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ABSTRACT

Magnetic Resonance Imaging provides a non-invasive means to study the neural correlates of Fetal Alcohol Spectrum
Disorder (FASD) - the most common form of preventable mental retardation worldwide. One approach aims to detect
brain abnormalities through an assessment of volume and shape of two sub-cortical structures, the caudate nucleus and
hippocampus. We present a method for automatically segmenting these structures from high-resolution MR images
captured as part of an ongoing study into the neural correlates of FASD.

Our method incorporates an Active Shape Model, which is used to learn shape variation from manually segmented
training data. A modified discrete Geometrically Deformable Model is used to generate point correspondence between
training models. An ASM is then created from the landmark points. Experiments were conducted on the image search
phase of ASM segmentation, in order to find the technique best suited to segmentation of the hippocampus and caudate
nucleus. Various popular image search techniques were tested, including an edge detection method and a method based
on grey profile Mahalanobis distance measurement. A novel heuristic image search method was also developed and tested.
This heuristic method improves image segmentation by taking advantage of characteristics specific to the target data,
such as a relatively homogeneous tissue colour in target structures.

Results show that ASMs that use the heuristic image search technique produce the most accurate segmentations. An

ASM constructed using this technique will enable researchers to quickly, reliably, and automatically segment test data for

use in the FASD study.
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1 INTRODUCTION

Fetal Alcohol Spectrum Disorder (FASD) is especially
prevalent amongst residents of the Western Cape re-
gion of South Africa. This disorder affects the embryos
of women who ingest alcohol whilst pregnant. Chil-
dren can suffer serious central nervous system damage
as a result. In order to gain a better understanding of
this condition, 32 children with FASD1 were scanned
using Magnetic Resonance Imaging (MRI).

This paper forms part of an ongoing study aimed
at assessing the neural correlates of FASD. One topic
of study is the difference in shape, volume and area
between brain structures, specifically the caudate nu-
cleus and hippocampus, of healthy subjects and those
with FASD. The primary goal of this work is to find
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19.7 to 13.7 years of age, mean 11.6 years

the best algorithm to automatically segment out cau-
date nuclei and hippocampi from previously unseen
brain volumes that form part of the study into FASD.

Manual segmentation of MR images is time-
intensive and prone to inter-observer and intra-
observer variability [1, 2]. Automatic segmentation
of MR images is generally quick and reproducible.
It is therefore desirable to automatically segment the
MR images used as part of the study. This will en-
able researchers to quickly and objectively compare
healthy specimens to those affected by FASD. In order
to achieve this goal, an effective automatic segmenta-
tion algorithm must be found.

We construct a Geometrically Deformable Model
(GDM) that effectively and efficiently assigns land-
mark points to the training data made available for
use as part of the FASD study. We then use an
Active Shape Model (ASM) for automatic segmenta-
tion. ASMs overcome spurious shape deformities by
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learning shape information from a training data set -
thereby limiting model deformation to shapes similar
to those found in the training set. ASMs are not a gen-
eral solution to the image segmentation problem, but
work for a broad class of segmentation problems, espe-
cially in the biomedical imaging field, where volumet-
ric images such as MRI scans are segmented [3, 4, 5, 6].
ASMs are therefore well suited to our specific needs.

ASMs are generated by performing Principal
Component Analysis (PCA) on a set of landmark
points. This process creates a statistical Point Dis-
tribution Model (PDM) which is used to constrain the
deformation of shape models during the image seg-
mentation process. The image segmentation process
uses an image search algorithm, in which the model
is expanded and deformed iteratively to fit local im-
age information (such as an edge). We implemented
various image search algorithms, in order to find the
one that is most suited to our test data. These in-
cluded an edge detection method, a method based on
grey profile Mahalanobis distance measurement, and
a heuristic image search method.

After segmentation, results were visualised and
analysed not only to make use of the segmented data,
but also to evaluate the effectiveness of the segmenta-
tion process. Experimental evaluation was employed
to determine the most effective ASM construction
method. ASMs built to use the various image search
techniques were tested on sample data that are char-
acteristic of the data found in the FASD study. Sta-
tistical analysis was conducted on the results, in order
to draw meaningful conclusions. This task enabled us
to choose the best ASM construction technique for use
in the future of the FASD study.

Results indicate that the heuristic method gen-
erated the most accurate segmentation results. The
method is not perfect - segmentation did fail on some
data sets. However, this segmentation failure was usu-
ally due to extreme noise or low contrast. Thus, we
can conclude that the heuristic method displays ac-
ceptable reliability for the segmentation of current and
expected future data to be used in the FASD study.

The paper is structured as follows. Section 2 pro-
vides details of previous work that we build upon in
this research, as well as some fundamental techniques
used. Our test data are described in Section 3. Spe-
cific details of GDM construction are given in Section
4. A detailed description of our ASM construction
techniques can be found in Section 5. This is followed
by a discussion of our Heuristic Image Search algo-
rithm in Section 6. Finally, we evaluate the perfor-
mance of our algorithm, and present our conclusion.

2 BACKGROUND AND RELATED WORK

Many automatic segmentation methods have been
proposed in recent years - each has its advantages and
disadvantages. Each method is also suitable for cer-
tain types of target data. GDMs are well suited to the
segmentation of 3D data where the target shapes are
closed surfaces. The problem with standard GDMs

is that they can deform to arbitrary shapes that are
not representative of the class of shapes that they are
designed to fit. This problem is especially prevalent
when segmenting noisy data, which contain many false
positives. Shape priors, such as surface smoothness
constraints, are sometimes used to limit deformation
to a shape that is geometrically similar to the original
model, but it is still possible for models to deform into
suboptimal shapes [3].

ASMs were first proposed by Cootes in 1995 in an
attempt to address the shortcomings of deformable
models, by limiting model deformation to shapes
found within the Allowable Shape Domain (ASD) [7].
ASMs achieve this by learning shape information from
pre-segmented shape training sets. The first ASMs
were limited to 2D, but 3D versions of the technique
followed soon after [4].

In order to build an ASM, landmark points must
first be assigned to training data. In 3D, it is all but
impossible to assign these landmark points manually.
A GDM can be employed to automatically assign 3D
landmark points to volumetric data. The GDM con-
sists of a discrete mesh of vertices, which move in 3D
space in reaction to forces exerted on them by vari-
ous deformation terms. These terms cause the GDM
to deform to fit a series of binary training shape vol-
umes, thereby assigning a fixed number of vertices or
landmark points to the training data.

2.1 GDM Construction

The first task in creating the GDM is to develop an
initial mesh, which is then deformed to fit the target
structure. In the original GDM paper, [8] use a regu-
lar 20-sided icosahedron as their initial mesh. [9] use
their gravity centre method to stitch together poly-
gons from user-generated slices. [10] create a mesh
using manually segmented data. These data are seg-
mented on a slice-by-slice basis, based on a method
used by [11]. Lee et al convert their original tracing
into minimal hexahedrons and then smooth the data
using a low-pass filter. It is clipped and converted into
a binary volume. An initial ellipsoid model is then fit-
ted to this binary volume, using a GDM method first
proposed by [12]. The method involves deforming an
initial mesh to fit a binary volume. It employs a multi-
scale approach to deformation - starting with an initial
low resolution mesh, and tessellating it as deforma-
tion approaches convergence. This approach is novel
in that it explicitly prevents self-intersection of the
deforming mesh by heavily penalising inter-polygon
proximity below a certain threshold.

Deformation of the GDM is controlled by iter-
ative minimisation of a cost function. Since there
is a large parameter space to search, a näıve brute
force approach is intractable. The Conjugate Gradi-
ent method, discussed by [13], is therefore employed.
This method computes successive line minimisations
of the cost function (also called the objective function).
It uses the derivative of the objective function to cal-
culate optimal direction vectors for british (called con-
jugate gradients). After each line minimisation, mesh
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vertices are updated to locally optimal positions. The
mesh can therefore be seen to iteratively deform to
fit its target. When the difference between succes-
sive objective function evaluations is smaller than a
certain threshold, the algorithm is considered to have
converged, and deformation stops.

2.2 ASM Construction

ASMs are generated by performing Principal Com-
ponent Analysis (PCA) on a set of delimited, reg-
istered training shapes, called a Point Distribution
Model (PDM). This process produces shape descrip-
tors, which are used to constrain the deformation of
shape models during the image segmentation process.
The image segmentation process uses an image search
algorithm, in which the model is expanded and de-
formed iteratively to fit local image information (such
as an edge). After segmentation, the results must be
visualised and analysed not only to make use of the
segmented data, but also to evaluate the effectiveness
of the segmentation process.

