
Research Article – SACJ No. 52, July 2014 1

Quality in software development: A pragmatic approach using

metrics

Daniel Acton∗, Derrick G Kourie†, Bruce W Watson†

∗Espresso Research Group, Department of Computer Science, University of Pretoria, South Africa
†Espresso Research Group, Department of Information Science, University of Stellenbosch, South Africa

ABSTRACT

As long as software has been produced, there have been efforts to strive for quality in software products. In order to

understand quality in software products, researchers have built models of software quality that rely on metrics in an

attempt to provide a quantitative view of software quality. The aim of these models is to provide software producers with

the capability to define and evaluate metrics related to quality and use these metrics to improve the quality of the software

they produce over time. The main disadvantage of these models is that they require effort and resources to define and

evaluate metrics from software projects.

This article briefly describes some prominent models of software quality in the literature and continues to de-

scribe a new approach to gaining insight into quality in software development projects. A case study based on this new

approach is described and results from the case study are discussed.

KEYWORDS: Software Development, quality, metrics, measurement

CATEGORIES: D., D.2, D.2.1, D.2.4, D.2.7, D.2.8, D.2.9

1 INTRODUCTION

Quality has many definitions in the literature. The In-
stitute for Electrical and Electronic Engineers (IEEE)
Standard Glossary of Software Engineering Terminol-
ogy defines quality as “the degree to which a system,
component, or process meets specified requirements
or customer or user needs or expectations” [1]. The
ISO9000 standard defines quality as “the degree to
which a set of inherent distinguishing features fulfils a
need or expectation that is stated, generally implied
or obligatory” [2]. In the context of using metrics to
measure software quality, the IEEE standard for a
Software Quality Metrics Methodology defines quality
as “the degree to which software possesses a desired
combination of quality attributes” [3].

As discussed by Garvin [4], determining the quality
of a product can be approached in a number of ways.
The transcendent approach states that quality cannot
be defined precisely, but is rather experiential, and one
can learn to recognise quality through experience. The
product-based approach holds that quality is measur-
able and related to the degree to which the product
possesses some attribute. The user-based approach
holds that quality is subjective, and is determined by
the user of the product based on their perspective.
The manufacturing-based approach equates quality to

Email: Daniel Acton mja@danielacton.com, Derrick G Kourie
dkourie@fastar.org, Bruce W Watson bruce@fastar.org

conformance to requirements: if a product is built as
specified, it exhibits quality. The value-based approach
holds that a quality product is a product that provides
“performance at an acceptable price or conformance at
an acceptable cost”.

There are many approaches in the literature that
attempt to gain insight into the quality of software.
Industry standards, such as the ISO9000 [2] family of
standards, CMMI [5] and the Personal Software Pro-
cess (PSP) [6], can be seen as a distillation of industry
experiences into “best practice”. These industry stan-
dards stress the importance of process in the pursuit
of product quality. The ISO25000 [7] family of stan-
dards, along with work by Boehm et al. [8], Hyatt and
Rosenberg [9] and McCall et al. [10] propose measur-
ing software quality using metrics. Other approaches,
such as Cleanroom [11] address quality by ensuring
that formal methods are followed in the construction
of software. Approaches such as those proposed by
Barkmann et al. [12] and Gousios and Spinellis [13]
suggest the use of Software Configuration Management
(SCM) systems to gain insight into software quality.

This article describes an approach to software qual-
ity measurement that relies on the processes often
present in the course of a software project (such as
requirements gathering, testing and development) and
the software often used (such as an SCM system). It
also describes a case study that observes the use of the
proposed approach in a real-world software project.

Section 2 gives an overview of some of the ap-

2 Research Article – SACJ No. 52, July 2014

proaches in the literature, along with analysis of these
approaches. Section 3 describes a new approach to
software quality measurement. Section 4 describes an
implementation of the approach discussed in Section 3
and Section 5 discusses a case study that uses this new
approach. Section 5 provides a conclusion and suggests
areas of future work.

2 SOFTWARE QUALITY MODELS IN THE
LITERATURE

This section briefly describes eight models in the liter-
ature that use metrics as a method of gaining insight
into quality in software development. These models
were chosen as they represent a diverse range of models,
across time (ranging from 1977 until 2009), focus (met-
rics and process) and source (academic and industry).
The section closes with a critique of these methods,
indicating that there is a need for a more pragmatic ap-
proach to quality measurement which does not impose
a heavy administrative burden on software developers
and managers.

2.1 McCall’s Quality Factors

In their 1977 technical reports to the United States
Air Force [10], McCall, et al. describe an approach
to assessing software quality using metrics. The ap-
proach relies on a set of factors and criteria which
affect the quality of the software. Metrics are used to
measure these criteria and give a quantitative indica-
tion of the quality of the software product across the
development life cycle. An example metric measures
the cross referencing that relates modules to require-
ments. This metric therefore attempts to measure the
so-called traceability criterion, which in turn is believed
to contribute to what the authors call the correctness
factor.

