation degree heuristics are defined in section 4.2.1. These
heuristics are used instead of storing items in decreasing order
of size.

Create an initial population
Repeat
 Evaluate the population.
 Select parents for the next generation.
 Apply mutation and crossover to the chosen
 parents to create offspring.

Until a solution with the minimum number of bins is
found OR the generation limit is reached.

Figure 1. Evolutionary algorithm implemented by
EA-HH1 and EA-HH2

 Research Article – SACJ No. 48, June 2012

34

34

4.1.1 Initial population generation

Each element of the population is a variable length string
consisting of characters representing the low-level bin selection
heuristics. The following bin selection heuristics were used as
these were the most commonly cited in the literature:

• First-fit (f) –The item to be placed is allocated to the first

bin that has sufficient space for it to fit into.
• Best-fit (b) – The item is placed into the bin that will have

the smallest residual space once the item is placed into it.
• Next-fit (n) – If the item does not fit into the current bin,

i.e. the last bin to be created, it is placed in a new bin.
• Worst-fit (w) – The item to be placed is allocated to the bin

with the largest residual space once the item is placed into
it.

Trial runs indicated that the “decreasing” [21] variation of

these heuristics performed better than the standard heuristics
and thus this variation was implemented. The decreasing
version of these heuristics requires that items be sorted in
decreasing order of size and be allocated accordingly.

Duplicate chromosomes are not permitted in the initial
population and thus the initial population has a variation of
100%. An example of an element of the population is bbfnw.
Using this chromosome to create a solution to the problem, the
first two items will be allocated to a bin chosen using the best-
first heuristic, the third item using the first-fit heuristic, the
fourth item the next-fit heuristic and the worst-fit heuristic will
be used to choose a bin for the last item. The length of the
chromosomes is variable and chosen to be between the range of
one and the maximum number of items to be scheduled. If the
length of the chromosome is smaller than the number of items
to be stored, the heuristics are reapplied from the beginning of
the string. An explanation of how the fitness of each
chromosome is calculated is explained in the following section.

4.1.2 Fitness evaluation and selection

The fitness of each chromosome is determined by using it to
solve the one-dimensional bin-packing problem for the
particular problem instance. As described in the previous
section each chromosome is used to decide which heuristic to
use when selecting a bin to place an item into. The fitness of a
chromosome is a function of the number of bins used to store
the items in the solution. Previous studies [10, 22] have found
that using the number of bins as a fitness measure is not
effective as the resulting fitness landscape contains numerous
local optima that use one more than the optimal number of bins.
Faulkenauer et al. [10] proposed the following evaluation
function which is generally used to assess solutions for the one-
dimensional BPP:

where: N - is the number of bins
 C – maximum capacity of a bin
 Fi – is the fullness of the bin

The fullness of a bin is the sum of the sizes of the items in

the bin. This evaluation function is used to calculate the fitness
of the chromosomes. A fitter individual has a higher fitness
value, i.e. the fitness is maximized.

The tournament selection method is used to select parents to
apply genetic operators to. Individuals are randomly chosen
from the population to form a tournament. The most appropriate
size of the tournament is problem dependant. An individual may

be chosen more than once to be an element of the same
tournament. The fittest element of the tournament is deemed the
winner and becomes a parent of the next generation. Selection
is with replacement so an individual can be chosen as a parent
more than once.

4.1.3 Genetic operators

The mutation and crossover operators are used to create the
offspring of each generation.

The mutation operator randomly replaces a low-level
heuristic in a copy of the parent with a newly created heuristic
substring. The length of the substring is randomly chosen to be
between 1 and the length of the parent and is created using the
same method used to create each element of the initial
population. An example is illustrated in Figure 2.