Typically, training data sets are manually seg-
mented into 3D binary volumes and an isosurface is
created from one of the volumes using an algorithm
such as the Marching Cubes method [14]. This iso-
surface, containing arbitrary 3D landmark points, is
then used in a GDM and deformed to fit the other seg-
mented volumes [4]. This creates a PDM; consisting
of a set of training shape isosurfaces with correspond-
ing landmark points, which are then registered to a
common coordinate frame using an algorithm similar
to the Procrustes method [15, 16]. After registration,
the PDM is passed to the PCA phase for analysis.

It is not always desirable to create a PDM during
this stage, since PCA can be performed on a variety of
non-Euclidean shape descriptors, as long as a vector of
values is used to describe each training shape. Exam-
ples of these shape descriptors include: the Minimum
Description Length (MDL) approach [17, 18], map-
ping to Spherical Harmonics (SPHARM) descriptors
[4], and mapping to Spherical Wavelet Basis functions
[3]. The general (simplified) algorithm followed when
using these shape descriptors is as follows:

1. Manually segment the input data into a 3D binary
volume of voxels

2. Map each surface voxel to parameter space, using
an invertible function

3. Perform parameter space registration

4. Perform PCA on shape parameters

New shapes generated by the ASM in parameter space
can then be mapped back to Euclidean space using the
inverse mapping function of that in step 2. Refer to
Appendix B for more detail on PCA in ASM construc-
tion.

2.3 Image Search Techniques

In order to use an ASM in image segmentation, it
is necessary to deform it to fit target data. Target
data usually consist of greyscale voxels derived from

some imaging process, such as MRI, and are typi-
cally noisy. Pre-processing steps such as thresholding
and binary morphology may be necessary to minimise
noise, thereby allowing for better boundary detection
whilst fitting the ASM to the target data. Edge de-
tectors may be used to detect candidate target bound-
aries within target data. Anisotropic data can be ad-
justed to be isotropic, however care should be taken
to ensure that the target data dimensions are in pro-
portion to those found in the training images used to
construct the ASM.

Image search techniques are varied, although they
generally search for the ideal shape, scale and pose
parameters which best fit the ASM to the target data.
In classical 2D ASM segmentation, an instance of the
model, X, is defined as follows [7]:

X = M(s, θ)[x] +Xc (1)

M(s, θ) is a rotation by θ and a scaling by s. x
is a vector of landmark point coordinates represent-
ing the current relative position of each point of the
shape, and Xc = (xc, yc, xc, yc..., xc, yc)

T is a vector
representing the uniform translation of the landmark
points to a centre point in the target data. s, θ and
Xc together form the scale and pose parameters, and
x the shape parameters.

In order to determine the parameters which best
fit the data, it is necessary to first determine the set
of adjustments dX = (dX0, dY0, ..., dXn−1, dYn−1)T

which will translate each landmark point closer to
the target boundary. This can be done in various
ways, such as region statistics-based search [3], mutual
information-based coordinate descent [5], or a search
using grey value intensity profiles [4]. A simple ap-
proach is to find the normal to the model boundary
at each landmark point, and determine where it inter-
sects the target boundary. The distance to move the
landmark point along the surface normal is then set
proportional to the edge strength at the boundary [7].

Once dX has been determined, appropriate
changes to scale and pose parameters need to be
found. This is done by finding the best scaling (ds),
translation (dXc,dYc) and rotation (dθ) values which
map X to (X + dX) [7]. The next step is to find
dx, the changes to shape parameters necessary to fit
the boundary. Once the appropriate changes to the
scale, pose and shape parameters have been found,
the model is deformed and the algorithm is repeated.
This carries on until it converges to a steady state
where no significant change is made between succes-
sive iterations. Shape deformation is driven by vary-
ing the ASM basis weights, within appropriate prede-
fined limits. Because of this, we can be certain that
the model deformation will be constrained to gener-
ate shapes that are within the ASD. We described
this procedure in 2D for the sake of simplicity, but it
is easily and intuitively extended to 3D.
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3 DATA

The ASM training data used here consists of MRI
brain scans that were acquired as part of a study of
Fetal Alcohol Spectrum Disorder [19, 20].

All scans were acquired using a 3T Siemens Al-
legra MRI scanner (Siemens Medical Systems, Erlan-
gen, Germany). High-resolution anatomical images
were acquired in the sagittal plane using a 3D in-
version recovery gradient echo sequence (160 slices,
TR = 2300ms, TE = 3.93ms, TI = 1100ms, slice
thickness 1mm, in-plane resolution 1× 1mm2).

In order to use these training data, the structures
of interest to this study, namely the left and right
caudate nuclei and hippocampi, were manually seg-
mented from each greyscale MRI volume by a neu-
roanatomist using MultiTracer software [21]. Train-
ing data was sampled at 1mm voxel resolution. This
initial segmentation yields binary volumes represent-
ing the ROIs (caudate nuclei and hippocampi) in the
training data.

4 LANDMARK POINT GENERATION

In order to capture the shape differences between the
various training data, it is necessary to assign 3D land-
mark points to specific parts of each binary volume,
thus creating mesh representations of the data. Each
vertex of each mesh represents a specific point on the
training data, thus generating point correspondence
between training data points. Point correspondence
allows for the measurement of variance in shape be-
tween training samples, and is therefore necessary to
train the ASM used in the next stage of the project.

Manual assignment of landmark points is too
time-consuming, and error-prone. Therefore, a dis-
crete GDM, with a fixed number of points, was fitted
to each binary training volume. Our GDM implemen-
tation is based on [12]. Certain changes have been
made to better suit our target data. Our model is
discussed in detail in Appendix A.

4.1 Self-proximity Term

MacDonald’s self-proximity term measures the small-
est distance between pairs of non-adjacent polygons.
If a pair of polygons is within a certain distance
threshold, a cost is assigned based on the distance. In
order to explicitly prevent self-intersection, this cost
increases asymptotically towards infinity as the inter-
polygon distance approaches zero.

There are three problems with integrating this
specific implementation into our model. Firstly, the
computational cost of evaluating each pair of faces
is unnecessarily high. Secondly, determining self-
intersection using a distance measure is unnecessary,
since there are methods to quickly test for the inter-
section of two triangles. Thirdly, assigning a pro-
hibitively high cost to self-intersection creates prob-
lems with the Conjugate Gradient Method used to
minimise the cost function, since the inverse partial

Figure 1: Brute force vs Kd-tree. As the number of
faces in the mesh increase, the solution using the brute
force takes exponentially longer, whilst the solution using
the kd-tree increases linearly in time.

derivatives used as direction vectors for line minimi-
sation result in attempts to minimise in suboptimal
directions. These problems are addressed as follows.

Computational Cost

The computational cost of comparing each model face
with every other model face is O(n2). This amount
of computation is unnecessary, for the following rea-
son: there is a limit on the distance that any single
vertex can be translated in one iteration of deforma-
tion. Therefore, there is a limit to the change of dis-
tance between any two pairs of faces in one iteration.
Since there is a limit to the change in distance between
faces, only pairs of faces that are located within this
distance threshold of each other stand a chance of in-
tersecting as a result of any given iteration. Thus, for
each face, it is only necessary to measure distances
to other faces that are within the distance threshold.
We take the distance threshold to be equivalent to the
search distance used in the image search term, since
vertices can not be moved further than this in one it-
eration. A kd-tree [22] is used to quickly identify faces
that are within the defined distance threshold of each
other. The kd-tree is built at the beginning of each
iteration of deformation, at a negligible cost to compu-
tation (˜0.0035 seconds on 2.66GHz Intel Core2 Duo
E6750). During evaluation of the self-proximity term,
the nearest non-adjacent neighbours to each face are
tested for intersection with that face. Only neighbours
within the prescribed distance threshold are tested.
Figure 1 shows a comparison between the brute force
approach and the kd-tree approach. It is clear that, as
the number of faces in the mesh increase, the solution
using the brute force approach runs in quadratic time,
whilst the solution using the kd-tree increases linearly
in time.



Research Article – SACJ No. 49, September 2012 39

Figure 2: Triangle intersection vs Distance measure
As the number of faces in the model increase, the in-
tersection test preforms significantly better than the dis-
tance measure.