2.2 Hyatt and Rosenburg’s Software Quality
Model

Hyatt and Rosenburg’s model [9] relies on two core
requirements: that the software works well enough and
that it is available when needed. This model is based on
the perspective of a project manager. It identifies areas
of risk to the fulfilment of these two core requirements.
Metrics are used to provide an indication of the risk
in each of these risk areas. An example metric is the
number of weak phrases, which attempts to measure
the ambiguity of the requirements. This contributes to
the so-called ambiguity attribute, which in turn affects
the requirements quality goal. This goal is related to
the correctness risk area: the higher the requirements
quality, the lower the correctness risk.

2.3 Boehm’s Characteristics of Software
Quality

In their book “Characteristics of Software Quality” [8],
Boehm et al. discuss an approach to analysing soft-
ware quality based on a set of characteristics that are

generally desirable for software to exhibit. These char-
acteristics are grouped into three main areas: as-is
utility (how well the software is usable as it is), main-
tainability (how easy it is to maintain the software),
and portability (how easy it us to use the software in
different environments). These three characteristics
are used in order to gain some insight into the general
utility of the software. In other words: software that
is easy to use and maintain in different environments
would be classified (according to Boehm, et al.) as hav-
ing high utility to the user or purchaser of the software.
These high-level characteristics are further classified
into lower-level characteristics. Metrics are used to
measure these characteristics. The metrics used in this
model were chosen based on their correlation with soft-
ware quality, the importance of having a high measure
for that metric, the cost of automatically evaluating
the metric, and the feasibility and completeness of au-
tomated evaluation. An example of a metric described
by Boehm et al. is “Metric Number 1.12” which mea-
sures whether the code is readable or not. This metric
contributes to the low-level characteristic of legibility
which contributes to the intermediate characteristic of
understandability, which contributes to the high level
characteristic of maintainability.

2.4 Cleanroom Software Engineering

The origin of the cleanroom method is a paper titled
“Certifying the Reliability of Software”, in which Currit
et al. [14] discuss a method of certifying the reliability
of software before the software is released to users.
The reliability of the software is measured by its Mean
Time To Failure (MTTF). Currit et al. suggest that
users of the software will not be as concerned with the
number of defects in the software as they will be with
the reliability of the software. Currit et al. assume that
the output of the development phase of production is
of high quality and focus more attention on testing the
reliability of the software. This they do by performing
a subset of operations that real users would perform in
an environment that closely mimics that of the user.

Building on this initial work on software reliability,
Mills et al. [11] turned their attention to the assump-
tion that Currit et al. had made, namely that the
development output exhibits high quality. Mills et
al. proposed a more formal approach to the develop-
ment effort in order to ensure that the output does
indeed exhibit high quality. The result of this work
was the cleanroom software engineering approach.

Cleanroom uses mathematical foundations in the
design, specification and correctness verification of the
product. The focus on a formal proof that the software
works as required mollifies the need to debug developed
outputs. The use of formal methods of object-based
box-structure specification and design ensures that the
specification and design of the product are well-defined.
Function-theoretical methods are used to verify the
correctness of software. Statistical usage testing is
used to certify the quality of the product.

Research Article – SACJ No. 52, July 2014 3

2.5 SCM-based approaches

Barkmann et al. [12] and Gousios and Spinellis [13]
propose the automated evaluation of metrics based on
a project’s source code (stored in an SCM system) in
order to gain insight into the quality of the software.
Barkmann et al. propose an approach that uses exter-
nal open source software code repositories to determine
which metrics apply to a given project. Gousios and
Spinellis propose an approach that allows software pro-
ducers to use metrics based on more than just the
source code (i.e. they could also include metrics based
on information from bug-reporting software and email
messages).

2.6 ISO25000

The ISO25000 family of standards (also known as Soft-
ware product Quality Requirements and Evaluation
or SQuaRE) [7] is an evolution of an earlier standard,
ISO9126 [15] [16]. Both of these standards propose
an approach to measuring software quality using met-
rics. The ISO25000 family describes a framework for
quality models that categorises product quality into a
hierarchical view: characteristics, subcharacteristics,
sub-subcharacteristics, quality properties and quality
measures. The family of standards also provides two
instances of the model, namely a quality-in-use model
(used to measure the quality of a product as it might be
perceived by users of the product), and a product qual-
ity model (used to measure the quality of the finished
product or interim products during development).

2.7 ISO9000

The ISO9000 [2] family of standards suggests that an
organisation wishing to provide quality products or
services should focus on the processes used to produce
their product or provide their service. If the organisa-
tion implements, maintains and continually improves
these processes, it is suggested that the outputs of
these processes should be of consistent or improving
quality. ISO9000 also promotes a focus on the re-
quirements and satisfaction of the customer, and if the
organisation aligns their processes with this focus, they
should be producing software that customers perceive
as satisfying their requirements and hence exhibiting
consistent or increasing quality.