The mutation point is randomly chosen to be 4. The

substring rooted at this point, namely, n is replaced with the
newly created substring. Note that the newly created substring
could have been an n which reduces the mutation operator to
reproduction. A version of this operator incorporating hill-
climbing was also tested. The hill-climbing mutation only
accepts mutations of the parent that are fitter than the parent. If
the first mutation operation does not result in a fitter offspring,
the offspring is discarded and the process is repeated until a
fitter offspring is produced. A limit is set on the number of
attempts at producing a fitter offspring in order to prevent
convergence to a local optimum and high runtimes. A value of
30 was found to be sufficient for the study. If a fitter offspring
is not found within the 30 attempts, the offspring created on the
thirtieth attempt is returned as the result of the mutation. In trial
runs conducted the hill-climbing mutation operator performed
better than the standard mutation operator and thus it was
decided to use the mutation operator incorporating hill-
climbing.

The crossover operator is applied to two parents chosen
using tournament selection. Crossover points are randomly
selected in copies of both the parents and the fragments divided
by the crossover points are swapped. An example is illustrated
in Figure 3.

The crossover point is randomly chosen to be 3 in the first

parent and 2 in the second parent. Copies of the parents are
“crossed over” at these points producing two offspring.
Previous work with EA hyper-heuristics of this type has
revealed that returning the fitter of the two offspring is more
effective than returning both offspring [17]. The same approach
is adopted in this study and the crossover operator returns one
offspring. As with the mutation operator, the use of hill-
climbing in the crossover operator was found to produce better
results. In this case if the offspring is not fitter than both parents
than the process is repeated. Again, a limit was set on the
number of attempts at producing a fitter offspring and a value of
30 was also sufficient for crossover.

Parent: wnfnb
New substring: bbw
Offspring: wnfbbwb

Figure 2. An example of mutation

Parent 1: bbnff Parent 2: wbnfw
Offspring 1: bbbnfw Offspring 2: wnff

Figure 3. An example of crossover

Research Article – SACJ No. 48, June 2012

35

4.2 EA-HH2

This section describes the second hyper-heuristic which
searches a space of combinations of both bin selection and item
selection heuristics.

4.2.1 Initial population generation

In this case each chromosome is comprised of two strings. The
first string, the bin selection heuristic combination, is
essentially the chromosome described in section 4.1.1, i.e. a
string combining bin selection heuristics. Note that the standard
bin selection heuristics are used for EA-HH2, and not the
decreasing variation of these heuristics. The reason for this is
that a heuristic is used to choose which item to store next. The
second string, the item selection heuristic combination, in the
chromosome is comprised of the following item selection
heuristics for this purpose:

• Largest item (l) – The item with the largest size is

allocated next.
• Availability degree (a) – The first item that can fit

into an existing bin is allocated next. Here the aim is
to fill existing bins first, before opening a new bin.

• Saturation degree (s) – The item that has the fewest
number of bins available that it will fit in, is given
priority. Here an analogy is taken from the
examination timetabling domain where the saturation
degree of an examination defines the number of
feasible periods in the timetable the examination can
be scheduled in [17].

Both strings are of variable length and the length of each

string is randomly chosen, independently of each other, to be in
the range of 1 and the number of items to be stored. If the
length of either string is less than the number of items to be
allocated, the string is wrapped around, beginning at the first
character in the string again, i.e. the heuristics are applied in
order again beginning with the first heuristic in the string. As
with EA-HH1 duplicates3 are not permitted in the initial
population. An example of an element of the population is
wnlbbf;aasll. A solution to the problem constructed using this
chromosome will result in the first item being chosen using the
availability degree heuristic and the bin that it will be stored in
will be selected using the worst-fit heuristic. Similarly, the sixth
item to be stored will be chosen using the availability degree
heuristic (as the string will be wrapped over) and the bin will be
chosen according to the first-fit heuristic. The fitness of each
chromosome is determined by using it to solve the instance of
the bin-packing problem. EA-HH2 uses the same fitness
function and selection method as EA-HH1 (described in section
4.1.2). The following subsection describes the genetic operators
used by EA-HH2.