Determining Self-intersection

The self-proximity term is used to prevent the deform-
ing model from self-intersecting. Therefore, the actual
distance between any given pair of faces is irrelevant,
as long as it is above zero. Thus, using a distance
measure to determine whether pairs of faces intersect
is a computationally costly process that could be re-
placed by a simple triangle/triangle intersection test.
The method described in [23] is used to test for inter-
sections. If two faces intersect, the self-proximity term
will evaluate to 1 for the candidate face. If no two faces
intersect, the self-proximity term evaluates to 0. The
term’s weight parameter is used to assign an actual
prohibitive cost to self-intersection. In order to vali-
date the use of the triangle intersection test, we com-
pare our method to the distance measure method in
terms of evaluation time. We use the triangle-triangle
distance measure, as detailed in [24], for comparison.
The results can be seen in Figure 2. It is clear that
as the number of faces in the model increase, the in-
tersection test performs significantly better than the
distance measure.

Prohibitively High Cost

In order to explicitly prevent self-intersection, Mac-
Donald et al set the self-proximity term to increase
asymptotically towards infinity as the distance be-
tween two polygons reaches zero. Assigning such a
high cost to intersecting faces prevents our model from
iterating past a point where a potential intersection
might take place. This is due to the fact that the cost
function derivative is approximated numerically, and
therefore uses discrete steps in evaluating the deriva-
tive of a continuous function. Because of the fixed
step size used in derivative calculation, derivatives of
functions that have a rapidly increasing gradient (such
as MacDonald’s implementation of the self-proximity
term) can not be accurately approximated. This in-
accuracy results in extremely large partial derivatives,
which throw off the Conjugate Gradient Method used

Figure 3: Point correspondence. Selected representa-
tive vertices (403, 489, 1371, 1657, 1794, 1883, 2729)
are highlighted on each of 4 fitted, registered meshes.
The meshes differ greatly in shape, but the vertices are
in clear point correspondence with one another.

for cost function minimisation (discussed next). In
order to address this inaccuracy problem, we avoided
the use of a rapidly increasing self-proximity cost func-
tion. Instead, as discussed previously, a discrete value
is assigned - based solely on whether a pair of faces
intersects or not. It is important to note that this
method does not explicitly prevent self-intersection,
although it allows for parametrically assigning a pro-
hibitively high cost to it.

4.2 Segmentation Quality

Segmentation quality is of particular importance to
this application. It is vital to have well-defined land-
mark points in order to build an effective ASM. Cri-
teria for success in this measure include a low per-
vertex segmentation error, and clear point correspon-
dence between landmark points. Figure 3 shows that
point correspondence is indeed achieved by our GDM
implementation.

Another measure of model effectiveness is the av-
erage segmentation error. The distances between each
vertex of 10 fitted meshes and the nearest point in
high resolution isosurfaces generated from the target
volumes that these meshes were fitted to, was mea-
sured. The mean per-vertex error (averaged over 10
fitted meshes) was 0.395mm, with a standard devi-
ation of 0.114. Maximum error was 1.592mm. An
error histogram is shown in Figure 4. Since the mean
per-vertex error is less than the 1mm resolution of the
target data, we conclude that the fit was exceptionally
good.

Overall, segmentation results were excellent. The
GDM model succeeds in capturing the shape of the
training data volumes, and is sufficient to provide the
ASM with reliable landmark points.

5 ACTIVE SHAPE MODEL CONSTRUC-
TION

The human brain contains both a left and right cau-
date nucleus, and a left and right hippocampus. We
therefore constructed four ASMs, each focusing on a
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Figure 4: Segmentation error. A histogram showing
the frequency of per-vertex segmentation error. The
mean per-vertex error is less than the 1mm resolution
of the target data.

Figure 5: Scatter Plot of Left Caudate ASM. Selected
vertices are displayed in blue, showing point correspon-
dence between aligned training shapes.

specific structure: the left caudate nucleus, right cau-
date nucleus, left hippocampus, and right hippocam-
pus. Our training data consisted of 30 left and right
caudate nucleus volumes, and 26 left and right Hip-
pocampal volumes. These volumes were manually seg-
mented by an expert neuroanatomist, as described in
Section 3. 3D landmark points were generated as de-
scribed in the previous chapter, using a GDM to fit
manually segmented training data for each structure.
Scatter plots showing point correspondence between
selected vertices of each training shape, for the left
caudate nucleus, can be seen in Figure 5.

Each of the 4 ASMs is constructed in the same
general fashion. Therefore, from here on, we will dis-
cuss specifically the construction of the left caudate
nucleus ASM. Any differences between the construc-
tion of this ASM and others will be discussed as they
arise.

LC% RC% LH% RH%
λ1 71.8 65.4 61.8 43.8
λ2 8.6 14.0 6.7 14.0
λ3 3.9 5.0 5.0 6.4
λ4 2.5 2.1 3.5 5.5
λ5 1.6 1.3 3.3 4.3
λ6 1.3 1.3 2.7 3.7
λ7 1.2 1.3 2.4 2.5
λ8 1.0 1.1 1.8 2.3
λ9 0.8 0.9 1.5 1.9

Table 1: Eigenvalues as a percentage of total varia-
tion. Percentages are calculated as Pi = λi

λT
× 100

1 for
the ithe eigenvector of the covariance matrix. λT is the
total variance. LC, RC, LH and RH represent the four
ASMs.

5.1 Training Shape Registration and PDM
Generation

The first step in creating the ASM was to align the
input training shapes, each consisting of 3D landmark
points, to common coordinate axes. The next step was
to create shape descriptors from the aligned shapes us-
ing PCA. The 9 eigenvectors with the highest eigen-
values are retained, thus giving t = 9 modes of vari-
ation, a feature vector P = (p1p2..p9), and a vector
of 9 basis weights with which to control shape defor-
mation, b = (b1b2..b9). Table 1 shows the variation
ascribed to the first 9 eigenvalues of the 4 ASMs. By
summing the eigenvalues of the first 9 eigenvectors of
the left caudate nucleus ASM, we can see that these
9 modes account for 92.79% of the total variation in
the model. Including more modes of variation did not
significantly improve the accuracy of the model. In-
deed, using only t = 3 accounts for 84.31% of the total
variation.

By varying the basis weights in b, new shapes can
be generated by the ASM. Figure 6 shows the effect of
varying the first basis weight, b1, of our left caudate
nucleus ASM by -3 to 3 standard deviations.

5.2 Standard Segmentation Algorithms

Our algorithm is a variation of the ASM segmentation
algorithm described by [7]. This algorithm consists of
3 main stages: initialisation, image search and param-
eter adjustment. We consider the algorithm to have
converged when the sum of adjustments between suc-
cessive iterations is below a certain threshold.

In order to find the most effective algorithm for
the image search stage, two of the most commonly
used methods were implemented. These algorithms
were applied to our test data, and their weaknesses
analysed. Based on this analysis, we devised our own
heuristic image search algorithm.

Standard Image Search: Edge Detection

In their original paper on ASMs, Cootes et al use Al-
gorithm 1 as their image search method.

Some problems exist with using only edge detec-
tion to seek boundaries. One obvious problem is that
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Figure 6: Variance represented by basis weight b1.
Blue vertices represent the mean shape. Green vertices
are displaced by varying the first basis weight by -3 to 3
standard deviations (A-F).

Algorithm 1

1. For each vertex in the ASM boundary:

(a) Sample the surrounding grey scale intensities
along the local surface normal.

(b) Use an edge detector to detect the strongest
edge along the sampled 1D grey profile.

(c) The adjustment for that vertex is calculated to
be in the direction of the strongest edge, and of
a magnitude proportional to the edge strength.

Cootes’ Image Search

Figure 7: Boundary Detection Problem. Step A shows
vertices from both the top and bottom of a 2D ASM
being attracted to the same boundary. This causes the
model to be scaled as shown in step B.

the ASM will be attracted to false positives - detecting
boundaries that are not part of the target structure. If
there are not too many false positives, the restriction
of ASM deformation would prevent the shape from de-
forming outside of the ASD. However, too many false
positives could result in undesirable deformation. An-
other problem is illustrated in Figure 7. When a valid
target boundary is completely to one side of a badly
initialised ASM, both the internal and external ver-
tices of the model will be attracted to the same bound-
ary. This target boundary is not a false positive, but
it causes the model to scale itself inappropriately to
attempt to fit both its internal and external vertices
to the same boundary - resulting in a very small ASM.

A similar problem tends to occur in narrow regions
of the target structure, such as the tail of the caudate
nucleus. It is difficult to initialise the tail accurately,
and in most cases the ASM’s tail will be initialised
next to the target tail. This presents a problem in
that model boundaries will be attracted to the same
target boundary - resulting in poor tail segmentation
results.