2.8 CMMI

CMMI focusses on the implementation and improve-
ment of the processes involved in software development,
and bases its focus on the process management princi-
ple: “the quality of a system is highly influenced by
the quality of the process used to acquire, develop, and
maintain it.” [5]. An organisation that chooses to imple-
ment CMMI is effectively implementing a model that
aims to make their processes more effective. The or-
ganisation progresses through CMMI levels from initial
(where there are no—or very few—processes in place)
through managed, defined, quantitatively managed and

finally optimizing, where there are well-defined pro-
cesses, and data from the processes are used to op-
timize the processes further. The suggestion CMMI
makes is that if an organisation continually ensures
that the processes meet business requirements and are
improved over time, the quality of the output should
be of a consistent and increasing level.

2.9 The Personal Software Process (PSP)

The PSP focuses on having the engineeers or devel-
opers producing the product be an integral part of
driving the quality of the product. A project is made
up of tasks and phases. In each phase, the engineers
or developers must estimate the size and effort of the
tasks in the phase. As they perform the work, they
record information about their work, including any
defects they may find or fix, and the actual time taken
to complete the task. Once the work is complete, the
estimations are compared with the actual data and as
a result, future estimations should be more accurate.
The metrics that are collected and calculated over the
course of the project include quality measures. The
indicators of quality in PSP include those based on
defects, for example defects per thousand lines of code,
defects detected per phase and defects fixed per phase,
and those based on productivity. The PSP maintains
that in order to strive for quality, engineers or develop-
ers must spend time and effort on detecting and fixing
defects, particularly aiming to remove defects early
and prevent defects through keeping records of defects,
ensuring a good design, and reducing development
time.

2.10 Analysis

The models discussed in this section strive in various
ways to provide software producers with the ability to
gain some insight into and/or control over the quality
of their software product. Having a model that uses
metrics and provides feedback about quality at different
points in the development lifecycle is important to
software producers so that they may gain some insight
into the quality of their product and how they can
maintain and increase the level of quality over time.
The main disadvantages that the models described in
this section have in common is that, for the most part,
effort is required to define the metrics to be measured,
measure them, and analyse their results for an insight
into quality.

The approach proposed by McCall et al. has been
criticised for being too subjective [17]. In addition,
the assessment of quality is performed using a set of
worksheets that require values for each metric. The
effort required to implement this approach is a limiting
factor to its implementation, and may yield results too
late to be acted upon.

The approach proposed by Boehm et al. suggest
that metrics be defined for a project based on factors
like the intended users, characteristics and environ-
ments. This also creates a barrier to adoption since
the effort to define them is required for every project.

4 Research Article – SACJ No. 52, July 2014

While this approach does suggest automated evalua-
tion of metrics, there could still be metrics for which
manual evaluation is required.

The approach proposed by Hyatt and Rosenburg
is biased to the view of the project manager, and this
may mean that the approach does not cater for other
perspectives.

It is important to bear in mind that industry stan-
dards are not the definitive instruction on a matter—
they are merely guidelines based on experience. Thus,
it is natural to expect that there are supporters and
detractors of these standards. The efficacy of ISO9000
in increasing quality has been questioned by Stelzer et
al. [18]. When organisations investigate implementing
CMMI, there is evidence [19] [20] indicating that they
may decide against implementing CMMI because the
cost of implementing is seen as unjustified against the
benefits. The effort requireds to implement the PSP
approach could be a barrier to its adoption: engineers
or developers need to estimate and calculate a number
of metrics during their work, and while the benefit is
supposed higher quality, the cost is extra effort that
would not otherwise have had to be expended.

The approach described in the next section at-
tempts to provide some insight into the quality of a
software product without requiring the implementor
to expend effort over and above the effort that would
normally be expended to write requirements, create
tests and monitor defects.

3 A PRAGMATIC APPROACH

This section provides an overview of a pragmatic ap-
proach to gaining insight into quality in software devel-
opment. More details about the approach are covered
in subsequent sections.

A software development project can be defined as
a project undertaken to provide some software prod-
uct that fulfills some requirements of a user or set of
users [2]. As discussed in the literature covered in
Section 2, one of the indicators of quality in a soft-
ware development project is the degree to which the
produced software fulfills the stated requirements of
the user. Such a view of quality corresponds to the
manufacturing-based approach to quality mentioned in
the introductory remarks of Section 1. Code is devel-
oped in order to meet these requirements, and tests are
run against the code to confirm whether requirements
have been met. In cases where tests fail (indicating
a requirement has not been met) a defect is raised.
The aim of a software project, then, is to fulfil all of
the requirements and confirm these requirements are
met, handling defects as they arise. In general, the
approaches discussed in the Section 2 have some view
of requirements, tests and defects and the relationship
between them.

The main difference between the approaches dis-
cussion in Section 2 and the approach discussed in
this Section is the effort required to gather and calcu-
late metrics associated with quality. In this approach,
metrics pertaining quality are calculated automatically

based on processes and information that would nor-
mally be part of the development process anyway (tests,
requirements and defects) so relatively little effort is
required to implement this approach.

In the text below, a metric or product quality
indicator will be proposed to measure the extent to
which stated requirements have been met. To this
extent, the approach is also classifiable as a product-
based approach to quality—i.e. it holds that quality
is measurable and related to the degree to which the
product possesses attributes that are specified as re-
quirements. However, it should be emphasised that
the measure is not being proposed as a panacea to the
multi-dimensional problem of assessing quality, but
rather as a single and pragmatic mechanism to assist
in addressing that problem.