4.2.2 Genetic operators

Two mutation and crossover operators were implemented for
use with EA-HH2. The first set of mutation and crossover
operators extend the hill-climbing mutation and crossover
operators implemented by EA-HH1 to randomly select whether
to mutate/recombine the bin selection heuristic combination/s or
the item selection heuristic combination/s. The second set of
operators are also a variation of the EA-HH1 hill-climbing and
mutation and crossover operators in which both the bin heuristic

3 A chromosome is a duplicate of a second chromosome if both the

strings in the chromosome, i.e. the bin selection heuristic combination
and the item selection heuristic combination, are the same.

selection combination/s and the item selection combination/s
are mutated and recombined respectively. In order to ascertain
which operators are more effective, EA-HH2 will be tested with
both the first set, will be referred to as EA-HH21, and the
second set, EA-HH22, of operators.

5. METHODOLOGY
This section describes the experimental setup used to test the
EA hyper-heuristics. The performance of the EA hyper-
heuristics is compared in solving 50 one-dimensional bin-
packing problems. The performance of these hyper-heuristics is
also compared to that of each of the low-level heuristics applied
independently to solve these problems. The first 20 problems
are taken from the Faulkenauer benchmark set [10]. In all 20 of
these problems 120 items, with the size of each item ranging
from 20 to 100, must be stored in a minimum number of bins,
each of which has a maximum capacity of 150. The remaining
30 problems are from the Scholl benchmark set [21]. This range
of problems was chosen to test the hyper-heuristics on problems
of varying complexity. The characteristics of these problems are
listed in Table 1.

Table 1. Characteristics of problems from the Scholl
benchmark set

Problem No. of
Items

Bin
capacity

Range of
size of items

1 50 100 1-100
2 50 100 20-100
3 50 100 30-100
4 50 120 1-100
5 50 120 20-100
6 50 120 30-100
7 50 150 1-100
8 50 150 20-100
9 50 150 30-100

10 100 100 1-100
11 100 100 20-100
12 100 100 30-100
13 100 120 1-100
14 100 120 20-100
15 100 120 30-100
16 100 150 1-100
17 100 150 20-100
18 100 150 30-100
19 200 100 1-100
20 200 100 20-100
21 200 100 30-100
22 200 120 1-100
23 200 120 20-100
24 200 120 30-100
25 200 150 1-100
26 200 150 20-100
27 200 150 30-100
28 500 100 1-100
29 500 100 20-100
30 500 100 30-100

 Research Article – SACJ No. 48, June 2012

36

36

Table 2. Parameter values used by EA-HH1 and EA-HH2
Parameter Value
Population size 500
Number of generations 50
Tournament size 10
Crossover rate 0.5
Mutation rate 0.5

The values of the genetic parameters used by both EA hyper-
heuristics are listed in Table 2. These values were determined
empirically by performing trial runs. Population sizes of 100,
500, 1000 were tested. A population size of 100 did not explore
enough of the heuristic space, while a population of 1000 did
not improve the performance of the EA hyper-heuristics. The
evolutionary algorithm was found to converge within 50
generations. Tournament sizes of 2, 4 and 10 were tested. A
value of 10 produced the best results during trial runs.

Trial runs were conducted with mutation and crossover rates
in the range of 0 to 1, with 0.1 intervals. Creating half of each
generation using mutation and the other half using crossover
proved to be the most effective combination.

The EA hyper-heuristics were written in Java using JDK
1.6.0 and all simulations were run on an Intel Core 2 Duo
processor with Windows XP. Due to the stochastic nature of
evolutionary algorithms, 30 runs, each using a different seed for
the random number generator, were performed for each EA
hyper-heuristic for each problem. The performance of the
hyper-heuristics are discussed in the following section.

6. RESULTS AND DISCUSSION
This section reports on the performance of the hyper-heuristics
described in the previous section in solving the one-dimensional
bin-packing problem. Section 6.1 examines the performance of
a hyper-heuristic approach compared to using low-level
heuristics in solving this problem. A comparison of the two
types of hyper-heuristics, namely, EA-HH1 and EA-HH2, is
provided in section 6.2. Finally, section 6.3 compares the
performance of the hyper-heuristics to methods producing the
best results for the problems from both benchmark sets.

