
Research Article – SACJ No. 53, August 2014 45

Determining the difficulty of accelerating problems on a GPU

Dale Tristram, Karen Bradshaw

Department of Computer Science, Rhodes University, P. O. Box 94, Grahamstown, South Africa

ABSTRACT

General-purpose computation on graphics processing units (GPGPU) has great potential to accelerate many scientific
models and algorithms. However, since some problems are considerably more difficult to accelerate than others, ascertaining
the effort required to accelerate a particular problem is challenging. Through the acceleration of three typical scientific
problems, seven problem attributes have been identified to assist in the evaluation of the difficulty of accelerating a problem
on a GPU. These attributes are inherent parallelism, branch divergence, problem size, required computational parallelism,
memory access pattern regularity, data transfer overhead, and thread cooperation. Using these attributes as difficulty
indicators, an initial problem difficulty classification framework has been created that aids in evaluating GPU acceleration
difficulty. The difficulty estimates obtained by applying the classification framework to the three case studies correlate well
with the actual effort expended in accelerating each problem.

KEYWORDS: GPGPU, OpenCL, problem difficulty classification

CATEGORIES: D.1.3, D.2.8

1 INTRODUCTION

Accelerating scientific problems on graphics processing
units (GPUs) can result in orders of magnitude speedup
over CPU-based solutions.

With Cray’s Titan, the world’s second fastest su-
percomputer1, making extensive use of GPUs, more sci-
entists are likely to be interested in using these devices
to accelerate their models and algorithms. However,
because of the way in which GPUs have been designed,
some problems are considerably harder to accelerate
than others.

For scientists unfamiliar with the architecture and
programming of GPUs, the distinction between easily
accelerated problems and those that are very difficult
(yet possible) to accelerate is likely to be unclear. For
this reason, novice GPU programmers may be discour-
aged if the performance achieved does not meet their
expectations.

One way of addressing this would be to create
a problem difficulty classification system that could
provide users with information on the level of problem
difficulty and the kind of knowledge and optimisations
necessary to achieve satisfactory speedup on a GPU.

However, in order to create such a system, we
first need to identify the problem attributes that are
important in distinguishing the different levels of diffi-
culty. This paper sets out to determine some of these
attributes through the acceleration of three different
problems and then validate them by applying the clas-
sification framework to the problems accelerated.

Email: Dale Tristram d.tristram@boost.za.net, Karen Brad-
shaw k.bradshaw@ru.ac.za

1http://www.top500.org/lists/2013/06/

Section 2 provides a brief overview of GPU com-
puting. Sections 3, 4, and 5 detail the acceleration
of a hydrological model, k -difference string matching,
and a radix sort, respectively. Section 6 discusses the
creation of the classification framework and its appli-
cation to the accelerated problems. Finally, Section 7
concludes.

2 GPU COMPUTING

There are a few key differences between the architec-
tures of common GPUs and CPUs that must be under-
stood in the context of general-purpose computation
on graphics processing units (GPGPU).

A brief overview of the processing and memory
models of a GPU is presented for some insight into
these differences, as well as a high-level overview of
the GPU computing framework used in this study.

2.1 Graphics Processing Units

Although a number of different GPU architectures
exist, modern GPUs all share certain architectural
similarities [1]. The AMD Radeon HD7970, hereafter
referred to as the HD7970, is used as the reference
GPU when explaining the general GPU processing and
memory model.

2.1.1 GPU Processing Model

One of the fundamental differences between GPUs and
CPUs is the kind of processing that is prioritised, and
consequently their respective number of processing
units. Modern CPUs typically have between two and
eight cores, and have been designed to maximise the

46 Research Article – SACJ No. 53, August 2014

speed of single threads of execution on those cores [2].
Conversely, GPUs have been designed to maximise
the total throughput of many threads of execution,
and have hundreds to thousands of stream processors
distributed over a number of compute units [2, 3, 4].
For instance, the HD7970 has 32 compute units, each
containing 64 stream processors, giving a total of 2048
stream processors [5]. GPUs are able to achieve a
high stream processor density by effective use of single-
instruction, multiple data (SIMD) processing, where
many processing elements are packed together, sharing
hardware resources at the cost of independent instruc-
tion execution [5, 3]. As a whole, GPUs are single
program, multiple data (SPMD) devices since each
compute unit is independent. Modern CPUs, which
are multiple instruction, multiple data devices, also
support SIMD processing through the use of exten-
sions such as streaming SIMD extensions and advanced
vector extensions, but on a much smaller scale than
modern GPUs [3].

2.1.2 GPU Memory Model

In contrast to CPU memory, GPU memory has been
designed to maximise bandwidth output rather than
minimise access latency [3]. However, with sufficient
parallelism, the high memory access latency can be
mostly hidden by doing alternative computation. The
five kinds of GPU memory usually available to the pro-
grammer are: private memory, local memory, global
memory, constant memory, and image/texture mem-
ory [1]. These memories and their relationships are
illustrated in Figure 1 for AMD’s Southern Island
GPUs. The movement of data between these five mem-
ory banks is left entirely to the programmer, making
it crucial for the programmer to understand the at-
tributes of each of the available GPU memories to
make good choices on where to store different pro-
gram data. This is unlike CPU architectures, where
data caching is mostly hidden from the programmer.
Transferring data to GPU memory is done through
the PCI Express bus for discrete GPUs. Since the
PCI Express bus is considerably slower than the GPU
memory, and possibly the host memory too2, it can
be a significant performance bottleneck for bandwidth
intensive applications.

2.2 OpenCL

OpenCL is an open, royalty-free standard developed by
the Khronos Group aimed at providing a single plat-
form for parallel computation across heterogeneous
computation devices [6]. OpenCL was used to acceler-
ate the problems discussed in this paper, and thus we
give a high-level overview of its execution model and
programming model.

The following information on OpenCL was sourced
from the official OpenCL 1.2 specification [6], unless
referenced otherwise.

2Standard computer memory is faster than PCI Express 2.x,
but not faster than the less widely used PCI Express 3.x, unless
the memory is operating in dual channel mode.

Compute Device

Local

Memory n

Local

Memory 1

Image / Constant Memory Data Cache (L2)

Global Memory
Constant

Memory

Device

Memory

(VRAM)

Private

Memory 1

Private

Memory n

Compute Unit 1

Processing

Element 1

Processing

Element n

Private

Memory 1

Private

Memory n

Compute Unit n

Processing

Element 1

Processing

Element n

PCIe
DMA

Host

L1 L1

Figure 1: Memory hierarchy and interrelationships of
Southern Island devices, adapted from [5].

2.2.1 Execution Model

OpenCL code is executed by enqueuing kernels on
an OpenCL accelerator (any device with an OpenCL
driver), which are functions that act as entry points
into the OpenCL program. To schedule a kernel for
execution, the kernel’s NDRange must be specified.
An NDRange is simply an index range that can have
between one and three dimensions. Each index in the
NDRange corresponds to a unique thread of execution
to be scheduled on the OpenCL accelerator. OpenCL
divides the index space into groups known as work-
groups, which are groups of work-items guaranteed
to be executed together on the same compute unit,
allowing them to share data.