Standard Image Search: Grey Profile Mahalanobis Dis-
tance

[4] describe an image search technique incorporating
the use of statistical matching of grey profiles in target
volumes to grey profiles sampled from training vol-
umes. In order to use this technique, an extension
must be made to the ASM generation stage. After
landmark points have been allocated to a training vol-
ume, the local greyscale neighbourhood must be sam-
pled at each of these points. In our case, fitted GDM
vertices represent landmark points. A 1D greyscale
profile is sampled in both directions along the local
surface normal at each one of these vertices.

The grey profile Mahalanobis distance image
search method relies on the relative homogeneity of
the local greyscale neighbourhood surrounding each
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corresponding vertex in the training volumes. When
there is a high variance between grey profiles for corre-
sponding vertices, the model will not capture the char-
acteristics of the greyscale neighbourhood of those ver-
tices very well. In this case, the Mahalanobis distance
measure is not very effective in matching a vertex that
is positioned in a target volume to its corresponding
model vertex, as stored in the ASM.

6 HEURISTIC IMAGE SEARCH METHOD

In order to address the limitations of the edge de-
tection and grey profile Mahalanobis distance image
search methods, and to take advantage of various gen-
eral characteristics of our two target structures, we
devised a heuristic method for the image search stage
of caudate nucleus and hippocampus segmentation.

6.1 Assumptions

The heuristic image search method is based on the
following assumptions about the characteristics of the
caudate nucleus and hippocampus. These assump-
tions are based on the nature of the MRI data dis-
cussed in Section 3.

• The main body of the caudate nucleus is rela-
tively homogeneous in greyscale intensity. Based
on empirical observation of test data, this inten-
sity lies between the mean grey matter and white
matter intensities for the entire brain. Specifi-
cally, the caudate nucleus is around 1.25 times
the intensity of the mean grey matter intensity.

• The tail of the caudate nucleus, making up
around 20% of the total structure, is darker than
the body. Specifically, our test data indicates that
it is around 0.7 times the intensity of the body.

• The tissue surrounding the caudate nucleus is
mostly grey matter of a lighter intensity than the
caudate itself.

• The entire hippocampus is relatively homoge-
neous in greyscale intensity. Empirical observa-
tion again shows that this intensity lies between
the mean grey matter and white matter intensi-
ties for the entire brain. However, the hippocam-
pus is slightly darker, at around 1.17 times the
intensity of the mean grey matter intensity.

• The tissue surrounding the hippocampus is
mostly grey matter of a lighter intensity, but some
surrounding areas are darker than the hippocam-
pus. Thus, the only assumption that can be made
about colour of the surrounding tissue is that it is
generally of a different intensity to the hippocam-
pus.

• Because both the caudate nucleus and hippocam-
pus are relatively homogeneous in intensity, they
contain few internal edges. However, since the
surrounding tissue is of a different intensity, there
will be a pronounced edge along large portions of
the boundaries of both structures.

Figure 8: Histogram of Typical Brain Tissue Intensi-
ties. GM, CC, and HC refer to mean grey matter colour,
caudate colour and hippocampus colour, respectively.

Figure 9: MRI Scan of caudate nucleus. The sagittal
MRI scan shows a manually-traced left caudate nucleus
in red.

• The tissue surrounding both structures is gener-
ally not homogeneous in intensity, and contains
many edges.

Figure 8 shows a histogram of brain tissue intensities,
with the mean colour of the caudate nucleus and hip-
pocampus marked. Figures 9 and 10 show MRI scans
of the tissue surrounding the caudate nucleus and hip-
pocampus.

6.2 Search Function

Our heuristic image search function was designed to
take advantage of the characteristics mentioned in the
previous section. The goal of the function, as with the
others, is to find an appropriate boundary in a given
grey profile. The function works similarly to the näıve
edge detection method, in that it evaluates the prob-
ability of being a part of the boundary, for each voxel
in a given grey profile. The difference is that it not
only takes into account edge strength of a given voxel,
but also the characteristics of the (8-connected) sur-
rounding voxels. Characteristics taken into account
include the difference in colour between surrounding
voxels and the target structure, as well as the number
and strength of edges present in the surrounding vox-
els. The Heuristic Edge evaluation function, HE(), is
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Figure 10: MRI Scan of hippocampus. The sagittal
MRI scan shows a manually-traced left hippocampus in
red.

made up of 3 weighted terms, formulated as follows.
Figure 11 provides an illustration of how the heuristic
Edge evaluation function works.

HE(pv, i, s) = a.ES(pv, i, )−b.SE(pv, i, s)−c.DC(pv, i, s)
(2)

ES(), SE(), and DC() refer to Edge Score, Sample
Edges, and Difference in Colour, respectively. These
terms will be discussed in detail in the following sec-
tion.

Once the voxel with the highest heuristic Edge
score in pv has been detected, the per-vertex adjust-
ment is computed in a similar fashion to the edge de-
tection image search method. Vertex v is moved along
surface normal in the direction of the voxel with the
highest Heuristic Edge score, for a distance propor-
tional to the Heuristic Edge score of that voxel.

Edge Score

The Edge Score term, ES(pv, i), uses a simple 1D con-
volution kernel ( [0.25 0.5 0.25] ) to find the edge
strength of a given voxel, i, as it appears in a grey
profile, pv. This term operates in a similar fashion
to the edge detection image search method mentioned
earlier. The term is weighted by the constant a. This
weighting allows for the adjustment of the contribu-
tion that each term has on the final score. This con-
cept is discussed in further detail in Section 6.4.

Sample Edges

The Sample Edges term, SE(pv, i, s), sums the total
strength of all edges that are present in a sample that
appears immediately to the right of voxel i in grey
profile pv. The sample length is specified as s. This
term effectively measures inhomogeneity in the sample
to the right of the voxel in question. This measure
is based on the assumption that the caudate nucleus
and hippocampus are relatively homogeneous, and is
therefore negatively weighted by the constant −b.

The sample is taken to the right hand side of voxel
i because of the direction in which grey profiles are

sampled along local surface normals. The surface nor-
mal orientation is such that the left hand side of grey
profiles always point towards the outside of the tar-
get structure, and the right hand side always points
towards the inside.

This term, when negatively weighted and com-
bined with the previous Edge Score term, detects
edges that are bordered to the right by homogeneous
regions - as one would expect to find around the bor-
ders of the target structures.

Difference in Colour

The Difference in Colour term, DC(pv, i, s), measures
the difference between the mean colour of a sample -
also taken to the right of the ith voxel - and the mean
colour of the target structure being segmented. The
mean colour of the target structure is determined via
a lengthy process that is explained in detail in Section
6.3.

Based on the assumption that the caudate nucleus
is generally darker than the surrounding areas, the
Difference in Colour term only penalises the Heuristic
Edge score if the sample mean is lighter than the mean
caudate colour. The caudate tail is also known to be
darker than the rest of the structure, so the mean
caudate colour is multiplied by 0.7 when the vertex,
v, corresponding to the grey profile pv, is part of the
tail.

The area surrounding the hippocampus can be
both lighter and darker than the Hippocampal mean
colour. So, instead of only penalising the Heuristic
Edge score for the sample mean being lighter, in the
case of the hippocampus, the Difference in Colour
term calculates the absolute value of the difference
between the sample mean and the hippocampus mean
- thus incurring a penalty for the sample mean being
either darker or lighter.

The Difference in Colour term is also negatively
weighted, using the constant −c.

6.3 Target Colour Determination

The heuristic edge detection method relies largely on
the knowledge of the mean tissue intensity of the tar-
get structure. In order to determine this intensity,
we employ a lengthy algorithm, based mainly on a
method devised by Worth et al, and to a lesser de-
gree on the method employed by Xia et al [25, 26].
These methods are discussed next. Following this dis-
cussion, we describe each step of our method in detail.
We then evaluate the effectiveness of our method.

Target Volume Preprocessing

In order to remove scanning artifacts and other spuri-
ous voxels from the target volume, a flood fill is first
performed on the background area, outside of the skull
boundary. The flood fill isolates the volume contained
in the skull from the rest of the voxels, allowing for a
more accurate global histogram.

The next step is to crop the volume to begin on the
skull boundary. This is achieved by casting rays from



44 Research Article – SACJ No. 49, September 2012

Figure 11: Heuristic Edge evaluation. pv is a typical
grey profile sample, taken from a caudate nucleus target
volume. CC indicates the mean caudate colour, as de-
tected by our algorithm. Using the näıve edge detection
method, voxel i = 8 would have been incorrectly chosen
(it is on the wrong side of the target structure), since it
has the strongest edge value. However, the heuristic edge
detection method takes into account the homogeneity of
the voxels i = 3 to i = 7 (to the right of the sample),
as well as the fact that the mean colour of these voxels
is close to that of the caudate nucleus in this target vol-
ume - resulting in i = 2 being correctly chosen as the
boundary of the target structure.

the original target volume borders, vertically and hor-
izontally, towards the centre of the volume. The point
in each axis at which the rays first intersect with the
skull is taken as the cropping plane for that axis. The
cropped volume allows faster processing of subsequent
steps, as the volume to be processed becomes smaller.