6.1 Hyper-heuristics vs. low-level heuristics

This section compares the performance of EA-HH1 with that of
each of the heuristics applied independently to solve each of the
50 problems. In the case where each heuristic is applied
individually, the heuristic in question is used to select a bin for
each item. The items to be allocated are sorted in descending
order according to size and are stored in this order. Figure 4
shows the number of problems for which EA-HH1 and each of
the low-level construction heuristics have produced solutions

using the known minimum number of bins. It is evident from
this bar chart that the EA-HH1 has performed better than the
low-level construction heuristics, producing solutions with a
minimum number of bins for 434 of the 50 problems while the
best performing heuristic, namely, the worst-fit heuristic,
produced solutions with the minimum number of bins for only
32 of the problems. The best-fit, first-fit and next-fit heuristic
produced solutions using the minimum number of bins for 30,
29 and 0 of the problems respectively. The best-fit, first-fit and
worst-fit heuristics have produced similar results.

Hypothesis tests were performed to ascertain the statistical
significance of this result. The levels of significance, critical
values, and decision rules for these tests are listed in Table 3
and the hypotheses and Z-values in Table 4.

Table 3. Levels of significance, critical values and decision
rules

Ρ Critical
Value

Decision Rule

0.01 2.33 Reject Ho if Z >2.33
0.05 1.64 Reject Ho if Z >1.64
0.10 1.28 Reject Ho if Z >1.28

Table 4. Hypotheses and Z values

Hypothesis Z Values

Ho: µEA_HH1 = µBF, Ha: µEA_HH1 > µBF 3.03

Ho: µEA_HH1= µFF, Ha: µEA_HH1 > µFF 3.25

Ho: µEA_HH1 = µNF, Ha: µEA_HH1 > µNF 17.35

Ho: µEA_HH1 = µWF, Ha: µEA_HH1 > µWF 2.60

The hypotheses that the EA-HH1 performs better than the

low-level heuristics were found to be significant at the 1% level
of significance for the best-first, first-fit, next-fit and worst-fit
heuristics.

6.2 Hyper-heuristics performance comparison

Thirty runs were also performed for two variations of EA-HH1
for the 50 problems. EA-HH1 stores items in decreasing order
according to size and the items are allocated accordingly. The
first variation of EA-HH1, EA-HH11 uses the availability
degree heuristic defined in section 4.2.1 to choose the next item
to store instead of placing items according to size. Similarly, the
second variation EA-HH12 allocates items using the saturation
degree heuristic defined in section 4.2.1. Thirty runs were also
performed for both the versions of EA-HH2, namely, EA-HH21
and EA-HH22 described in section 4.2, for each problem.
Figure 5 illustrates the number of problems for which the
hyper-heuristics were able to produce solutions that use the
minimum number of bins and the success rate of the hyper-
heuristics in solving each of the problems over the 30 runs is
listed in Table 5. The best success rates are highlighted in bold.
The hyper-heuristics that search a heuristic space of both bin
selection and item selection heuristics, namely, EAHH21 and
EAHH22 appear to have performed better than the other three
hyper-heuristics and produced solutions with the minimum

4 Thirty runs are performed for each problem. For 43 of the problems at

least one run has produced a solution using a minimum number of
bins. Figure 4. Performance comparison

Research Article – SACJ No. 48, June 2012

37

number of bins for all 50 problems. EA-HH1, EA-HH11, and
EA-HH12 have produced solutions using the minimum number
of bins for 43, 46 and 29 of the fifty problems respectively.

Table 5. Simulation results

Problem
EA-
HH1

EA-
HH11

EA-
HH12

EA-
HH21

EA-
HH22

1 100% 100% 0% 100% 100%
2 100% 100% 100% 100% 100%
3 77% 100% 0% 100% 100%
4 27% 93% 0% 93% 100%
5 100% 100% 100% 100% 100%
6 100% 100% 0% 100% 100%
7 93% 100% 0% 100% 100%
8 0% 73% 0% 23% 67%
9 100% 100% 100% 100% 100%