On AMD devices, work-groups are further divided
into a series of wavefronts of at most 64 threads. An
illustration of an OpenCL NDRange is provided in
Figure 2. This division of work-items into groups
allows for divergent code to be executed efficiently
by different work-groups, otherwise known as SPMD
execution. A kernel is given access to data by specifying
OpenCL buffers, images, or image arrays as kernel
arguments. When a kernel is run, each OpenCL thread
executes exactly the same kernel program, with the
only difference being its thread index, allowing it to
select different input data.

2.2.2 Programming Model

The language used for writing OpenCL programs is
a variation of the C99 specification, with added ex-
tensions for parallelism. OpenCL programs can be
written in a data-parallel style, task-parallel style, or a
combination of the two. The data-parallel style, which
is the most commonly used approach, expresses paral-
lelism by executing the same code on multiple threads
with different input data. In the task-parallel style,
parallelism is expressed by running different “tasks”,
or OpenCL kernels, in parallel, and using vector data
types.

Research Article – SACJ No. 53, August 2014 47

W
o
rk

-g
ro

u
p
 s

iz
e

 S
y

Work-group size Sx

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

W
o
rk

-g
ro

u
p
 s

iz
e

 S
y

Work-group size Sx

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

W
o
rk

-g
ro

u
p
 s

iz
e

 S
y

Work-group size Sx

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

W
o
rk

-g
ro

u
p
 s

iz
e

 S
y

Work-group size Sx

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

W
o
rk

-g
ro

u
p
 s

iz
e

 S
y

Work-group size Sx

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

W
o
rk

-g
ro

u
p
 s

iz
e

 S
y

Work-group size Sx

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

W
o
rk

-g
ro

u
p
 s

iz
e

 S
y

Work-group size Sx

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

W
o
rk

-g
ro

u
p
 s

iz
e

 S
y

Work-group size Sx

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

W
o
rk

-g
ro

u
p
 s

iz
e

 S
y

Work-group size Sx

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

NDRange size Gx

N
D

R
a
n
g
e

 s
iz

e
 G

y

Figure 2: Illustration of a 2-dimensional NDRange composed of work-groups containing work-items (adapted
from [6]).

3 HYDROLOGICAL MODEL

Hydrological models are simplified representations of
certain processes within the hydrological cycle. These
models are primarily used to increase our understand-
ing of the observed processes and to make hydrological
predictions or estimations [7]. A recent trend in hydro-
logical modelling is the use of uncertainty analysis [8].
Using this approach, a model is run thousands of times
using different input parameters. This can take a
very long time on a CPU, but could stand to benefit
greatly from GPU acceleration owing to the problem’s
SIMD-like nature. The hydrological uncertainty model
accelerated here is based on an adapted version of the
Pitman rainfall-runoff model used for water resource
estimation.

3.1 The Pitman Model

The Pitman model is a conceptual type, monthly time-
step, semi-distributed (sub-catchment) model that in-
cludes some 23 parameters that govern the algorithms
defining the hydrological storages and processes such
as evapotranspiration, interception, surface runoff, soil
moisture storage, interflow, groundwater recharge and
drainage, and catchment routing. An overview of the
hydrological processes and their relationships for this
version of the model is illustrated in Figure 3. The
ability of the model to accurately represent the hydro-
logical response of any given catchment is reliant on
the correct specification of the model parameters. The
uncertainty version of this model is designed to assist
in the estimation of these parameters, and allows the

model results for many different options within the
feasible parameter space to be explored [8]. This is
done by running many ensembles (or instances) of the
model, each with a different set of parameters. Tens
of thousands of ensembles are desirable to adequately
explore the parameter space, but this takes hours to
complete on a modern desktop CPU, thus making
GPUs an attractive alternative.

3.2 Implementation and Optimisations

The core model is approximately 1550 lines of Delphi
code. Rather than extracting this code from the Del-
phi program and attempting a direct conversion into
OpenCL, the model was first implemented in an alter-
native CPU language with good debugging tools to
potentially save some debugging on the GPU, which is
more difficult. C# was selected as the alternative lan-
guage because of its syntactical similarity to OpenCL,
and the high quality debugging tools available for it.
Once the model had been successfully implemented
in C#, it was converted into OpenCL. The overall
process followed is illustrated in Figure 4.

This approach proved to be fruitful, as conversion
errors were identified in the C# version that may
have taken significantly longer to detect if a straight
conversion into OpenCL was attempted because of
inferior debugging tools and the scale of parallelism.

A direct conversion of a model or algorithm into
OpenCL rarely results in optimal use of the GPU.
This conversion was no exception, and we had to im-
plement one significant optimisation to get a satisfac-
tory speedup. This optimisation involved changing the

48 Research Article – SACJ No. 53, August 2014

Time series of precipitation

Time series of potential evap. Interception function

Impervious area

Catchment absorption
function Surface runoff

Soil moisture store

Actual evaporation

Soil
moisture

runoff

function

GW recharge
function

GW storage &
discharge function

Catchment lag
& attenuation

Abstractions & return flow

Upstream inflow

Reservoir or
wetland sub-model

Downstream outflow

Channel lag &
attenuation

Total sub-catchment runoff

Soil moisture
runoff

Small dam & abstraction function

Figure 3: Conceptual process diagram of the Hughes et al. [8] version of the Pitman model.

C#

Debug C#

Validate
Results

No

Validate
Results

No

Valid
Results?

Valid
Results?

Debug
OpenCL

Optimise

Integrate
Solution

Extract &
Convert

Delphi

Code
Conversion

Finished
Optimising?

Yes

No

Yes
OpenCL

Yes

Accelerated
Delphi Model

Figure 4: Approach taken to accelerate the uncertainty version of the adapted Pitman rainfall-runoff model.

memory access pattern, or memory stride, which is
relatively simple to understand and implement, and
can be applied to most GPU acceleration problems.

Memory Stride

A memory stride is defined by AMD’s Accelerated
Parallel Processing guide as “the increment in mem-
ory address, measured in elements, between successive
elements fetched or stored by consecutive work-items
in a kernel” [5]. Optimising the memory stride can
avoid or reduce GPU memory bank conflicts [5], which
serialise memory requests. A one-unit memory stride
is usually suitable for GPU programming, and is a

means of avoiding channel conflicts on the Southern
Island architecture [5], and taking advantage of mem-
ory access coalescing on other architectures. The data
layout of the original model resulted in an undesirable
many-unit stride between data accesses of consecutive
work items since the data for each model instance were
stored in large data records. To change this into a
one-unit stride, the variables within each of the model
instance structs were written to memory locations x
places apart, where x is the number of model instances.
A comparison between the original layout and this new
layout is illustrated in Figure 5.

Research Article – SACJ No. 53, August 2014 49

…

Conventional data layout

Optimised data layout

…

V
a

r 1

V
a

r 1

V
a

r 1

V
a

r 1

V
a

r 1

… … … …

V
a

r 1

V
a

r 2

V
a

r n

V
a

r 1

V
a

r 2

V
a

r n

V
a

r 1

V
a

r 2

V
a

r n

V
a

r 1

V
a

r 2

V
a

r n

V
a

r 1

V
a

r 2

V
a

r n

…

…

V
a

r 2

V
a

r 2

V
a

r 2

V
a

r 2

V
a

r 2

…

V
a

r n

V
a

r n

V
a

r n

V
a

r n

V
a

r n

…

M
e
m

o
ry

M

e
m

o
ry

Figure 5: Original data layout in memory compared to the optimised layout.