The final preprocessing step is to remove strong
edges using a Sobel filter. A 2D Sobel filter is con-
volved with each slice of the target volume to identify
edges. Edges with scores above a certain threshold
are then removed, leaving behind areas of relatively
homogeneous intensity, and containing only weak gra-
dients.

These preprocessing steps are illustrated in Figure
12.

Global Peak Detection

The first step in peak detection is to calculate the
global histogram of voxel intensities for the target vol-
ume - with the background voxels thresholded out.
This histogram is initially quite jagged, and must be
smoothed to be useful. Smoothing is achieved by con-
volving the histogram with a discrete Gaussian con-
volution kernel. This smoothing step is repeated a
number of times, depending on the width of the his-
togram. The width of the histogram is proportional to
the range of intensities present in the target volume. If
the volume contains only a small range of intensities,
then smoothing the histogram too many times will
cause too much loss of information, rendering it use-
less. Thus, the range of intensities is first determined,
and the histogram is then smoothed accordingly.

The next step is identify peaks in the smoothed
histogram. This is done by first convolving the his-
togram with a discrete Gaussian first derivative ker-
nel. This convolution produces an approximation of
the first derivative of the histogram. The first deriva-

tive approximation is then smoothed using the orig-
inal Gaussian kernel. Peaks can now be identified
by negative-going zero crossings of the first derivative
function.

Because of the inherently jagged nature of the
histogram and its approximate first derivative, many
peaks will be identified by looking for zero crossings.
In order to eliminate false positives, the area of each of
these peaks must be determined. Peak area is deter-
mined in a similar way to Worth’s method of adding
the absolute values of the heights of the first deriva-
tive of the histogram on each side of the negative-going
zero crossing [25]. Instead of adding the heights, we
sum the area under the curve at each discrete point in
the histogram, between the two zero crossings. Using
this method, we can express the area of a peak as a
proportion of the total histogram area - simply calcu-
lated by summing the area under the curve at each
point in the full histogram. Peaks with areas that are
proportionally much smaller than the histogram itself,
are discarded as false positives. Our empirical testing
showed that valid peaks are usually greater than 1

30 th
of the total histogram area.

At this point, there should be 2-3 peaks of interest
left, since the dark cerebrospinal fluid can sometimes
be thresholded out during the process. The grey mat-
ter peak is always the second last peak of the remain-
ing group. This grey matter value should be saved
for later comparison to the local grey matter colour,
since this is the peak of interest in our segmentation
algorithm. Figure 12 illustrates the peak detection
process.

Local Peak Detection

Now that the global grey matter intensity has been de-
termined, a similar process must be undertaken to find
the grey matter intensity local to the area surrounding
the target structure. Since both the caudate nucleus
and hippocampus consist entirely of grey matter, de-
termining this intensity will provide the necessary in-
formation for the Difference in Colour term mentioned
previously.

The first step in determining local intensity is
to isolate the area surrounding the target structure.
Worth’s method involves a lengthy heuristic proce-
dure involving locating the Corpus Callosum, and us-
ing this as a landmark to find the caudate nucleus.
This procedure is unnecessary in our algorithm, as
we already have information regarding the mean loca-
tion of target structures, as recorded in our training
shapes. Indeed, our method already relies on this lo-
cation to initialise the ASM prior to segmentation.
Using the mean location and orientation of the train-
ing shapes we can reliably determine the bounding
boxes surrounding both the caudate nuclei and hip-
pocampi in a given target volume. This is done based
on the previously mentioned assumption that target
data will be captured in a similar orientation to the
training data used to create the ASM.

After the target structure has been isolated, the
algorithm proceeds to calculate peaks using the same
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Figure 12: Caudate Colour Determination. CC in-
dicates the final caudate colour. CSF, GM and WM
indicate cerebrospinal fluid, grey matter and white mat-
ter, respectively. The processing steps illustrated here
are discussed in detail in section 6.3.

CN H
N 62 52
Success W/O GM Guess 47% 98%
Success W GM Guess 82% 98%
Mean Intensity 88.95 80.96
Min Intensity 40 36
Max Intensity 130 109
False Positives 4 1
False Pos Rate 6% 2%
Detected False Pos 2 1
Undetected False Pos 2 0
Undetected False Pos Rate 3% 0%

Table 2: Results of Evaluation of Target Colour De-
termination. CN refers to caudate nucleus and H refers
to hippocampus.

method as was used to determine global peaks. Again,
the second last peak that remains after filtering is
taken to be the local grey matter intensity. This peak
is checked against the global grey matter peak to en-
sure that it is of a slightly higher intensity.

In some cases, the target volume is of such poor
contrast that determination of the local grey matter
peak fails. In these situations, local grey matter in-
tensity is estimated based on global grey matter inten-
sity. Based on our previous assumptions, grey matter
belonging to the caudate nucleus and hippocampus
would be estimated at 1.25 and 1.17 times the global
grey matter intensity, respectively.

Evaluation

Caudate nucleus and hippocampus colour determi-
nation algorithms were tested in the following fash-
ion. The algorithm was run on each unsegmented tar-
get volume, and the global grey matter and target
structure colours were recorded. These colours were
then compared to the mean target structure colour in
the corresponding segmented volume. The results are
summarised in Table 2.

GM Guessing refers to the estimation of target
structure intensity, based on the detected global grey
matter intensity. When the algorithm fails to deter-
mine the local grey matter intensity (often due to poor
contrast data), or the algorithm determines an inten-
sity that is outside of an acceptable range, the in-
tensity is estimated according to the previously men-
tioned assumptions about the ratio between target
structure and global grey matter intensity.

A colour estimate is deemed to be a false positive
when the algorithm does not fail (i.e. falsely indi-
cates success), but provides an estimate that is out-
side of the acceptable range of intensities for a par-
ticular target structure - based on the mean target
structure intensity, as determined from manually seg-
mented test data. False positives are detectable in
most cases, by measuring whether the ratio between
global grey matter intensity and local grey matter in-
tensity is within acceptable limits. In very few cases
(2 out of 62, for the caudate nucleus, and 0 out of 52,
for the hippocampus), these false positives went unde-
tected, and would therefore cause poor segmentation
results.

The results show that the Target Colour Determi-
nation algorithm works satisfactorily for caudate nu-
cleus target structures, with an 82% success rate. In
cases where the algorithm fails, the ASM segmenta-
tion method would have to be altered to not rely on
the knowledge of the target structure colour. This can
be achieved by assigning a weighting of 0 to the Dif-
ference in Colour term. Fortunately these failures are
mostly detectable, and can be compensated for.

The algorithm works exceptionally well in deter-
mining the colour of target hippocampi. With a 98%
success rate, and only 1 false positive (which was de-
tectable), the results show that the algorithm is very
reliable when applied to these structures.

6.4 Parameter finding using a Genetic
Algorithm

The heuristic edge detection algorithm relies on the
use of various parameters to control segmentation.
These parameters are detailed below.

• Profile length (l). This parameter determines the
length of sampled grey profiles, pv. Typical values
range between 3 and 5.

• Sample length (s). This determines the sample
length, as detailed in Section 6.2. Typical values
range between 3 and 7.

• Term weighting (a, b, c). These parameters con-
trol relative term weighting, as detailed in Section
6.2. Typical values range between 0.5 and 6.0.

• Maximum edge value (m). This parameter
controls the maximum expected boundary edge
value. This varies according to target structure,
and is used to control the proportional adjust-
ment of vertices in the search function. The
caudate nucleus tends to have stronger bound-
aries than the hippocampus, and will thus require
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higher values of m. Typical values range between
50 and 500.

In order to maximise segmentation accuracy, it is nec-
essary to find the best set of parameters for each target
structure. Parameters that work well for caudate nu-
cleus segmentation do not necessarily work as well for
hippocampus segmentation. In order to test a set of
parameters, a segmentation must be run using them.
Since the target volume data vary in brightness, con-
trast, and signal-to-noise ratio, it is not enough to
merely test a set of parameters on one target volume.
A set of parameters must therefore be used in multiple
segmentation runs to test its effectiveness. This pro-
cess is considerably time consuming, and it is not fea-
sible to experiment with all possible parameter com-
binations, as the search space is fairly large.