10 0% 0% 0% 27% 13%
11 100% 100% 0% 100% 100%
12 100% 100% 0% 100% 100%
13 0% 10% 0% 3% 3%
14 100% 100% 100% 100% 100%
15 100% 100% 100% 100% 100%
16 100% 100% 0% 100% 100%
17 100% 100% 0% 100% 100%
18 100% 0% 0% 100% 100%
19 0% 100% 0% 100% 100%
20 100% 100% 100% 100% 100%
21 100% 100% 100% 100% 100%
22 100% 100% 100% 100% 100%
23 100% 100% 100% 100% 100%
24 100% 100% 100% 100% 100%
25 100% 100% 100% 100% 100%
26 100% 100% 100% 100% 100%
27 100% 100% 0% 100% 100%
28 100% 100% 100% 100% 100%
29 100% 100% 0% 100% 100%
30 100% 100% 100% 100% 100%
31 100% 100% 100% 100% 100%

32 100% 100% 100% 100% 100%
33 100% 100% 100% 100% 100%
34 100% 100% 100% 100% 100%
35 100% 100% 100% 100% 100%
36 100% 100% 100% 100% 100%
37 100% 100% 0% 100% 100%
38 100% 100% 0% 100% 100%
39 0% 0% 0% 100% 100%
40 100% 100% 100% 100% 100%
41 100% 100% 100% 100% 100%
42 100% 100% 100% 100% 100%
43 100% 100% 100% 100% 100%
44 100% 100% 100% 100% 100%
45 100% 100% 100% 100% 100%
46 100% 100% 0% 100% 100%
47 0% 0% 0% 83% 100%
48 0% 100% 100% 100% 100%
49 100% 100% 100% 100% 100%
50 100% 100% 100% 100% 100%

Hypothesis tests, namely, Z-tests, were conducted to test the

significance of these results. The critical values and decision
rules are listed in Table 3 and the hypotheses and Z-values are
specified in Table 6. The performance of EA-HH21 and EA-
HH22 are the same, producing solutions using the minimum
number of bins for all the problems. Thus, the hypothesis tests
compare the performance of EA-HH22 to EA-HH1, EA-HH11
and EA-HH12.

Table 6. Hypotheses and Z values

Hypothesis Z Values

Ho: µEA_HH22 = µHH1, Ha: µEA_HH22 > µEA_HH1 2.82

Ho: µEA_HH22= µHH11, Ha: µEA_HH22 > µHH11 2.33

Ho: µEA_HH22 = µHH12, Ha: µEA_HH22 > µHH12 4.15

The hypothesis that EA-HH22 performs better than EA-HH1

and EA-HH11 was found to be significant at the 5% level of
significance. The hypothesis that EA-H22 produces better
results than EA-HH12 is significant at all levels of significance.
The time taken by EA-HH1, EA-HH21 and EA-HH22 to evolve
heuristic combinations that produce solutions using the
minimum number of bins is listed in Table 7. The times are
listed in milliseconds.

Table 7. Hyper-heuristic runtimes
Problem EA-HH1 EA-HH21 EA-HH22

1 1000 2000 4000
2 16 31 31
3 76 1000 1000
4 48000 76000 135000
5 31 31 47
6 218 3000 2000
7 14 90000 119
8 - 118 117
9 16 16 16

Figure 5. Hyper-heuristic performance

 Research Article – SACJ No. 48, June 2012

38

38

10 - 380000 179
11 16 109 187
12 3000 2000 3000
13 - 5539000 235
14 16 16 16
15 16 31 78
16 7000 1000 1000
17 16 125 94
18 9000 41000 42000
19 - 187 141
20 16 344 16
21 16 16 15
22 16 15 15
23 16 16 16
24 16 16 16
25 16 16 16
26 16 16 16
27 32 15 64
28 16 16 16
29 391 1000 500
30 16 16 35
31 31 16 31
32 16 15 16
33 31 16 15
34 16 47 63
35 31 47 31
36 32 16 78
37 1000 31 344
38 39 23000 18000
39 - 8000 5000
40 31 250 3000
41 109 500 547
42 110 328 235
43 141 375 2000
44 93 1000 259
45 16 46 31
46 - 32000 77000
47 - 541000 9
48 3000 21000 297
49 578 20000 16000
50 313 31 42000