3.3 Results

The performance of the model was evaluated by aver-
aging the time taken to complete five runs of a number
of different model configurations and data. This was
done on a computer with an Intel i7 3770 CPU, and
an AMD Radeon HD7970 GPU. The results can be
seen in Figure 6.

The GPU is just over 12x faster than the mul-
tithreaded C# implementation, which is a healthy
order of magnitude speedup. To assess the consistency
of these results and the impact of running smaller
or greater numbers of ensembles, the model was also
benchmarked on a second actual dataset (representing
the Caledon River basin in South Africa), the results
of which are shown in Figure 7.

These results reveal that if 15 000 or more en-
sembles are run, the GPU’s speedup over the CPU
implementations is consistent with the results in Fig-
ure 6. However, if fewer than 15 000 ensembles are run,
the speedup starts declining. This is indicative of the
GPU not having sufficient work to hide memory access
latency. Considering that running a large number of
ensembles is desirable in uncertainty modelling, this
should not be a cause for concern. The performance
impact of data transfers to and from the GPU was also
measured and found to account for less than 0.1% of
the total program time, and this value decreased with
higher ensemble counts.

We therefore conclude that this model was rela-
tively easy to accelerate as it only required a single
GPU optimisation to achieve an order of magnitude
speedup.

4 K -DIFFERENCE STRING MATCHING

There are many GPU solutions for accelerating approx-
imate string matching, but very few for accelerating
large numbers of k -difference calculations, as could be
used in malware and spam detection [9, 10]. Although
the parallelism of this problem is similar to that of
the uncertainty model in Section 3, the high ratio of

memory transactions to computation makes it more
challenging to obtain a satisfactory speedup.

4.1 K -Difference Algorithm

K -difference algorithms calculate the edit distance
between two strings, which is the minimum number
of insertion, deletion, and replacement operations
needed to make two strings identical. The k value
specifies the maximum number of weighted errors
between two strings after which the strings are
considered sufficiently different to be classed as
non-matching. The basic algorithm uses a dynamic
programming approach [11]. A difference matrix
C0..i,0...j is built, where 0..i represents the charac-
ters in the test string m, and 0..j represents the
characters in the input string n. The first row
C0,j is populated with its column index, and the
first column Ci,0 is populated with its row index.
The rest of the table is populated by applying this rule:

Ci,j = (if mi == ni):
Ci−1,j−1

else:
1+min(Ci−1,j−1, Ci−1,j , Ci,j−1)

After the table has been populated, the last cell in the
table, Ci−1,j−1, contains the difference value between
the two strings. This value can then be checked against
the threshold k to determine whether the strings are
sufficiently similar for the matching algorithm. Com-
puting k -difference problems using this algorithm is
slow with a time complexity of O(mn), but the speed
can be significantly improved by using Ukkonen’s cut-
off heuristic and bit-parallelism. Ukkonen’s heuristic
ensures that only relevant sections of the dynamic pro-
gramming matrix are calculated, while bit-parallelism
involves packing the columns of the matrix into words
(w), such as unsigned integers, and transitioning be-
tween columns using bit operations [12, 13]. Even with
these improvements, the algorithm still has an average
time of O(kn/w) [13]. Although this may be accept-

50 Research Article – SACJ No. 53, August 2014

1

10

100

1000

10000

Delphi C# (single-threaded) C# (multithreaded) OpenCL (GPU) OpenCL (2 GPUs)

Model Execution Time and Speedups

Time (s)

Speedup

Figure 6: Performance results of different implementations of the hydrological uncertainty model.

1

10

100

1000

5000 10000 15000 30000

G
P

U
 S

p
e
e
d

u
p

Number of Ensembles

GPU Speedup on an Alternative Dataset

OpenCL (GPU) vs Delphi

OpenCL (GPU) vs C# (multithreaded)

Figure 7: GPU speedup when running 5 000 to 30 000 ensembles of the hydrological model on the Caledon River
dataset.

able for applications that perform a limited number
of comparisons, it is impractical for applications that
continuously perform large numbers of comparisons
without massively parallel hardware, such as GPUs.
The case we consider is spam or malware detection,
where signature test strings are tested against large
numbers of input strings.

4.2 Implementation and Optimisations

The core algorithm for computing a single column
in the dynamic programming matrix was based on
Hyyrö’s implementation [14]. Since the algorithm, ex-
pressed in approximately 84 lines of code, operates
predominantly on private (or register) memory, im-
plementing it in OpenCL was very straightforward.
One difference between the CPU and GPU versions of
the core algorithm was the GPU version’s use of 32-

Research Article – SACJ No. 53, August 2014 51

bit unsigned integers as bit-vectors for storing column
information as opposed to the CPU version’s use of
64-bit integers. Although using larger words is usu-
ally beneficial if the length of the strings compared
is greater than the word size, 64-bit memory transac-
tions are not as optimised as 32-bit transactions on
our GPU [5], and thus result in worse performance.
With the core algorithm being very similar to the CPU
version, the challenge of creating a fast GPU version
lay in optimising the memory accesses and scheduling.

4.2.1 Memory Loads & Caching

To ensure the string data in global memory were read
as fast as possible, the string characters were loaded
in batches into temporary private memory. This is
faster than reading and processing each character in-
dividually since it better utilises the available global
memory bandwidth. Another advantage of reading
the characters in batches before processing is the use
of private memory as a temporary cache to speed up
multiple accesses to the same data. This optimisation
resulted in an average speedup of 1.8x for short strings
and 1.3x for long strings.

4.2.2 Intra-Group Cooperation

Although each thread calculates its own k -difference
problem, one common element between the threads is
the test pattern. This was leveraged by using intra-
group thread cooperation to cooperatively read the
string from global memory and generate the required
bit-vector arrays (in the form of unsigned integers).
These were then stored in faster local memory to be
used by all the threads within the group. Since each
thread reads the same test pattern from local memory
during the running of the algorithm, local memory
loads benefit from broadcasted reads [5]. The speedup
from this optimisation ranged from an average of 37x
for short strings to 2.9x for long strings.

4.2.3 Kernel Scheduling

To reduce scheduling overhead, the NDRange for the
kernel was specified to be the number of threads that
would result in the optimal number of wavefronts per
GPU compute unit, as found through kernel profil-
ing. Using this method, each work-item may perform
multiple k -difference calculations.

4.3 Results

The GPU implementation was benchmarked against
an optimised multithreaded version of Hyyrö’s bit-
parallel algorithm running on an Intel i7 3770 CPU.
Four categories of test data were used: short texts of
no more than 64 characters, long texts of between 256
and 480 characters, a small alphabet of four characters,
and a large alphabet of 64 characters. For brevity,
we show the results of the extreme combinations of
the categories only. The number of strings compared
was also evaluated, but we found the difference to be

negligible (provided the GPU had sufficient work). The
results can be seen in Figure 8.