3.1 Assumptions

A software project consists of a set of deliverables.
Among these deliverables are code and documentation.
The delivered code and documentation are created
from some source code (and documentation) that are
developed over the course of the project by software
developers. The source code is represented by a set of
files. Over the course of the project, these source files
will be created, modified and tested until they fulfil
the stated requirements.

Most software development methodologies require
a testing phase, so at certain points of the software
development life cycle, tests will be run against an
interim software product, or release. The execution of
these tests may uncover differences between the stated
requirements and what the interim product actually
delivers. These differences can be handled as defects.
Successive phases or iterations of the development life
cycle, then, will attempt to address these defects, with
the goal being no deviation between the product and
the requirements (i.e. there are no defects).

The assumptions used in this approach are listed
below.

• There is a set of requirements indicating the re-
quirements that the developers of the software
need to fulfill. The requirements are easily identi-
fiable and can be enumerated and can change over
the course of the project. The requirements can
be functional or non-functional, but this approach
assumes that:

– the requirements (functional and non-
functional) have been stated in some set of
requirements, and

– all of the stated requirements can be verified
using some test.

• There is a set of source files that are developed
to fulfil the requirements of the software product.
Each source file contributes to the fulfilment of
zero or more requirements. Some source files may
provide helper functions such as string formatting
and are therefore not directly involved in fulfilling
requirements. A requirement may be fulfilled by
a single source file or a number of source files.

Research Article – SACJ No. 52, July 2014 5

• There is a set of tests that are run against a set
of source files to verify that there is no deviation
between what is delivered and what is required
(i.e. there are no defects). A test exposes only
one defect and a defect is raised by only one test.
This does imply some constraint on how tests are
designed.

• Each requirement will be verified by one or more
test(s). Because source files are associated with
requirements, this implies that a set of tests is as-
sociated with a set of source files—the cardinality
of the relationship being unrestricted.

• There is a set of defects, which represent the de-
viation between delivered product and stated re-
quirements. Each defect is found as a result of
a test execution. Each source file may be associ-
ated with zero or more defect(s) and each defect
may be associated with one or more file(s). As
noted by Dijkstra, “Program testing can be used
to show the presence of bugs, but never to show
their absence” [21], and the approach proposed
here only deals with those defects that are observ-
able as a result of running tests on the software.
If there are latent defects that are not uncovered
by testing (for example, because the testing was
not rigorous enough), then these defects would
not be considered in this approach.

3.2 The Product Quality Indicator

It is generally considered good practice for software
producers to use some form of SCM system in order
to manage changes to their software as the software
development lifecycle progresses. Subversion [22] is
a popular SCM system and supports the notion of
executing arbitrary processes when certain events oc-
cur, such as a change to some file under the control
of the repository. The approach proposed here uses
this mechanism to automatically calculate values for
metrics as the code for the project is modified and to
store the values of the metrics with the source code in
the SCM repository. The values are used to provide
an insight into the quality of the product under devel-
opment. The benefit of this approach is that it uses
processes and concepts that are generally part of the
software development process.

The metrics proposed here are defined based on
metrics intrinsic to most software development projects:
the proportion of the number of requirements met to
the total number of requirements and the proportion
of the number of tests that pass to the total number of
tests. The definitions of these metrics are as follows.

R =
Rmet

Rtotal
(1)

where Rmet and Rtotal are the number of requirements
claimed to have been met and the total number of
requirements, respectively. The concept of using the
proportion of total requirements to the requirements
met or defects is also discussed in [23], [24] and [25].

T =
Trun −D

Ttotal
(2)

where Trun is the number of tests run (pass or fail),
Ttotal is the total number of tests defined, and D is the
total number of defects raised by the tests that have
run. Each test can give rise to zero or one defects.

R provides an indication of the completeness of
the project. T provides an indication of how much the
value of R is validated by tests that pass; a confidence
factor of sorts. The value of R could be high because
all of the requirements are stated as met, but without
the tests to corroborate that claim, the quality cannot
be said to be high. These metrics are combined to give
a view of quality, Q, as below. The concept of using
the proportion of tests passing to failing is discussed
in [26] and [27].

Q = α×R+ (1 − α) × T (3)

where α is the weight of the value of R and 0 < α < 0.5.
The value of α is less than 0.5 because the relative
importance of T is higher as it provides a confidence
factor for the value of R.

As indicated in Equation 3, Q is calculated as a
linear combination of R and T where the sum of the
weights (or co-efficients) is 1. The reason for this is
so that different importance might be placed on each
of R and T . For example, a relatively low value of
α would ensure that Q remains realistic in a context
where a high proportion of requirements have been
met but a low proportion of tests passing have been
passed. Theoretically, the value of α is between 0 and
1. Here however α is constrained between 0 and 0.5, so
that the value of T is given a higher weight than the
value of R in the calculation of Q because the weighted
value of R will always be less than 0.5. The values of
R and T range between 0 and 1 and hence Q ranges
between 0 and 1.

The next section describes Metaversion, an im-
plementation of the approach described here using
Subversion as an SCM repository.