As can be anticipated in most cases EA-HH1 takes the least

amount of time to execute, followed by EA-HH12 and EA-
HH22. EA-HH1 only searches a space of bin selection
combinations while EA-HH21 and EA-HH22 explore a space of
both bin and item selection heuristics. Thus, it can be expected
that EA-HH1 will have lower runtimes. Furthermore, EA-HH22
applies mutation and crossover to both the bin selection and
item selection heuristic combinations in each chromosome,
while EA-HH21 randomly chooses which combination to apply
the genetic operator to, and thus EA-HH22 will have higher
runtimes than EA-HH21. However, in some cases EA-HH1 has

taken longer to evolve an optimal combination compared to
EA-HH21 and EA-HH22, e.g. problem 6. Similarly, the
runtime for EA-HH21 has been higher than EA-HH22, e.g.
problem 10. This can possibly be attributed to a solution being
found earlier during a run as a result of the heuristics contained
in the evolved combinations or the use of both bin and item
selection heuristics. Alternatively, this may occur as a result of
the stochastic nature of evolutionary algorithms, resulting in the
evolutionary algorithm following a different path for different
random number generator seeds, thus causing a particular run to
take longer in reaching an optimal area of the heuristic space.

For each problem, the optimal heuristic combinations
evolved on different runs were found to be different. For
example for problem 1 the heuristic combinations producing a
solution using the minimum number of bins for one run were
fnbwwnbwwwnfwwwwffbwffwfwwwbwfffbfwnww and sassalsa
ss while for another run bnfwnfwbnfwnbbnwwwwwfwffwfbbnw
wbwfwfnnwf and lalaaalassalaaalalslsassa were evolved. This
can again be attributed to the stochastic nature of evolutionary
algorithms. A different random number generator seed is used
on each run resulting in the evolutionary algorithm following a
different path and evolving different combinations of low-level
heuristics. Furthermore, this also illustrates that there is more
than one optimal heuristic combination for each problem.

6.3 Performance comparison with other
methods

Section 2 provides an overview of the methodologies used to
solve the one-dimensional bin-packing problem. This section
compares the performance of both the hyper-heuristic
approaches to those methods that have been able to generalize
well and produce the best results for problems from both the
Faulkenauer and the Scholl benchmark sets. The comparison is
empirical as these methods vary and even the concept of a run
differs from one method to the next. Thus, the comparison is
defined in terms of the number of problems (out of the 50
problems) for which the method is able to produce an optimal
solution.

The methods producing a solution using the minimum
number of bins for all 50 problems include:

• The selection perturbative hyper-heuristic implemented by

Bai et al. [2].
• The minimum slack heuristic and variable neigbourhood

search used by Flezar et al. [15].
• The weighted annealing approach taken by Loh et al. [16].

Two types of hyper-heuristics, namely, EA-HH1, which
searches a space of bin selection heuristic combinations and
EA-HH2 which explores a space of bin selection heuristic
combinations and a space of item selection heuristic
combinations were implemented and evaluated in this study.
Three versions of EA-HH1, each using a different heuristic to
select an item for placement, were also tested. The version of
EA-HH1 using the availability degree heuristic to select an item
performed the best of the three versions finding solutions using
the minimum number of bins for 46 of the 50 problems. EA-
HH2 was able to produce solutions using the minimum number
of bins for all 50 of the problems. Thus, a hyper-heuristic
searching both the space of bin selection and item selection
heuristic combinations appears to be more effective for this
domain. Furthermore, this hyper-heuristic has produced results
competitive to that of the best performing methods applied to
these 50 problems.