0

20

40

60

80

100

120

140

0 5 10 15 20

C
o

m
p

ar
is

o
n

 r
at

e

(m
ill

io
n

 s
tr

in
gs

 /
 s

e
co

n
d

)

Difference threshold (%)

CPU GPU (no sharing) GPU (with sharing)

(a) Small alphabet with short patterns.

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20

C
o

m
p

ar
is

o
n

 r
at

e

(m
ill

io
n

 s
tr

in
gs

 /
 s

e
co

n
d

)

Difference threshold (%)

CPU GPU (no sharing) GPU (with sharing)

(b) Large alphabet with long patterns.

Figure 8: Performance of the GPU compared to the
CPU for (a) a small alphabet with short patterns,
(b) a large alphabet with long patterns, with varying
difference thresholds for each.

It is clear from the results that the GPU performs
considerably better with shorter patterns. Given that
global memory is the GPU’s performance bottleneck
and shorter patterns require fewer loads from global
memory, this is unsurprising. An additional trend can
be seen where the GPU’s advantage over the CPU
declines with an increasing difference threshold for
short patterns. This can be attributed to increased
pressure on the GPU’s global memory, as more com-
parisons are necessary before the early exit threshold
is reached (or a match is found). Overall, the speedup
of the GPU solution over the CPU ranges from 9.5x to
28.1x. The performance of the GPU without using the
data sharing optimisation is also added for comparison,
since this optimisation is what makes this problem
harder than the problem accelerated in Section 3. The
speedup of the non-data sharing version over the CPU
is between 3.1x and 8.5x, a considerable drop from the
data sharing version.

The benchmarks were carried out with the GPU
program configured to send data both to and from
the GPU, which is the least desirable configuration
for data transfers. The overall contribution of data
transfers to the total runtime of the GPU program was
evaluated with the results for various configurations
given in Table 1. Interestingly, these results show that

52 Research Article – SACJ No. 53, August 2014

Table 1: Data transfer contribution to the total GPU
time of a number of different configurations at a thresh-
old of 4%. ‘Strings’ has been abbreviated to ‘str’.

Predicate strings 500 1000 2000 4000

Small α, short str. 11.7% 9% 8.9% 8.3%

Large α, long str. 0.2% 0.2% 0.2% 0.1%

the data transfer time impacts comparisons between
short strings the most with data transfers contributing
up to 11.65% of the total GPU time compared to
up to 0.16% for long strings. This shows that the
compute time increases considerably faster than the
data transfer time with longer strings.

5 RADIX SORT

The need for sorting is found in many Computer Sci-
ence problems. Although highly optimised sorting
algorithms have been developed for CPUs, sorting very
large datasets such as those found in existing GPU
applications can still be a performance bottleneck [15].
Unlike the problems discussed in Sections 3 and 4, sort-
ing does not map easily onto the GPU’s architecture
because of the inherent and irregular data dependence
between the records to be sorted [15]. However, using
the right techniques, a modern GPU can achieve a
sizeable speedup over a modern CPU for certain use
cases.

5.1 Radix Sort Algorithm

A least significant digit radix sort algorithm works by
repeatedly sorting the input keys based on increasingly
higher value sections of the physical representation of
the keys. The number of sections, and consequently
sorting passes, is determined by the width of the sec-
tion, otherwise known as the radix. A simple serial
radix sort of four values is illustrated in Figure 9.

9 5 4
3 5 4
0 0 9
4 1 1

4 1 1
9 5 4
3 5 4
0 0 9

Sort Digit 0 Sort Digit 1 Sort Digit 2 Final Result

0 0 9
4 1 1
9 5 4
3 5 4

0 0 9
3 5 4
4 1 1
9 5 4

Figure 9: Simplistic illustration of the steps performed
in a radix sort. In this example, the radix is a single
digit, i.e., units, 10’s and 100’s are sorted in turn.

Implementing an efficient parallel version of this
algorithm on the GPU is difficult because of the data
dependence properties of the algorithm, and would
require an experienced GPGPU developer. The cur-
rent fastest GPU radix sort algorithm was created by
Merrill and Grimshaw and is written in CUDA for
NVIDIA GPUs [15]. To understand the complexities
of accelerating a problem of this level of difficulty on

a GPU, we re-implemented Merrill and Grimshaw’s
algorithm in OpenCL for AMD’s Tahiti range of GPUs.

A very high-level overview of the algorithm imple-
mentation is illustrated in Figure 10. A more detailed
description of the implementation can be found in [15].
The implementation consists of three phases, each of
which is implemented in a separate GPU kernel:

Kernel 1: The purpose of this kernel is to determine
the aggregate number of keys that fall into the
different bit pattern buckets for each of the work-
groups, where the keys are decoded based on the
current offset in the key and the chosen radix.
Each thread reads a number of keys from global
memory and increments the appropriate bucket
in local memory depending on the key’s decoded
value. The decoded bit pattern is simply the
relevant section of the value as determined by the
radix and current sorting pass. The buckets in
local memory are then serially reduced to obtain
the final group bucket counts, which are saved in
global memory.

Kernel 2: This kernel performs a prefix scan of the
bit pattern buckets saved by the first kernel to
obtain the global bucket offsets for each of the
work-groups. This is done to provide each work-
group with an offset in global memory for each bit
pattern bucket to which it can scatter its keys.

Kernel 3: The final kernel can be conceptually sepa-
rated into four phases. In the first phase, the keys
are re-read from global memory, decoded, and
bucketed according to their bit pattern. This com-
putation is redundant since it was done in Kernel
1, but is repeated because it is faster than saving
and loading the results to and from global mem-
ory. In the second phase, the threads within the
work-groups cooperate to determine their inter-
group bucket offsets using prefix scans. The third
phase serves to optimise the scattering of the keys
by performing an intra-group key exchange that
results in the threads holding keys with offsets
that would result in ordered writes to global mem-
ory. The fourth and final phase adds the global
group bucket offsets to the local offsets to get the
final global memory offsets, and scatters the keys
accordingly.

Since the kernels only operate on a section of the
input keys, the results output by Kernel 3 are interme-
diate and are used as the input for the next iteration.
The number of iterations required to fully sort the keys
depends on the size of the key and the chosen radix.
For a typical key size of 32 bits, eight iterations of the
kernels would be needed to fully sort the keys using a
radix of four.

5.2 Implementation

Our version of Merrill and Grimshaw’s GPU radix sort
algorithm was implemented by rewriting a revision
of the CUDA algorithm in OpenCL. Apart from the
standard CUDA to OpenCL syntax changes, many of
the required changes involved modifying sections of

Research Article – SACJ No. 53, August 2014 53

Unsorted Keys

Read Keys Read Keys

Bucketing
keys by value

Bucket
aggregation

Group bucket totals

K
ern

el 1

Read bucket totals

Prefix scan

Global group bucket offsets

Prefix scan

K
ern

el 3

Local offsets Local offsets

Key exchange

Final key-offset pairs Final key-offset pairs

Intermediate Results

Calculating
local offsets

Calculating
global offsets

Exchanging
keys for write
coalescing

Key scattering

Calculating
global group
bucket offsets

K
ern

e
l 2

Re-read unsorted keys
& bucket

Re-read unsorted keys
& bucket

Read bucket totals

Bit pattern buckets

Serial Reduction Serial Reduction

G
lo

b
al gro

u
p

 o
ffsets

G
lo

b
al gro

u
p

 o
ffsets

Figure 10: High-level overview of the steps performed in Merrill and Grimshaw’s GPU radix sort algorithm. The
dotted line in the centre demarcates sections of independent computation.

code to use a wavefront of 64 instead of 32 threads
and modifying GPU architecture-specific settings that
governed the memory usage pattern of the algorithm.
Even though the algorithm was explicitly designed
for the GPU, implementing it in OpenCL was still
challenging because of the low-level optimisations that
needed to be understood and adapted for our particular
GPU’s architecture.