Implementation

Since exhaustive exploration of the parameter search
space was infeasible, we use a Genetic Algorithm (GA)
to find the best set of parameters for each target struc-
ture. The GA was implemented in MATLAB, and
uses Roulette Wheel selection. Individual genes in
our GA chromosomes simply represent segmentation
parameters. The chromosomes therefore consist of 6
genes each. Genes consist of integer indexes rang-
ing from 1 to the maximum number of discrete in-
tervals in the range of values for their respective pa-
rameters. For example, the chromosome [1 2 3 6 5 4]
represents the parameter values [l = 3 s = 4 a = 1.5
b = 3.0 c = 2.5 m = 200]. The fitness function takes
a chromosome, evaluates it, and returns a scalar fit-
ness value. Segmentation overlap was used as our fit-
ness metric. A separate fitness function was used to
evaluate the two target structure types, since caudate
nucleus segmentation is slightly different to hippocam-
pus evaluation.

Results

Optimum results were achieved with a crossover rate
of 70% and a mutation rate of 20%. A population size
of n = 20 was used, and the algorithm ran for 100
generations. The fittest 10 individuals were recorded
for each target structure. Each of the 10 fittest chro-
mosomes were then evaluated in a full test run of 30
and 26 target volumes, in the case of the caudate nu-
cleus and hippocampus, respectively. For each target
structure, the set of parameters that generated the
best overall results was used in the final evaluation.

7 EVALUATION

7.1 Metrics

In this section, we discuss the background and our
implementation of the quantitative metrics used for
evaluation. These metrics include commonly-used seg-
mentation measures such as overlap and segmentation
error. Metrics such as volume difference and surface
area difference offer an easy-to-calculate, but näıve

measure of segmentation success. They are not widely
used, and are therefore excluded from this evaluation.

Overlap

The overlap metric, ε, also knowns as Dice’s coeffi-
cient, is used to measure the fraction of possible voxels
shared by two binary segmentations. It is formulated
as follows [26].

ε =
2V12

(V1 + V2)
(3)

V1 and V2 are the scalar volume measures of the
two binary segmentations in question. V12 is the scalar
volume of the intersection of V1and V2. Thus, ε rep-
resents the ratio of actual overlap to possible over-
lap. For our purposes, the overlap metric is used to
measure the success of our segmentation algorithm in
identifying a target structure in a target data volume.
Thus, V1will represent the scalar volume measure of
the manually segmented ground truth data volume,
G. V2 thus indicates the scalar volume measure of the
automatically segmented data volume, A. V12 is the
scalar volume measure of the intersection of A and G,
A∩G, and can also be represented as VA∩G. This met-
ric is used widely in segmentation literature, and can
therefore be used as an objective comparison of seg-
mentation results between similar studies [4, 27, 28].

False positive and false negative ratios can be cal-
culated in a similar fashion. False positives, or over-
estimated voxels, are those voxels that have been er-
roneously identified as being part of the target struc-
ture. These voxels can be described as the relative
complement of A, given G, or A −G. The volume of
false positives, VA−G, and the ratio of false positives

to volume of overlap, VA−G

VA∩G
, are also commonly-used

metrics. False negatives, or missed voxels, can be de-
scribed as the relative complement of G, given A, or
G−A. Similarly, the volume of false negatives, VG−A,
and the ratio of false negatives to volume of overlap,
VG−A

VA∩G
, are frequently used. False positives and nega-

tives can also be expressed somewhat more intuitively
as a proportion of the target volume, formulated as
VA−G

VG
and VG−A

VG
, respectively.

Segmentation Error

Average segmentation error, is a measure of the mean
distance between each vertex of a fitted mesh, MA,
and the closest point in a mesh generated from a man-
ually segmented ground truth data volume, MG. The
mean-squared distance, is used more often than mean
distance, as squaring the difference generates more no-
ticeable results.

One advantage of using these metrics is that, as
well as measuring the total difference between all ver-
tices, it is also possible to measure the difference be-
tween subsets of vertices - thereby allowing closer
scrutiny of surface overlap in localised regions, such
as the tail of the caudate nucleus, for example.

Hausdorff distance can also be used to measure
how successfully the ASM has been fitted to target
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Algorithm 2 Evaluation of ASM Segmentation Abil-
ity

1. For i = 1..Ns

(a) Construct ASM from Ns training shapes, leav-
ing shape i out

(b) For each segmentation method, M (Edge De-
tection, grey profile Mahalanobis distance,
heuristic method, heuristic method with mul-
tisampling):

i. Initialise ASM

ii. Segment unsegmented target data volume i,
using segmentation method M

iii. Evaluate segmentation metrics for target vol-
ume i, method M

data [3]. This metric measures the maximum error
between the boundaries of the ground truth mesh, MG

and the fitted mesh, MA.
It is also useful to measure the standard deviation

of distances between vertices of MA and the target,
MG. This reflects the regularity of the segmentation
results. Results with a high standard deviation would
indicate an erratic segmentation, which is undesirable.

7.2 Results

ASMs based on the four target structures were con-
structed for this evaluation. These included ASMs
for left and right caudate nuclei, as well as ASMs
for left and right hippocampi. For each target struc-
ture, ASMs were constructed using varying numbers
of training shapes. This was done to evaluate the ef-
fect that adding more training data to the ASMs had
on the segmentation results. The caudate ASMs were
constructed with 10, 20 and 30 training shapes. The
hippocampus ASMs were constructed with 10, 20 and
26 training shapes. Thus, 12 ASMs were evaluated
in total (4 structures × 3 variations in the number of
training shapes used). Using specific subsets of train-
ing shapes could potentially introduce bias into the
experiment. Subsets were chose at random in order to
minimize this. This bias effect could also be minimised
by creating several small subsets of training shapes,
and averaging the results obtained from them.

For each of these ASMs, Algorithm 2 was used
to evaluate the ability of the ASM to segment un-
seen test data. As mentioned, data were considered
unseen since each ASM was built using leave-one-out
construction.

Statistical Significance Testing

In order to facilitate certain further statistical anal-
ysis, normality testing was performed on the results.
This was done to each result set by first finding the
mean and standard deviation of a Gaussian distribu-
tion that most closely matched the histogram of re-
sults, and then measuring the correlation coefficient
to determine how strongly the results are correlated
to the standard normal distribution.

Normality testing was performed on the overlap

Left Right
ED 0.7766 0.9420

GPM 0.7410 0.6683
H 0.8971 0.9390

(a) Caudate Nuclei

Left Right
ED 0.5439 0.8930

GPM 0.5811 0.7692
H 0.8838 0.9458

(b) Hippocampi

Table 3: Normality Testing. ED, GPM, and H refer
to edge detection, grey profile Mahalanobis, and heuris-
tic method. Correlation coefficient values indicate a
strong correlation (0.5 < r < 1.0) between all results
histograms and the standard normal distribution. We
can therefore conclude that our results are normally dis-
tributed.

metric results of segmentation using each image search
method, for each target structure. Correlation results
are summarised in Table 3.

Chauvenet’s Criterion was used to identify and
remove outliers in our data [29]. According to Chau-
venet, an experimental result can be rejected as an
outlier if the probability of obtaining the result (based
on the number of standard deviations from the mean)
is less than 1

2n , where n is the number of results.

Out of 232 results, 37 outliers where identified -
giving an outlier percentage of 37

232 ×
100
1 = 15.9%. 20

of the 37 outliers occurred due to segmentation failure
of target volume 6 - this accounts for 20

232×
100
1 = 8.6%

of the total number of of results.

We use a paired difference test for statistical signif-
icance, aiming to disprove the null hypothesis that the
means of two sets of segmentation results are not sta-
tistically different. Again, we used the overlap metric
as our basis for comparison of results, since this met-
ric is the most representative of the effectiveness of the
image search methods in question. Since outliers have
been eliminated, not all sets of results could be paired
for comparison. Thus, we performed the dependent
t-test only on samples that had corresponding pairs
in all results sets. The test was performed using a sig-
nificance level of 5%. A summary of results for ASMs
with the largest number of training shapes is presented
in Table 4.

Segmentation Results

Table 5 lists a summary of segmentation results for
ASMs with the largest number of training shapes (i.e.
Ns = 30 for caudate nuclei, and Ns = 26 for hip-
pocampi).