Research Article – SACJ No. 48, June 2012

39

7. CONCLUSION
The main aim of the study presented in this paper is to
investigate the use of hyper-heuristics in solving the one-
dimensional bin-packing problem. Two types of hyper-
heuristics, a hyper-heuristic searching the space of bin selection
heuristics, and a hyper-heuristic exploring the space of bin
selection heuristic combinations and item selection heuristic
combinations were implemented. The performance of the
hyper-heuristics in solving the one-dimensional bin-packing
problem was compared to using each low-level heuristic
independently to solve the one-dimensional bin-packing
problem. In addition to this the performance of the two types of
hyper-heuristics was also compared. The individual heuristics
and both types of hyper-heuristics were applied to solving fifty
one-dimensional bin-packing problems. This study has revealed
that hyper-heuristics produce much better results than each of
the low-level heuristics in solving the one-dimensional bin-
packing problem.

Furthermore, while previous work has only focused on using
bin selection heuristics in solving this problem, this study
introduces the use of item selection heuristics as well. It is
evident from the study that the use of item selection heuristics
are also needed to solve the one-dimensional bin-packing
problem and the use of different item selection heuristics
produce different results. The hyper-heuristic evolving both bin
and item selection heuristic combinations was found to achieve
a higher success rate than the hyper-heuristic searching the
space of bin selection heuristic combinations only. This study
has illustrated the effectiveness of hyper-heuristics and the need
for item selection heuristics in solving the one-dimensional bin-
packing problem. The study has also revealed that there is more
than one optimal heuristic combination for each problem.

Future work will study the evolved heuristic combinations in
more detail to identify any substring patterns and relationships
between the problem characteristics and the evolved heuristic
combinations.

8. ACKNOWLEDGEMENTS
The author would like to thank the reviewers for their helpful
comments and suggestions.

REFERENCES
[1] Alvim, A.C.F., Ribeiro, C.C., Glover F. and Aloise, D. J.

2004. A Hybrid Improvement Heuristic for the One-
Dimensional Bin Packing Problem, Journal of Heuristics,
Vol. 10, No. 2, 205-229.

[2] Bai, R., Balzewicz, J., Burke, E.K., Kendall, G. and
McCollum, B. 2007. A Simulated Annealing Hyper-
Heuristic Methodology for Flexible Decision Support.
Technical Report No. NOTTCS-TR-2007-8, School of
Computing and Information Technology, University of
Nottingham.

[3] Bhatia, A.K., Hazra, M., Basu, S. K. 2009. Better-Fit
Heuristic for One-Dimensional Bin-Packing Problem. In
Proceedings of the IEEE International Advance
Computing Conference (IACC 2009). IEEE Press, 193-
196.

[4] Burke, E.K., Curtois, T., Hyde, M., Kendall, G., Ochoa,
G., Petrovic, S. and Vazquez-Rodriques, J.A. 2009.
HyFlex: A Flexible Framework for the Design and
Analysis of Hyper-Heuristics. In Blazewicz, J.,
Drozdowski, M., Kendall, G. and McCollum, B. (eds.):
Proceedings of the 4th Multidisciplinary International

Conference on Scheduling: Theory and Applications
(Dublin, Ireland, August 2009). 790-797.

[5] Burke E. 2003. Hart E., Kendall G., Newall J., Ross P. and
Schulenburg S., Hyper-Heuristics: An Emerging Direction
in Modern Research. In Handbook of Metaheuristics,
Chapter 16. Kluwer Academic Publishers, 457– 474.

[6] Burke, E.K., Hyde, M.R. and Kendall, K.2006. Evolving
Bin Packing Heuristics with Genetic Programming. In
Burke, E.K., Merelo-Guervos, J., Whitely, D., and Yao, X.
(Eds.), Lecture Notes in Computer Science. 4193,
Proceedings of the 9th International Conference on
Parallel Problem Solving from Nature (PPSN 2006)
(Reykjavik, Iceland). Springer, 860-869.

[7] Burke, E.K., Hyde, M.R., Kendall, G. and Woodward, J.R.
2007. Scalability of Evolved On Line Bin Packing
Heuristics. In Proceedings of the Congress of Evolutionary
Computation (CEC 2007) (Singapore). IEEE Press, 2530-
2537.