A number of different strategies and techniques
are used in the algorithm to ensure the GPU is utilised
as efficiently as possible. We describe a few of them

that have been identified as representative of problems
of this level of difficulty.

5.2.1 Computational Granularity

Each GPU work-group processes a portion of the total
number of keys, which is in the thousands for problem
sizes large enough to warrant the use of GPUs. To
ensure efficient use of both the stream processors and
GPU memory, these keys are processed in batches of
a size tied to the target GPU’s architecture. Further-

54 Research Article – SACJ No. 53, August 2014

more, throughout the radix sort algorithm the number
of memory loads done prior to computation has been
set to depend on the target GPU architecture. This
is because different GPU architectures have different
efficient ratios of computation to memory transactions
as a result of different memory and stream processor
configurations. It is therefore necessary to optimise the
computational granularity based on the target GPU
architecture for best performance.

5.2.2 Synchronisation-Free Cooperation

It is common for synchronisation barriers to be used
when GPU threads write to local memory to ensure
memory consistency is maintained. However, these
barriers do incur a performance penalty [5], and are
best used only when necessary. Synchronisation-free
thread cooperation was used throughout the radix sort
algorithm by keeping the number of threads participat-
ing in thread cooperation to within a single wavefront.
Since wavefronts are executed atomically [5], synchro-
nisation is not needed between the threads.

5.2.3 Loop Unrolling

Loop unrolling (otherwise known as loop unwinding)
is the practice of minimising or removing loop control
flow logic by directly embedding multiple iterations of
the loop into the code. Wherever it was possible, loops
were unrolled either through a compiler directive or
manually by using a tiered function hierarchy. With
the tiered function hierarchy, a particular tier calls
lower tier functions until the lowest function is reached,
which contains the unrolled code.

5.2.4 Memory Packing

When working with values much smaller than can
be held by the value type in local or global memory,
packing multiple values into a single word can be an
effective way of reducing memory load. This technique
is used with local memory repeatedly in the algorithm,
where an integer is re-interpreted as four separate char
values.

5.2.5 Kernel Fusion

In programs where common operations need to be per-
formed on the GPU data, it may seem sensible to use
existing optimised solutions provided by libraries such
as Boost.Compute3 for OpenCL, and the Data-Parallel
Primitives Library4 for CUDA, as has been done in
previous solutions [16]. However, there is a significant
performance penalty for doing so as all the data must
be passed from one kernel instance to another through
global memory. This implementation integrates all
the required operations into existing kernels, thereby
reducing the aggregate memory workload by allowing
the results from one step to be passed to the next
through local or private memory [15].

3https://github.com/kylelutz/compute
4https://code.google.com/p/cudpp

5.3 Results

The GPU radix sort implementation was tested
against the highly optimised CPU radix sort found
in Microsoft’s Parallel Patterns Library (PPL)5. The
std::sort found in Microsoft’s standard template li-
brary was also added to the results as an indicator
of typical sorting speeds. The keys to be sorted were
generated randomly, and the results were averaged
over five runs for each problem size tested.

0

200

400

600

800

1000

1200

1400

1600

2^16 2^17 2^18 2^19 2^20 2^21 2^22 2^23 2^24 2^25 2^26

S
o

rt
in

g
 r

a
te

 (
m

il
li
o

n
 k

e
y
s
/s

e
c
o

n
d

)

Number of sorted integers

CPU (std::sort)

CPU (PPL radixsort)

GPU

GPU (compute only)

 216 217 218 219
 220 221

 222
 223 224 225 226

(a) Comparison of the performance of the GPU radix sort and two
CPU sorting algorithms for different problem sizes.

0

100

200

300

400

500

600

700

800

900

1000

2^16 2^17 2^18 2^19 2^20 2^21 2^22 2^23 2^24 2^25 2^26

S
o

rt
in

g
 r

a
te

 (
m

il
li
o

n
 k

e
y
s
/s

e
c
o

n
d

)

Number of sorted integers

GPU (serial)

GPU (overlapped)

 216 217 218 219
 220 221

 222
 223 224 225 226

(b) Comparison of how overlapped transfer and execution of mul-
tiple sorts compares to simple serial scheduling.

Figure 11: Performance of the radix sort.

The performance results can be seen in Figure 11a.
Despite the GPU radix sort being by far the most
optimised of the GPU implementations presented here,
its performance benefit over an efficient CPU solu-
tion is considerably less than the order of magnitude
speedups achieved by the other solutions. For stan-
dalone sorts, the performance of our adaptation of
Merrill and Grimshaw’s radix sort ranged from the
same speed when sorting 217 elements to 3.8x faster
when sorting 225 elements. The results are consider-
ably better if only the compute time of the GPU is
considered. Excluding the time it takes to transfer
the data to and from the GPU, the GPU’s advantage
over the CPU ranges from 1.8x to 9.8x over the same
problem sizes. An unfortunate limitation of discreet
GPUs is that the transfer of data to and from the GPU

5http://msdn.microsoft.com/en-us/library/dd492418.

aspx

https://github.com/kylelutz/compute
https://code.google.com/p/cudpp
http://msdn.microsoft.com/en-us/library/dd492418.aspx
http://msdn.microsoft.com/en-us/library/dd492418.aspx

Research Article – SACJ No. 53, August 2014 55

No. Keys 216 217 .. 225 226

Transfer Overhead 35% 37% .. 59% 63%

Table 2: Data transfer contribution to the total GPU
time for a number of different problem sizes.

can be a significant bottleneck, and indeed, this was
the case for the GPU radix sort. For the smallest prob-
lem size tested, 216, data transfers accounted for 35%
of the total GPU time, and for problem sizes greater
than 221, the data transfer time actually exceeds the
compute time and continually grows in proportion to
compute time with larger problem sizes. This trend
is shown in Table 2. The GPU’s ‘sweet spot’ is when
sorting 225 elements; greater problem sizes result in a
decrease in performance because the additional work
no longer results in better GPU utilisation and creates
more overhead from data transfers.

While the impact of data transfers on performance
was severe for a standalone sort, other use cases provide
opportunities to mitigate the impact of data transfers
or remove the requirement completely. In use cases
where the radix sort is a component of a bigger GPU
program, the input data, results, or both may not
need to be transferred to or from the GPU depending
on where the sort is needed. For use cases where
n sorts are required, the aggregate transfer time of
n − 1 sorts can be hidden by overlapping the data
transfer of queued sorts with the execution and result
reading of the current sort provided the compute time
exceeds the data transfer time. This is illustrated in
Figure 12. Overlapped data transfer with execution

Graphics Processing Unit

Batch

Three Data

Batch Two

Data

Batch

One

Results

Processing Batch Two

Batch

Two

Results

Batch Four

Data

Figure 12: Illustration of how overlapped transfer and
execution hides data transfer overhead.

can make a sizable performance difference if the data
transfer time is high in relation to the execution time,
which is the case for the radix sort. To evaluate the
practical benefit of this technique, ten different sorts
were scheduled on the GPU using the overlapping
technique and compared to serial scheduling of the
sorts. The results are shown in Figure 11b.