4 METAVERSION

This section describes an implementation of the ap-
proach described in Section 3 called Metaversion.

4.1 Collecting source file meta-data

As mentioned previously in this section, for each of
the source files in a software project, the following
information must be stored (as per the assumptions
noted in Section 3.1):

• details of the tests that include or act upon the
source file;

• details of the defects that the source file partici-
pate in—or contribute to; and

• details of the requirements that are claimed (and
are proven using tests) to be met by the source
file.

6 Research Article – SACJ No. 52, July 2014

It should be borne in mind that there may need
to be significant effort expended in order to determine
which file gives rise to a defect, but this effort would
have to be expended in the course of fixing the defect
anyway.

Using Subversion, which has meta-data capabili-
ties using properties, the required meta-data can be
stored. The approach discussed here does not rely
on Subversion being used as the SCM system. The
approach would work with any SCM system that sup-
ports setting arbitrary metadata on individual files in
the repository. Subversion was chosen for this imple-
mentation, although there are other SCM systems such
as Git [28] that could be used.

Subversion properties can have any name and are
version-controlled along with the file itself. This means
that over time, as the contents of the file change and
requirements, tests and defects are associated with it,
the values of the properties also change. The prop-
erty names and values that are to be set against each
version of a source file (as applicable) are listed be-
low. Note that the identifiers referred to below are the
test numbers, requirements numbers or defect numbers
that identify each of the tests, requirements or defects
in the project.

mv:tests-pass A list of identifiers for the tests that
have run and are known to have passed for this
version of the file.

mv:tests-total A list of identifiers for all of the tests
that are associated with this version of the file.

mv:tests-fail A list of identifiers for the tests that
have run and are known to have failed for this
version of the file.

mv:defects-open A list of identifiers for the defects
that have been reported against this version of
the file and are as yet unresolved.

mv:defects-closed A list of identifiers for the defects
that have been reported against this version of
the file and are resolved.

mv:req-met A list of identifiers for requirements that
have been proven to be fulfilled by this version of
the file.

mv:req-unmet A list of identifiers for requirements
that have been proven not to be fulfilled by this
version of the file (e.g. after a defect has been
raised against a previously met requirement).

mv:req-total A list of identifiers for requirements
that this version of the file is supposed to fulfil.

The mv:req-total property would be set based on
the requirements specification—hence the assumption
in Section 3.1 that, for ease of reference, there should
be an enumerated list of requirements. Based on these
requirements, a set of tests would be created, and the
mv:tests-total property would be set from these.

If testing were an automated process, the setting
of the mv:tests-pass and mv:tests-fail properties could
be done by the software tool performing the testing. If
a defect management system was in use, when a defect
is raised, it could set the value of the mv:defects-open
property. Similarly, when a defect was resolved, the

mv:defects-closed property could be set. The mv:req-
met and mv:req-total properties could have their values
automatically set by some requirements management
tool, if one were in use. If there are details about
which tests are related to which requirements, then
details about met and unmet requirements can be
inferred from passed and failed tests respectively. The
properties mv:req-unmet and mv:tests-fail are used to
store this information.

If no automated software is in use for these areas of
the software project, the values could be set manually
as part of the planning (for requirements and tests)
and development and testing (for tests and defects).

Figure 1 depicts the collection of the properties
from the various sources in the software project.

4.2 Using source file meta-data

The value of storing the property meta-data is in the
analysis thereof. Using the values of these properties
and the quality equation described in Equation 3 (and
any other metrics that can be derived from these prop-
erties), it is possible to get some idea of the quality of a
particular source file, but perhaps of more value is the
collective quality of the set of source files: the quality
of the software product as a whole. This approach
(as mentioned before) is not prescriptive regarding the
mechanism for extracting the meta-data nor the tools
to use to do it. This implementation is a suggestion of
how this could be done.

One approach to using the source file meta-data
would be to step through every file in the repository,
read the values of the properties and build a report
from that data. As the size of the repository grows,
however, this approach would take longer to produce
results because there are more source files for which
to store meta-data and hence more meta-data.

A more scalable approach would be to have the
Subversion repository react when a property is set
on a file (and that property is one of the properties
mentioned in Section 4.1) by storing the data in some
intermediate location. The Subversion application
provides this event-based mechanism through the use
of hooks. These hooks allow custom applications to
run when some activity occurs in the repository. The
hook of interest to Metaversion is the post-commit
hook. This hook is triggered when any file or change
to a file is committed to the repository (including
property changes). These hooks allow for an event-
driven approach to the analysis of the meta-data as
opposed to a polling approach. The data needed to
perform analysis and reporting will be built up over
time and the reporting application need only consult
the intermediate store of data to build reports and not
the entire Subversion repository.

Figure 2 shows how the properties set on source
files in the repository will be stored in an intermediate
database. The post-commit hook will be configured to
call an application. This application is called Metaver-
sionCommitHandler, and was produced as part of this
study.