Overlap Results Beginning with the overlap met-
ric, it is clear, from Table 4 and Table 5, that for
all four target structures, the heuristic method sig-
nificantly outperformed both the ED and the GPM
methods.
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µ σ n t-stat p(T¡=t)
ED-H 0.08 0.06 29 7.18 ¡0.001

GPM-H 0.15 0.09 29 9.12 ¡0.001

(a) Left Caudate Nuclei

µ σ n t-stat p(T¡=t)
ED-H 0.07 0.07 25 5.13 ¡0.001

GPM-H 0.12 0.12 25 5.13 ¡0.001

(b) Right Caudate Nuclei

µ σ n t-stat p(T¡=t)
ED-H 0.19 0.11 26 9.23 ¡0.001

GPM-H 0.26 0.13 26 10.45 ¡0.001

(c) Left Hippocampi

µ σ n t-stat p(T¡=t)
ED-H 0.13 0.06 23 10.33 ¡0.001

GPM-H 0.15 0.08 23 8.81 ¡0.001

(d) Right Hippocampi

Table 4: Results of Paired Difference Test. ED, GPM,
and H refer to the image search methods: edge detec-
tion, grey profile Mahalanobis, and heuristic, e.g. ED-
H refers to the difference between edge detection and
heuristic image search methods. µ and σ refer to the
mean difference and standard deviation of differences. n
is the sample size, while t-stat refers to the t-test statis-
tic value. p(T¡=t) refers to the two-tail p value. All
differences are statistically significant.

The GPM method performs worst out of the
three image searches. When compared to initialisa-
tion statistics, we noted that the GPM method ac-
tually generates a worse segmentation over time. All
other methods tend to improve their mean overlap as
segmentation proceeds. This indicates a fundamental
flaw with the use of the GPM method in this context.
This is possibly due to boundary inhomogeneities in
our training data.

False Positive and False Negative Ratios As
previously discussed, False Positive Ratio and False
Negative Ratio refer to the ratio of false positives and
false negatives to the volume of overlap, respectively.
Our results indicate that although the ED method
generated acceptable overlap results, it had a tendency
to over-segment the data. This is apparent from the
fact that mean false positive ratios were very high,
whilst mean false negative ratios remained low for
all target structures. In fact, in all target structures
except the left hippocampus, the ED method gener-
ated the lowest mean false negative ratios. The same
method also generated the highest mean false positive
ratios in all four target structures.

The GPM method generated poor mean false pos-
itive and false negative ratios for all target structures.
This indicates that the area segmented by this method
was more or less uniformly offset from the target struc-
ture. This lack of precision once again indicates a flaw
in the use of the GPM method.

The heuristic method significantly outperformed

O FP FN MSD HD SDD
ED 0.74 0.49 0.13 0.97 3.76 0.63

GPM 0.67 0.26 0.37 1.79 4.09 0.83
H 0.82 0.16 0.2 0.75 2.7 0.49

(a) Left Caudate Nuclei

O FP FN MSD HD SDD
ED 0.75 0.42 0.16 0.84 3.28 0.59

GPM 0.69 0.28 0.32 1.28 3.72 0.73
H 0.81 0.14 0.21 0.76 2.73 0.48

(b) Right Caudate Nuclei

O FP FN MSD HD SDD
ED 0.57 0.69 0.32 2.19 4.83 1.05

GPM 0.5 0.46 0.51 2.82 4.76 1.04
H 0.76 0.3 0.21 0.73 3.1 0.56

(c) Left Hippocampi

O FP FN MSD HD SDD
ED 0.65 0.78 0.16 1.7 4.62 0.97

GPM 0.64 0.43 0.33 1.59 3.97 0.84
H 0.79 0.25 0.19 0.72 2.82 0.52

(d) Right Hippocampi

Table 5: Summary of Mean Segmentation Results.
ED, GPM, H, and HM refer to the image search meth-
ods: edge detection, grey profile Mahalanobis, and
heuristic. Overlap (O), False Positive (FP) Ratio, False
Negative (FN) Ratio, Mean Squared Distances (MSD),
Hausdorff Distance (HD) and Standard Deviation of Dis-
tances (SDD) segmentation metric means are displayed
in the corresponding columns.
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both the ED and GPM methods in terms of mean
false positive ratios for all structures, indicating a uni-
form tendency to avoid over- and under-segmentation.
However, the ED method generated slightly lower false
negative ratios for three of the structures.

Segmentation Error Metrics As expected, mean
squared distances are approximately inversely propor-
tional to overlap. Results for the GPM method show
the highest mean squared distances in most cases, in-
dicating that the model boundary was situated rela-
tively far from the target boundary. Again, the ED
method gives moderate results, whilst the heuristic
method gives the best results - resulting in an average
mean squared distance of under 1mm2 in all cases.

The Hausdorff distance results are much the same,
indicating that the maximum segmentation error was,
in most cases, lowest for the heuristic method without
multisampling. The ED and GPM methods fared the
worst in all cases.

Standard Deviation of Distances indicates a large
fluctuation in model-vertex-to-target-boundary dis-
tances for the ED and GPM methods. This indicates
erratic segmentation results, with some vertices situ-
ated close to target boundaries, and some situated far
away. Again, the heuristic method showed reliable
consistency in segmentation, with the lowest mean
standard deviation of distances results in all cases.

FreeSurfer Validity Study

A recent study was done into the validity of using the
FreeSurfer software package for measurement of brain
volumes in children with fetal alcohol syndrome [30].
This study was done using the same MRI test data
that we used in our experiments.

The study reported inter-observer correlations for
manual tracings of target structures ranging from r =
0.94 to r = 0.99, with a median of r = 0.98. This
inter-observer correlation indicates the high reliability
of the manually delimited target volumes used in our
study.

The FreeSurfer package automatically recon-
structs an entire cortical surface, and correspond-
ing sub-cortical volumes from an MRI brain volume.
This process is time-consuming, as target structures
can not be segmented individually. Results from the
FreeSurfer study indicate that manual tracings are
highly correlated with automatically segmented vol-
umes. Correlation coefficient values ranged from a
worst case of rs = 0.74 for the right hippocampus to
a best case of rs = 0.89 for the total caudate, with a
median of 0.83.

Since overlap is directly proportional to correla-
tion, we can compare the FreeSurfer correlations with
our overlap results. Table 6 shows median and maxi-
mum results for our heuristic method that are similar
to the FreeSurfer correlations, although minimum val-
ues were significantly lower for most structures. These
results indicate that our heuristic method is a viable
alternative to FreeSurfer. Also, when segmenting in-
dividual target structures, our method takes around 5

Min Max Median
LC 0.65 0.88 0.83
RC 0.65 0.88 0.82
LH 0.66 0.82 0.78
RH 0.72 0.85 0.79

Table 6: Min, Max and Median Overlap for the
Heuristic Method. LC, RC, LH and RH represent the
four target structures: left caudate nucleus, right cau-
date nucleus, left hippocampus, right hippocampus.

to 10 minutes, whereas FreeSurfer typically takes 24
to 36 hours on equivalent hardware (due to the whole-
brain segmentation). Thus, when used for rapid seg-
mentation of individual target structures, our method
may be preferable to the use of FreeSurfer.

GPM Image Search Failure

The GPM image search method failed to detect
boundaries effectively. This failure was probably due
to the relative heterogeneity of organ boundaries in
our training data. The GPM method relies on a
strong correlation between greyscale intensities of cor-
responding boundary points in training data. If this
correlation is not strong enough (due to noise or con-
trast factors, for example) the GPM method fails to
create a good model of the boundary surrounding a
target shape. Without a decent model of the bound-
ary, the GPM image search fails to attract vertices to
boundaries, and produces a bad segmentation.

8 CONCLUSION AND FUTURE WORK

We attempt to find the best algorithm for the auto-
matic segmentation of the caudate nucleus and hip-
pocampus from our MRI test data, within the context
of a study into the neural correlates of FASD.

We use a modified GDM to create point correspon-
dence in our data. We then implement an ASM that
incorporates various popular image search methods to
find target structure boundaries. In addition to these
methods, we develop our own heuristic image search
method - tailored to work particularly well with the
abovementioned target structures.

We use a wide range of segmentation metrics to
evaluate the effectiveness of the various image search
methods when applied to the data from the study into
FASD. The results follow a standard normal distri-
bution. Statistical analysis shows that our heuris-
tic method is consistently better at segmenting the
target data than other tested image search methods.
The edge detection method produces average results,
although it displays a tendency to over-segment the
target data. The grey profile Mahalanobis method
fares the worst of the three. This failure is ascribed to
heterogeneity in training data. The heuristic method
shows the lowest standard deviation in results, again
displaying reliable consistency in segmentation. The
other methods produce somewhat more erratic results.
Future work may include experimenting with image



50 Research Article – SACJ No. 49, September 2012

search methods not attempted in this research, such
as the method suggested by [31].