[8] Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E.
and Woodard, J. 2010. A Classification of Hyper-Heuristic
Approaches. In Handbook of Metaheuristics, International
Series in Operations Research and Management Science,
Volume 146, 449-468.

[9] Els R., Pillay N. 2010. An Evolutionary Algorithm Hyper-
Heuristic for Producing Feasible Timetables for the
Curriculum Based University Course Timetabling
Problem. In Proceedings of the World Congress on Nature
and Biologically Inspired Computing (NaBIC 2010)
(Kitakyshu, Japan). IEEE Press, 467- 473.

[10] Falkenauer, E. 1996. A Hybrid Grouping Genetic
Algorithm for Bin Packing. Journal of Heuristics, Vol. 2,
No. 1, June 1996, 5-30.

[11] Fleszar, K. and Hindi, K.S. 2002. New Heuristics for One-
Dimensional Bin-Packing. Computers and Research, Vol.
29, 821-839.

[12] Jing, X., Zhou, X. and Xu, Y. 2006. A Hybrid Genetic
Algorithm for Bin Packing Problem Based on Item
Sequencing. Journal of Information and Computing
Science, Vol. 1, No. 1, 61-64.

[13] Kao, C. Y. and Lin, F.T. 1992. A Stochastic Approach for
the One-Dimensional Bin-Packing Problems, In
Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics (Chicago, USA, August
2006). IEEE Press, 1545-1551.

[14] Kasap, N. and Agarwal, A. 2004. Augmented Neural
Networks Approach for the Bin-Packing Problem. In
Proceedings of the 4th International Symposium on
Intelligent Manufacturing Systems (September 6-8). 348-
358.

[15] Lewis, R. 2009. A General-Purpose Hill-Climbing Method
for Order Independent Minimum Grouping Problems: A
Case Study in Graph Colouring and Bin Packing.
Computers and Operations Research, Vol. 36, Issue 7,
2295-2310.

[16] Loh, K.H., Golden, B. and Wasil, E. 2006. Solving the
One-Dimensional Bin Packing Problem with a Weight
Annealing Heuristic. Computers and Operations Research,
Vol. 35, 2283-2291.

[17] Pillay, N. 2011. Evolving Hyper-Heuristics for the
Uncapacitated Examination Timetabling Problem. Journal
of the Operational Research Society.
DOI:10.1057/jors.2011.12.

 Research Article – SACJ No. 48, June 2012

40

40

[18] Ross P. 2005. Hyper-heuristics. In Search Methodologies:
Introductory Tutorials in Optimization and Decision
Support Methodologies, Burke E.K., Kendall G., Eds,
Chapter 17, Kluwer, 529 -556.

[19] Ross, P., Marin-Blaquez, J.G., Schulenburg, S. and Hart,
E. 2003. Learning a Procedure that can Solve Hard Bin-
Packing Problems: A New GA-Based Approach to Hyper-
Heuristics. Lecture Notes in Computer Science, Vol. 2724,
1295-1306.

[20] Ross, P., Schulenburg, S., Marin-Blaquez, J.G. and Hart,
E. 2002. Hyper-Heuristics: Learning to Combine Simple
Heuristics in Bin-Packing Problems. In Proceedings of
Genetic and Evolutionary Computation Conference
(GECCO ’02) (New York, July 2002). 942-948.

[21] Scholl, A, Klein, R and Jurgens, C. 1997. Bison: A Fast
Hybrid Procedure for Exactly Solving the One-
Dimensional Bin Packing Problem. Computers and
Operations Research, Vol. 24, No. 7, 626-645.

[22] Ulker, O., Korkmaz, E.E. and Ozcan, E. 2008. A Grouping
Genetic Algorithm Using Linear Linkage Encoding. In
Lecture Notes in Computer Science: Parallel Problem
Solving from Nature – PPSN X, Ruldolph et al., Eds, 5199,
Springer-Verlag, Heidelberg, 1140-1149.

[23] Valerio de Carvalho, J. M. 1999. Exact Solution of Bin-
Packing Problems Using Column Generation and Branch-
and-Bound. Annals of Operations Research, Vol. 86, 629-
659.