Research Article – SACJ No. 52, July 2014 7

Figure 1: Gathering source file meta-data

Figure 2: Reacting to post-commit hook

The meta-data stored with source files will be ex-
tracted using a reporting application. This reporting
application will gather the meta-data from the repos-
itory and produce reports that will aid the develop-
ment team, managers and sponsors of the software
product to gain insight into the quality performance
of the software. This reporting application was called
MetaversionReporter and was produced as part of this
study.

4.3 Metaversion Data Model

Metaversion reflects the relationship between tests,
defects and requirements as indicated in Figure 3. Each
file can have zero or more tests, zero or more defects
and zero or more requirements associated with it.

4.4 MetaversionCommitHandler

When a user (developer, manager, sponsor, etc.) sets
a property on a file in the repository and commits

the changes to the Subversion repository, the repos-
itory invokes the post-commit hook. The hook, in
turn, invokes the MetaversionCommitHandler appli-
cation. The MetaversionCommitHandler application
calculates which properties have changed (in particu-
lar, the properties from the list in Section 4.1 for each
file for which properties have been set). A MySQL
[29] database is updated with the details stored in the
properties: requirements, tests and defects are asso-
ciated with files, as appropriate. Figure 4 shows this
process. MetaversionCommitHandler is used in the
case study in Section 5.

4.5 MetaversionReporter

As mentioned, the value of the meta-data stored in the
intermediate database is in the analysis thereof. The
MetaversionReporter application is run by a member
of the team developing the software in order to gain in-
sight into the quality of the product. (Here no specific
position is taken about whether this role should be

8 Research Article – SACJ No. 52, July 2014

Figure 3: Metaversion data model

Figure 4: Metaversion commit process

assigned to the developer, the manager, the sponsor,
etc.) The MetaversionReporter application reads the
information from the MySQL database that is popu-
lated by the MetaversionCommitHandler application.
This information is then used to calculate the value
of Q (as defined in Equation 3). The information is
then displayed to the user. This process is depicted
in Figure 5. MetaversionReporter is used in the case
study in Section 5.

The next section presents a case study where this
approach was implemented using the implementation
described in this section.

5 CASE STUDY

This section describes a small case study that was per-
formed using an implementation, called Metaversion,
of the approach described in Section 4. The value of Q

as defined in Section 4 is provided across the 6 interim
products that the project yielded. For all calculations
of Q, a value of 0.3 was used for α—i.e. the propor-
tion of tests run and consequent defects exposed was
weighted more heavily than the proportion of require-
ments met. A survey was used as a comparison against
the values of Q that were automatically calculated
after each interim product.

The case study was performed on a software project
called Timezonr1, which is an Android [30] application.
The application is a small application of around 1500
lines of code. The application was written by a single
developer—the first author of this paper. It was tested
by two independent people—i.e. non-authors of the
paper. The testers answered the survey questionnaire
after each interim build, and from this questionnaire,

1The TimeZonr application can be found at
http://lnkr.co.za/timezonr.

Research Article – SACJ No. 52, July 2014 9

Figure 5: Metaversion reporting process

an indication of ‘perceived quality’ was found. This
‘perceived quality’ was deduced, along with an indi-
cation of the completeness of the product and the
confidence that the respondents of the survey had in
their perception of completeness. These responses were
compared with the calculated value for Q, R and T ,
respectively.

Figures 6, 7 and 8 show the values for Q, R and
T , respectively, as calculated by the approach, against
the average responses of the survey.

Figure 6 indicates that the perceived quality in-
creased as the product was developed. This implies
that the perception of the testers was that as the
project was being developed, the product produced
got closer to what they wanted. The calculated quality
Q also increased as the product was being developed.
This is because, as the product was developed, more of
the requirements were being met, and more of the tests
indicating adherence to requirements were passing.

Figure 7 indicates how the completeness of the
product was perceived by the testers and the calcu-
lated values of completeness. In general, both per-
ceived and calculated completeness increased over the
course of the project, and this indicates that testers
believed that the project was progressing towards a
state of completion, and that the number of require-
ments (which were known to the testers) being met
was increasing over the course of the project. At build
4 and 5, the perceived completeness was less than the
calculated completeness. This could well be because
of the combination of the testers’ understanding of

the term completeness and the discrete interval from
which they had to choose values for completeness. The
calculated and perceived values were only equal once
other than the start and end of the project. At build 4,
the calculated completeness was 1.0, which implies that
all requirements were claimed to have been met. The
perception of the respondents, however, was that the
project was not complete. Since the respondents knew
the requirements, this difference could be attributed
to the presence of defects. The respondents knew that
the software had defects, and they may have surmised
therefore that the software was incomplete.

Figure 8 indicates that the confidence in complete-
ness increased as the project progressed. The testers
perceived that they were more sure of their assessment
of completion as the project progressed. This could be
due to familiarity with the product, and an increase in
understanding of how the application worked. In addi-
tion to this, this measure indicates that the testers felt
they had enough of a view of the completeness of the
product to be sure of it. For the calculated confidence
in completion, this indicates that a higher proportion
of the tests that were being run were passing, which
lends some degree of confidence to the completeness
of the product. The values of the completeness confi-
dence from the respondents were all high. This could
be attributed to two things. Firstly, the responses only
had discrete values, and so the respondent would not
have been able to give an answer inbetween the values.
Thus, they may have, for example, chosen 4 out of 5,
when they actually wished to give a response of 3.5.