The results show that the performance benefit from
using overlapped transfer and execution for this radix
sort is very dependent on the number of items sorted.
The speed improvement ranged from 1.16x when sort-
ing 216 elements to 1.8x when sorting 223 elements.
Larger problem sizes benefited more from this tech-
nique because the data transfer time accounted for a
greater portion of the total program execution time.
When sorting more than 223 elements, the benefit of
the technique begins to decline. This is the point where

the time spent on data transfers exceeds the time spent
on computation. With data transfers taking longer
than execution, the execution of the next scheduled
sort can no longer commence as soon as the previous
sort has finished since the data needed for the sort
has not yet been fully transferred to the GPU. This
only worsens with larger problem sizes as they require
larger data transfers. The performance benefit of the
GPU radix sort is therefore largely reliant on the use
case.

6 CLASSIFICATION FRAMEWORK AND ITS
APPLICATION

The wealth of published success stories of gaining
orders of magnitude speedups through the use of
GPGPU has undoubtedly caught the attention of
many scientists. However, anyone new to the field
of GPGPU could be forgiven for feeling apprehensive
about the steep learning curve and low-level documen-
tation. Such characteristics are barriers to entry into
the field, but this need not be so in all cases. To ac-
celerate problems that do not map well to the GPU’s
architecture, it may be necessary to understand the
low-level details of thread scheduling, memory trans-
actions, and so on. For problems that map relatively
well to the GPU’s architecture, having such in-depth
knowledge of the functioning of the GPU is not a pre-
requisite for obtaining a satisfactory speedup, as was
found with the uncertainty model in Section 3. Conse-
quently, it would be beneficial to be able to classify a
problem as belonging to a particular GPU acceleration
difficulty level, and identify guidance appropriate for
that level.

6.1 Problem Difficulty Factors

The problems accelerated in Sections 3, 4, and 5 were
found to require suitably different levels of knowledge
of GPGPU, as explained below, to be separated into
different difficulty classes.

• Accelerating the hydrological model required only
a rudimentary understanding of the OpenCL API,
and an efficient layout of global memory data.

• The k -difference string matching problem required
additional knowledge of thread cooperation tech-
niques, synchronisation, and GPU memory load
characteristics.

• The radix sort, on the other hand, required ad-
vanced techniques and optimisations that could
only be implemented by an experienced GPU de-
veloper.

Seven attributes of these problems were identified
as significant factors when evaluating problem difficulty.
These attributes are described briefly below.

Inherent parallelism: The ease with which the work
can be distributed between hundreds to thousands
of threads. Since GPUs are massively parallel
devices, the less parallelism that is easily available,
the harder it will be to provide the GPU with
enough work and obtain a satisfactory speedup.

56 Research Article – SACJ No. 53, August 2014

Branch divergence: Within compute units, wave-
fronts are executed by SIMD stream processors.
Consequently, branch divergence (or control flow
divergence) within a wavefront results in lower
GPU utilisation, as stream processors that do not
follow a branch are forced to idle [17]. Solutions
that result in poor performance due to branch
divergence may need to be refactored to eliminate
the divergence or to incorporate techniques such
as branch fusion [17].

Problem size: This is the amount of work that can
be parallelised. If managed correctly, an abun-
dance of work enables the GPU to hide much of
the memory access latency (given the resource
constraints) [18]. Conversely, a low amount of
parallel work increases the likelihood of compute
units stalling on pending memory operations, or
idling without work. Increasing instruction-level
parallelism (ILP) can help to improve low GPU
utilisation due to insufficient alternative work [19].

Required computational parallelism: We define
required computational parallelism (RCP) as the
number of wavefronts or warps required to cover
memory access latency. This is calculated as
RCP = (a + m) / a, where a is the total arith-
metic latency and m is the total global memory
latency for a single work-item. This is identical to
computation warp parallelism [20]; we have used
a different name to avoid association with a par-
ticular brand of GPUs (warp is a CUDA term).
RCP is similar to arithmetic intensity, except that
it relates to time rather than quantity. Programs
with a low RCP are preferable as this simplifies
the hiding of memory latency. High RCP val-
ues mean that typically more effort is required
to add thread-level parallelism (TLP) and ILP to
hide memory latency and ensure efficient memory
requests.

Memory access pattern regularity: GPUs are
able to provide the highest memory bandwidth
when memory access patterns are regular and
have high spatial locality. Irregular access pat-
terns or patterns with low spatial locality prevent
memory requests from being coalesced into fewer
memory transactions, or result in unbalanced
utilisation of the memory controllers [18, 21].
This can sometimes be addressed by preprocessing
the input data to group similar data inputs,
or rearrangement of the data items within a
work-group.

Data transfer overhead: In the context of running
a standalone GPU program, the time taken to
transfer data to and from the GPU is pure over-
head. Thus, GPU programs with large data re-
quirements will be harder to accelerate than simi-
lar GPU programs with smaller data requirements,
and may require effort to reduce the amount of
data transferred or improve the data transfer
speed.

Thread cooperation: The difficulty of thread coop-
eration lies in its use of local and global memory,

and synchronisation primitives such as barriers
and atomic operations. Local and global memories
are orders of magnitude slower than private mem-
ory, and atomic operations serialise concurrent
memory requests. Thus, careful thought must be
given to the granularity and structure of thread
cooperation to ensure that performance penalties
are minimised.

6.2 Classification Framework

For the purposes of the initial classification framework,
ordinal ratings are used for all the difficulty indica-
tors, namely, ‘Negligible’, ‘Low’, ‘Moderate’, or ‘High’.
These ratings have different meanings for the different
difficulty indicators, as discussed below.

Inherent parallelism: ‘Negligible’ means there is no
inherent parallelism. A ‘Low’ rating means that
inherent parallelism is not linked to problem size,
and there is an insufficient number of parallel tasks
for the number of processors on the GPU. A ‘High’
rating means there is an abundance of parallel
tasks, and the inherent parallelism is typically
linked to problem size.

Branch divergence: ‘Negligible’ means there is virtu-
ally no branch divergence, while ‘High’ denotes
an abundance of branch divergence.

Problem size: ‘Negligible’ means there are virtually no
work tasks. A ‘Low’ rating means the envisaged
problem size is not sufficiently large to provide
work for all the stream processors in the GPU, or
not large enough to take advantage of TLP or ILP.
A ‘High’ rating means the problem size allows for
an abundance of TLP and ILP.

Required computational parallelism: A ‘Negligible’
RCP means no TLP is needed, while a ‘High’ RCP
means it is difficult or impossible to hide memory
access latency.

Memory access regularity: ‘Negligible’ means memory
transactions are completely irregular and have no
spatial locality, whereas ‘High’ means memory
accesses are predominantly or always regular and
have high spatial locality.

Data transfer overhead: ‘Negligible’ means the data
transfer overhead is not a consideration, whereas
‘High’ means the data transfer overhead con-
tributes significantly to overall program execution
time.

Thread cooperation: ‘Negligible’ means there is vir-
tually no thread cooperation, while ‘High’ means
thread cooperation is prevalent throughout the
solution.

These difficulty indicators were used to construct
a difficulty classification framework to provide the user
with an idea of overall problem difficulty, particularly
for extreme cases where problem acceleration is either
very simple or very difficult. To quantify the overall
difficulty rating, the four ordinal ratings are coded,
respectively, as 0,1,2,3 or 3,2,1,0 for each difficulty
factor depending on whether a low or high rating is
preferable for parallelising the problem.

Research Article – SACJ No. 53, August 2014 57

Table 3: Classification of the hydrological uncertainty model.

Difficulty Indicator
Rating

Negligible Low Moderate High

Inherent Parallelism 4 0

Branch Divergence 4 0

Problem Size 4 0

Required Computational Parallelism 4 2

Memory Access Pattern Regularity 4 1

Data Transfer Overhead 4 0

Thread Cooperation 4 0

6.3 Classification of Accelerated Problems

Given that the classification framework was modelled
on what was learned from accelerating the three case
studies, evaluation of these problems using the frame-
work should provide a difficulty estimation similar to
what was actually experienced.

6.3.1 Case Study 1: Hydrological uncertainty model

Inherent parallelism: Many independent instances of
the model are run with different input data, with
each instance regarded as a parallel task to be
run as a separate work-item. Thus, parallelism is
related to problem size and the problem is consid-
ered to be embarrassingly parallel.

Branch divergence: There is unlikely to be much
branch divergence between ensembles since the
primary loop iteration counts are identical, and
the data-dependent branches typically have a low
depth. Kernel profiling confirmed this by indicat-
ing an average branch divergence of under 3%.

Problem size: Since the purpose of this program
is uncertainty analysis, the parameters for each
model run are generated randomly (within cer-
tain bounds). The problem size is therefore only
restricted by the number of possible parameter
configurations; this number is large enough not to
be of concern.

RCP: This ratio was evaluated to be 4.7. We con-
sider this to be ‘Moderate’, as it would require
TLP amounting to just under half the maximum
number of wavefronts that can be scheduled on a
SIMD unit.

Memory access pattern regularity: Other than a small
amount of branch divergence, the memory access
pattern is regular. However, the memory access
locality is low because of the large data structures
that store the model data. Thus, we classify this
as ‘Moderate’.

Data transfer overhead: The data transfer to the GPU
consists of the core model data and the parameter
sets for each ensemble. Since the parameter sets
are small, the quantity of input data transferred
between the host and the GPU does not scale

significantly with problem size. With model runs
being computationally intensive, the data transfer
overhead should only constitute a small portion
of the overall GPU execution time. If the GPU
speedup factor is estimated at 10x or 100x, the
data transfer overhead is estimated at less than
0.1% for a problem size of 50,000 ensembles. We
therefore classify this as ‘Negligible’.

Thread cooperation: Each work-item calculates its
own model ensemble, and thus no thread coopera-
tion is required.

Table 3 shows the difficulty classification of the
hydrological uncertainty model. The only non-zero
difficulty indicators are RCP (with a coded value of
2) and memory access pattern regularity (coded as 1).
The overall difficulty according to this evaluation is 3,
which suggests a relatively low acceleration difficulty.

6.3.2 Case Study 2: K -Difference String Matching

Inherent parallelism: Each k -difference comparison
can be run independently of all others, and the
number of comparisons is linked to problem size
resulting in ‘High’ inherent parallelism.

Branch divergence: Comparisons between strings of
different lengths within a wavefront will result in
some work-items finishing before others. Coupled
with Ukkonen’s cut-off, this results in high branch
divergence. According to kernel profiling, the
average amount of branch divergence is over 55%.

Problem size: The number of strings compared is
expected to be in the millions for practical applica-
tions of this program. There is thus an abundance
of parallel work available.

RCP: The RCP for comparing short and long strings
was calculated as 3.4 and 2.7, respectively, which
we consider to be ‘Low’.

Memory access pattern regularity: The original solu-
tion used a linear layout for storing the string data
and partial results in memory. This resulted in
low memory access locality as well as low memory
access regularity, thus making this classification
‘Low’.

58 Research Article – SACJ No. 53, August 2014

Data transfer overhead: The input consists of the
strings to be compared, and the output for each
comparison is an integer corresponding to a pos-
itive or negative match. If a 10x speedup is as-
sumed with a problem size of 2,000 short test pat-
terns and 8,192 short input strings, the transfer
overhead is estimated at 2.22%, which is classified
as ‘Low’.

Thread cooperation: Inter-group cooperation between
work-items is not needed in this algorithm, but
can be recognised as greatly beneficial for data
sharing purposes. Since this may not be known
prior to implementation, this has been classified
as ‘Negligible’.

Unlike the hydrological uncertainty ensemble
model, there are many non-zero difficulty indicators
in this classification. When summed, these give an
overall difficulty of 7.

6.3.3 Case Study 3: Radix Sort

Inherent parallelism: Parallelism is obtained by parti-
tioning the key space between a number of work-
items and sharing information at key points in
the algorithm. There are many sections of code
in which thread cooperation occurs involving a
limited number of work-items, which reduces the
inherent parallelism to ‘Moderate’.

Branch divergence: As mentioned above, there are
many sections of code in which a limited number
of threads participate, which implies a moderate
amount of branch divergence. This is supported
by kernel profiling.

Problem size: GPU radix sorting is typically only
required for very large numbers of keys, which
means problem size is ‘High’.

RCP: The average RCP for the primary kernels6 was
calculated as 11. This is ‘High’, since it exceeds
the maximum number of wavefronts that can be
scheduled on a SIMD unit.

Memory access pattern regularity: Irregular access
patterns are found in the final kernel when writ-
ing the results of a sorting pass to global memory.
Given that this code is visited a number of times
from multiple sorting passes, this algorithm has
been classified as having ‘Moderate’ memory ac-
cess pattern regularity.

Data transfer overhead: Other than several non-
vector input variables, the input and output data
sizes are identical. For a problem size of 226 32-bit
integers, the data transfer overhead is estimated
at 59%, which is easily classified as ‘High’.

Thread cooperation: A significant amount of both
intra- and inter-group thread cooperation is used
in this algorithm to enable parallel execution.

With an overall difficulty of 13, it is clear that the
radix sort is a much harder problem to accelerate than
the first two problems.

6The second kernel was omitted from the calculation because
it is designed to only use a single work-group.

6.3.4 Reflection

Classification of the three case studies using the pro-
posed framework resulted in difficulties of 3, 7, and
13, respectively. Relative to each other, these ratings
correspond well to the actual implementation difficul-
ties experienced. Furthermore, the individual difficulty
indicator ratings correspond to either the evaluation
of the knowledge required for replicating our GPU so-
lutions, or identified bottlenecks. This shows that the
evaluation of the identified difficulty indicators gives
some indication of the difficulty of problem acceleration
using GPUs.