10 Research Article – SACJ No. 52, July 2014

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6

Q
u
a
lit

y

Build number

Perceived vs. calculated

Perceived
Q

Figure 6: Quality: perceived vs. calculated

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

C
o
m

p
le

te
n
e
s
s

Build number

Perceived vs. calculated

Perceived
Calculated

Figure 7: Completeness: perceived vs. calculated

Secondly, the respondents knew the requirements of
the build when they were testing, so they could actu-
ally prove their answer to the completeness question.
Since all of the responses were not 5 out of 5, this could
imply they did not do this, or it could imply that there
was some other factor influencing their understanding
of the question.

These figures show that, in this exercise, the ‘per-
ceived quality’ of the product had a fairly close similar-
ity to the metric calculated by the new approach. This
supports the view that the metric Q could be used
to gain some insight into the quality of the software
product.

6 CONCLUSION

This paper provided an overview of approaches to
gaining insight into the quality of software products
and pointed to the fact that there appears to be a deficit
in quality metrics that can be easily and pragmatically

gathered. A pragmatic approach was proposed in
Section 3 to provide software producers with insight
into product quality based on processes, systems and
artifacts usually present in a software project. The
case study described in Section 5 is seen as a limited
pilot study to test the feasibility of implementing the
proposed approach in situ.

The case study is clearly limited in terms of project
size, number of testers and the self-involvement of one
of the authors. It therefore does not claim to show
universal applicability of the approach proposed. Nev-
ertheless, it does provided evidence that quality as
perceived by non-developers (one of the testers was
actually also the client of the product) coheres with
the proposed metrics. Of course, more evidence as to
the level of insight the approach provides into software
quality should be attained by implementing the ap-
proach across a wider variety of projects of varying
sizes.

Executing the implementation of this approach

Research Article – SACJ No. 52, July 2014 11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

C
o
m

p
le

te
n
e
s
s
 c

o
n
fi
d
e
n
c
e

Build number

Perceived vs. calculated

Perceived
Calculated

Figure 8: Completeness confidence: perceived vs. calculated

also brought to light further possibilities for future
work to improve the approach. The most immediate
are as follows:

• As stated, the approach requires that the imple-
mentor sets requirements, tests and defects against
each file in the repository. This approach still
requires effort on the part of the implementor. Fu-
ture work could be done to automate this process,
by integrating requirements gathering software
and defect tracking software. Such integrations
do exist, for example Scmbug [31].

• Currently, the approach proposes only three met-
rics, and further work could be done to provide
further metrics based on the SCM repository. An
example could be productivity (perhaps based on
the number of lines of code submitted per day).

• Currently, the approach proposes Subversion as an
SCM, and future work could investigate making
the approach more generic so that any SCM could
be used.

From a broader perspective, the study highlights the
possibilities of using version control systems more effec-
tively for gathering statistical evidence to monitoring
quality as software projects progress through their
life-cycles.

REFERENCES

[1] IEEE Computer Society. “IEEE standard glossary of
software engineering terminology”, 1990.

[2] International Organization for Standardization. SANS
9000:2005 — Quality management systems — Fun-
damentals and vocabulary. Standards South Africa,
2005. ISBN 0-626-17567-4.

[3] IEEE Computer Society. “IEEE standard for a soft-
ware quality metrics methodology”, 2004.

[4] D. A. Garvin. “What does ”product quality” really
mean?” Sloan Management Review, vol. 26, no. 1, pp.
25–45, 1984.

[5] M. B. Chrissis, M. Konrad and S. Shrum. CMMI:
Guidelines for Process Integration and Product Im-
provement. Addison Wesley Professional, 2003. ISBN
978-0-321-15496-5.

[6] W. S. Humphrey. “The Personal Software Process
(PSP)”. Tech. rep., Carnegie Mellon Software Engi-
neering Institute, 2000.

[7] International Organization for Standardization. Soft-
ware Engineering — Software product Quality Require-
ments and Evaluation (SQuaRE) — Guide to SQuaRE.
Standards South Africa, 2007. ISBN 978-0-626-19201-
3.

[8] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J.
Macleod and M. J. Merrit. Characteristics of software
quality. TRW Series of Software Technology. North-
Holland Publishing Company, 1978. ISBN 0444851054.

[9] L. E. Hyatt and L. H. Rosenburg. “A software quality
model and metrics for identifying project risks and
assessing software quality”. In European Space Agency
Software Assurance Symposium and the 8th Annual
Software Technology Conference, Product Assurance
Symposium and Software Product Assurance Work-
shop, Proceedings of the meetings held 19-21 March,
1996 at ESTEC, Noordwijk, the Netherlands, p. 209.
1996.

[10] J. A. McCall, P. F. Richards and G. F. Walters. “Fac-
tors in software quality”. Tech. rep., Rome Air Devel-
opment Center, Air Force Systems Command, Griffiss
Air Force Base, New York, 1977.