7 CONCLUSION

A current problem with GPGPU is that it can be seen
as a field that requires a great deal of technical knowl-
edge to be successful. Certain classes of problems do
indeed require this, but others can be accelerated with
very little technical knowledge of GPUs. However, it
may be difficult for inexperienced GPU programmers
to make this distinction. This study aimed to identify
the attributes of problems that are important in deter-
mining the level of difficulty of accelerating problems
on a GPU in order to create a classification framework
that can be used to provide an initial estimate of the
difficulty involved in doing so. This was done by ac-
celerating three problems, perceived to have different
difficulty levels, on a GPU. The relatively high corre-
lation of the actual effort involved in accelerating each
problem and the overall difficulty value predicted by
applying the classification framework to the respective
problem shows that our classification approach has
potential.

However, there are a number of limitations that
need to be addressed in future revisions, including
obtaining reliable quantitative evaluation methods for
the difficulty indicators and investigating whether the
difficulty impact of some indicators is more significant
than that of others.

8 ACKNOWLEDGEMENTS

This work was undertaken in the Distributed Multime-
dia CoE at Rhodes University, with financial support
from Telkom SA, Tellabs, Genband, Easttel, Bright
Ideas 39, THRIP and NRF SA (UID 75107). The
authors acknowledge that opinions, findings and con-
clusions or recommendations expressed here are those
of the author(s) and that none of the above mentioned
sponsors accepts liability whatsoever in this regard.

REFERENCES

[1] M. Daga, T. Scogland and W. Feng. “Architecture-
Aware Mapping and Optimization on a 1600-Core
GPU”. In Proceedings of the 2011 IEEE 17th Interna-
tional Conference on Parallel and Distributed Systems,
ICPADS ’11, pp. 316–323. IEEE Computer Society,
2011.

Research Article – SACJ No. 53, August 2014 59

[2] M. Garland and D. B. Kirk. “Understanding
throughput-oriented architectures”. Commun. ACM,
vol. 53, pp. 58–66, Nov. 2010.

[3] K. Fatahalian and M. Houston. “GPUs: A Closer
Look”. Queue, vol. 6, no. 2, pp. 18–28, Mar. 2008.

[4] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E.
Stone and J. C. Phillips. “GPU Computing”. Pro-
ceedings of the IEEE, vol. 96, no. 5, pp. 879–899, May
2008.

[5] Advanced Micro Devices. AMD Accelerated Parallel
Processing OpenCL Programming Guide, 2012.

[6] Khronos OpenCL Working Group. The OpenCL Spec-
ification, version 1.2, Rev 15. Khronos Group, 15
November 2011.

[7] H. Moradkhani and S. Sorooshian. “General Review
of Rainfall-Runoff Modeling: Model Calibration, Data
Assimilation, and Uncertainty Analysis”. In Hydrolog-
ical Modelling and the Water Cycle, vol. 63 of Water
Science and Technology Library, pp. 1–24. Springer
Berlin Heidelberg, 2008.

[8] D. A. Hughes, E. Kapangaziwiri and T. Sawunyama.
“Hydrological model uncertainty assessment in South-
ern Africa”. Journal of Hydrology, vol. 387, no. 3–4,
pp. 221–232, 2010.

[9] T. Yen and M. K. Reiter. “Traffic Aggregation for
Malware Detection”. In Proceedings of the 5th inter-
national conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, DIMVA ’08,
pp. 207–227. Springer-Verlag, Berlin, Heidelberg, 2008.

[10] F. Aleen and K. Mahalingam. “Improving Bayesian
Spam Filters Using String Edit Distance Algorithm”.
In International Conference on Internet Computing,
pp. 121–125. CSREA Press, 2008.

[11] G. Navarro. “A guided tour to approximate string
matching”. ACM Comput. Surv., vol. 33, no. 1, pp.
31–88, Mar. 2001.

[12] E. Ukkonen. “Finding approximate patterns in
strings”. Journal of algorithms, vol. 6, no. 1, pp.
132–137, 1985.

[13] G. Myers. “A fast bit-vector algorithm for approximate
string matching based on dynamic programming”. J.
ACM, vol. 46, no. 3, pp. 395–415, May 1999.

[14] H. Hyyrö. “Explaining and Extending the Bit-parallel
Approximate String Matching Algorithm of Myers”.
Tech. rep., Dept. of Computer and Information Sci-
ences, University of Tampere, 2001.

[15] D. Merrill and A. Grimshaw. “High Performance and
Scalable Radix Sorting: A case study of implementing
dynamic parallelism for GPU computing”. Parallel
Processing Letters, vol. 21, no. 2, pp. 245–272, 2011.

[16] N. Satish, M. Harris and M. Garland. “Designing
efficient sorting algorithms for manycore GPUs”. In
Proceedings of the 2009 IEEE International Sympo-
sium on Parallel & Distributed Processing, IPDPS ’09,
pp. 1–10. IEEE Computer Society, Washington, DC,
USA, 2009.

[17] B. Coutinho, D. Sampaio, F. M. Q. Pereira and
W. Meira Jr. “Divergence Analysis and Optimiza-
tions”. In Proceedings of the 2011 International Con-
ference on Parallel Architectures and Compilation
Techniques, PACT ’11, pp. 320–329. IEEE Computer
Society, Washington, DC, USA, 2011.

[18] Advanced Micro Devices. “AMD Accelerated
Parallel Processing OpenCL Programming Guide”.
Online: http://developer.amd.com/wordpress/

media/2013/08/AMD_Accelerated_Parallel_

Processing_OpenCL_Programming_Guide.pdf [Ac-
cessed 01/08/13], August 2013.

[19] V. Volkov. “Better performance at lower occupancy”.
In Proceedings of the GPU Technology Conference,
GTC, vol. 10. 2010.

[20] S. Hong and H. Kim. “An analytical model for a
GPU architecture with memory-level and thread-level
parallelism awareness”. SIGARCH Comput. Archit.
News, vol. 37, no. 3, pp. 152–163, Jun. 2009.

[21] J. Meng, V. A. Morozov, K. Kumaran, V. Vishwanath
and T. D. Uram. “GROPHECY: GPU performance
projection from CPU code skeletons”. In Proceed-
ings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
p. 14. ACM, 2011.

http://developer.amd.com/wordpress/media/2013/08/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/wordpress/media/2013/08/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/wordpress/media/2013/08/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf

	Introduction
	GPU Computing
	Graphics Processing Units
	GPU Processing Model
	GPU Memory Model

	OpenCL
	Execution Model
	Programming Model

	Hydrological Model
	The Pitman Model
	Implementation and Optimisations
	Results

	K-Difference String Matching
	K-Difference Algorithm
	Implementation and Optimisations
	Memory Loads & Caching
	Intra-Group Cooperation
	Kernel Scheduling

	Results

	Radix Sort
	Radix Sort Algorithm
	Implementation
	Computational Granularity
	Synchronisation-Free Cooperation
	Loop Unrolling
	Memory Packing
	Kernel Fusion

	Results

	Classification Framework and its Application
	Problem Difficulty Factors
	Classification Framework
	Classification of Accelerated Problems
	Case Study 1: Hydrological uncertainty model
	Case Study 2: K-Difference String Matching
	Case Study 3: Radix Sort
	Reflection

	Conclusion
	Acknowledgements