[11] H. D. Mills, M. G. Dyer and R. C. Linger. “Cleanroom
software engineering”. IEEE Software, vol. 9, pp. 19–
25, 1987.

[12] H. Barkmann, R. Lincke and W. Löwe. “Quantitative
evaluation of software quality metrics in open-source
projects”. In International Conference on Advanced
Information Networking and Applications Workshops,
pp. 1067–1072. 2009.

[13] G. Gousios and D. Spinellis. “Alitheia Core: An
extensible software quality monitoring platform”. In
Proceedings of the 31st International Conference on
Software Engineering, ICSE ’09, pp. 579–582. IEEE

12 Research Article – SACJ No. 52, July 2014

Computer Society, Washington, DC, USA, 2009. ISBN
978-1-4244-3453-4.

[14] P. A. Currit, M. G. Dyer and H. D. Mills. “Certifying
the Reliability of Software”. IEEE Transactions on
Software Engineering, vol. 12, no. 1, pp. 3–11, 1986.

[15] International Organization for Standardization.
“SANS 9126:2003 — Software Engineering — Prod-
uct Quality”, 2003.

[16] International Organization for Standardization. Soft-
ware engineering - Product quality Part 1: Quality
model. Standards South Africa, 2003. ISBN 0-626-
14674-7.

[17] B. Kitchenham and S. Pfleeger. “Software quality:
The elusive target”. IEEE Software, vol. 13, no. 1, pp.
12–21, 1996.

[18] D. Stelzer, W. Mellis and G. Herzwurm. “A critical
look at ISO 9000 for software quality management”.
Software Quality Control, vol. 6, no. 2, pp. 65–79, Oct.
1997. ISSN 0963-9314.

[19] M. Staples, M. Niazi, R. Jeffery, A. Abrahams, P. By-
att and R. Murphy. “An exploratory study of why
organizations do not adopt CMMI”. Journal of Sys-
tems Software, vol. 80, no. 6, pp. 883–895, Jun. 2007.
ISSN 0164-1212.

[20] N. Khurshid, P. L. Bannerman and M. Staples. “Over-
coming the first hurdle: Why organizations do not
adopt CMMI”. In Proceedings of the International
Conference on Software Process: Trustworthy Soft-
ware Development Processes, ICSP ’09, pp. 38–49.
Springer-Verlag, Berlin, Heidelberg, 2009. ISBN 978-
3-642-01679-0.

[21] P. Naur and E. B. Randell (editors). Software En-
gineering: Report of a conference sponsored by the
NATO Science Committee. 1961.

[22] M. Mason. Pragmatic version control using Subversion,
2nd edition. The Pragmatic Bookshelf, 2006. ISBN
978-0-9776166-5-7.

[23] V. Wyatt, J. Distefano, M. Chapman and E. Aycoth.
“A metrics based approach for identifying requirements
risks”. In 28th Annual NASA Goddard Software Engi-
neering Workshop. 2003.

[24] C. Michael, G. McGraw and M. Schatz. “Generating
software test data by evolution”. Software Engineering,
IEEE Transactions on, vol. 27, no. 12, pp. 1085–1110,
2001. ISSN 0098-5589. doi:10.1109/32.988709.

[25] D. Richter. Determination of concurrent software en-
gineering use in the United States. Universal Pub-
lishers, 1999. ISBN 9781581120653. URL http:

//books.google.co.za/books?id=lLXWAa0VFLMC.

[26] A. Vetro, M. Morisio and M. Torchiano. “An empirical
validation of Find Bugs issues related to defects”. In
15th Annual Conference on Evaluation & Assessment
in Software Engineering. 2011.

[27] M. Cohn and D. Ford. “Introducing an agile process
to an organization [software development]”. Computer,
vol. 36, no. 6, pp. 74–78, 2003.

[28] T. Swicegood. Pragmatic version control using Git.
The Pragmatic Bookshelf, 2008. ISBN 978-1-9343561-
5-9.

[29] P. DuBois, S. Hinz, J. Stephens, M. Brown and T. Bed-
ford. MySQL 5.1 reference manual. Oracle Corpora-
tion, 2008.

[30] Google. “Android”. URL http://www.android.com/.

[31] K. Makris. “Scmbug manual”, 2004. URL http:

//lnkr.co.za/scmbug-manual.

http://books.google.co.za/books?id=lLXWAa0VFLMC
http://books.google.co.za/books?id=lLXWAa0VFLMC
http://www.android.com/
http://lnkr.co.za/scmbug-manual
http://lnkr.co.za/scmbug-manual

	Introduction
	Software Quality Models in the literature
	McCall's Quality Factors
	Hyatt and Rosenburg's Software Quality Model
	Boehm's Characteristics of Software Quality
	Cleanroom Software Engineering
	SCM-based approaches
	ISO25000
	ISO9000
	CMMI
	The Personal Software Process (PSP)
	Analysis

	A pragmatic approach
	Assumptions
	The Product Quality Indicator

	Metaversion
	Collecting source file meta-data
	Using source file meta-data
	Metaversion Data Model
	MetaversionCommitHandler
	MetaversionReporter

	Case Study
	Conclusion