Results from the heuristic method are favourable
when compared to results of automatic segmentation
of the same data using the FreeSurfer software pack-
age. Although the FreeSurfer results are slightly bet-
ter, the ASM approach allows for independent tar-
get structure segmentation, and is therefore much less
computationally demanding. Thus, individual tar-
get segmentation using the heuristic method is much
faster, and may be preferable to the use of FreeSurfer.
Both FreeSurfer and the heuristic method provide a
lower level of accuracy when compared to manual seg-
mentation. Since the FreeSurfer method has been used
in numerous studies, such as the one mentioned in the
previous section, and our results are comparable to
those produced by FreeSurfer, we conclude that the
heuristic method provides sufficient accuracy to be
used in similar FASD-related studies.

Recent state-of-the-art techniques that make use
of multi-atlas segmentation, have demonstrated com-
parable, and sometimes better overlap results to our
ASM method [32]. Multi-atlas segmentation is gener-
ally more computationally demanding, but with ad-
vances in the availability of computational power, this
becomes less of an issue. Future work in FASD seg-
mentation could include research into the efficacy of
these methods on our subject data.

In order to improve segmentation results, whilst
maintaining most of the speed benefit, it may be
possible to use the heuristic ASM method as the
initial stage in a semi-automatic segmentation pro-
cess - the fast initial automatic segmentation would
then be manually corrected by neuroanatomists. This
would result in dramatically improved accuracy, at a
marginal cost of a few minutes of segmentation time.

All-in-all, our method will allow for more rapid
segmentation of the caudate nucleus and hippocampus
structures, thereby accelerating research into FASD.
This important research will allow us to better under-
stand the neural correlates of this debilitating disor-
der.
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APPENDIX A - LANDMARK POINT GENER-
ATION

Mesh Initialisation

The initial mesh is generated from one of the target
data volumes. The Matlab isosurface routine is used
to convert the binary volume into a mesh of vertices,
edges and faces. This mesh is then smoothed twice us-
ing the Laplacian smoothing technique described be-
low.

vi =
1

N

N∑
j=1

vj (4)

Each vertex, vi, in the mesh is replaced by the
mean of its 1-ring neighbouring vertices, vj . N is the
number of neighbouring vertices to vi.

The next step is to automatically register the
smoothed mesh with the target volume. This ensures
that the mesh is fitted as closely as possible to the
target, prior to commencing deformation. Registra-
tion is done using the Procrustes technique [15]. This
technique iteratively rotates, scales and translates a
candidate mesh to fit a given target mesh. An isosur-
face is therefore created from the binary target volume
using the isosurface routine. The initial mesh is then
registered against this target mesh - effectively the
same as registering against the target volume itself.

After registration, our initial mesh is positioned
well enough relative to the target volume to commence
deformation. MacDonald’s approach is slightly differ-
ent since it starts with an initial low resolution mesh,
which is tessellated as it deforms to fit the target. This
multi-resolution approach is good for situations where
the initial mesh is not well registered. It also provides
a computation speedup, as the searchable parameter
space is initially much smaller. The advantage of us-
ing a single resolution approach, and starting with an
initial model that is similar in shape to the target vol-
ume, is that the model will deform in such a way that
ensures the placement of particular vertices in similar
positions on each target. This is essential to our for-
mulation, as the generation of point correspondence
between training data volumes is the purpose of this
stage of the project. MacDonald’s multi-resolution ap-
proach is able to generate loose point correspondence,
but this is not sufficient for our purposes.

Cost Function

The cost function is similar to MacDonald’s formula-
tion [12]. It has the following formulation:

C(M) =

(A∗Timage+B∗Tstretch+C∗Tbending+D∗Tself−proximity)

(5)

C(M) is the cost function evaluating mesh M . It
consists of 4 terms, each with its own weighting pa-
rameter (A,B,C and D). Ideal weightings for each

term proved to be difficult to estimate, as this process
relied on trial-and-error. The output of each term is
summed into a total cost value for the mesh.

Image Term

The Image term measures the sum of distances from
each vertex to its nearest boundary, in both directions
along the local surface normal. As in MacDonald’s for-
mulation, search distances were thresholded in order
to prevent vertices from being attracted to incorrect
boundaries. The equation for the Image term follows:

Timage =

nv∑
v=1

dB(Mv, N̄v, t) (6)

dB(Mv, N̄v, t) measures the distance from vertex
v, which belongs to deformable meshM , along its local
surface normal, N̄v, to the nearest boundary of the
target volume. This distance measure is thresholded
by t.

The surface normal for a specific vertex is calcu-
lated as the mean of the normals of the faces surround-
ing that vertex:

N̄v =
1

nf

nf∑
f=1

N̄v,f (7)

N̄v,f denotes the normal of face f , neighbouring
vertex v. nf denotes the number of faces neighbouring
vertex v.

Boundaries are detected by sampling voxels in
the target volume at uniform intervals from a vertex,
along the surface normal in both directions. When a
change in voxel value from zero to non-zero (or vice
versa) is detected, a boundary has been reached.

Stretch Term

In MacDonald’s formulation, the stretch term mea-
sures the deviation in edge length between the de-
forming mesh and an ideal model. This regularisation
force prevents the model from stretching or contract-
ing into a shape that is jagged, or very different from
the ideal model. We found that enforcing a prede-
fined ideal edge length for each edge was too restric-
tive, since this approach prevented overall scaling of
the deformable model. We opted instead for an ideal
proportional edge length. The equation for the stretch
term is formulated as follows:

Tstretch =

ne∑
e=1

∣∣∣∣ ||Me|| − ||Ime||
M̄edge

∣∣∣∣ (8)

Me refers to the vector that represents edge e of
mesh M . Ime refers to the vector that represents edge
e of the ideal mesh Im. ne is the number of edges in
the mesh. M̄edge is the average length of an edge in
mesh M . It can be represented as follows:

M̄edge =
1

ne

ne∑
e=1

||Me|| (9)
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The use of a proportional edge length allows our
model to be uniformly scaled, but still constricts defor-
mation to shapes that are similar to the ideal model.

Bending Term

Our bending term is implemented similarly to Mac-
Donald’s. The equation is as follows:

Tbending =

ne∑
e=1

|a(M, e)− a(Im, e)| (10)

a(M, e) measures the angle between the faces ad-
jacent to edge e, belonging to mesh M . Im again
refers to the ideal mesh. This term also measures de-
viation from an ideal mesh. The angles between the
normals of adjacent faces are measured, and the ab-
solute difference between each angle in the deforming
mesh and the ideal mesh is summed.

We use the initial, smoothed mesh as our ideal
mesh. The stretch and bending terms therefore pe-
nalise deviation from the initial mesh configuration.
Since our initial configuration is similar to our tar-
get shape, the GDM is prevented from deforming to
shapes that are dissimilar to the target.

APPENDIX B - PRINCIPAL COMPONENT
ANALYSIS IN ASM CONSTRUCTION

The PCA phase in ASM construction involves cap-
turing the statistics of the m aligned training shapes.
Each shape is described by a vector of values, which
we will call a shape description vector. If a PDM was
used in the previous stage, each shape description vec-
tor will consist of a combination of n 3-D landmark
coordinates. These coordinates are projected onto 3n-
D shape space, thereby giving one 3n-D vector of val-
ues for each of the m shapes. If the shape surface was
reparametrised to shape descriptors, then each shape
description vector will consist of a set of shape de-
scriptor parameters. The objective of using PCA in
at this stage is to find the principal modes of variation
of training shapes within the ASD.

The first step of PCA is to calculate the mean
shape description vector x̄:

x̄ =
1

m

m∑
i=1

xi (11)

Each shape description vector xi is then described
terms of its difference from the mean, such that:

dxi = xi − x̄ (12)

The next step in PCA is to construct the covari-
ance between each dimension across all the adjusted
shape description vectors dxi. These covariance val-
ues are stored in an NxN covariance matrix, where
N is the total number of dimensions present in each
shape description vector (e.g. N = 3n for PDM-based
vectors). The covariance matrix is constructed as fol-
lows:

CNxN = (ci,j , ci,j = cov(Dimi, Dimj)) (13)

It can be shown that the eigenvectors of the co-
variance matrix with the highest eigenvalues describe
the most significant modes of variation between the
variables used to construct the covariance matrix [7].
Thus, the next step in PCA is to find the unit eigen-
vectors pkof the covariance matrix. For an NxN co-
variance matrix, there exist exactly N eigenvectors.
The eigenvectors pk(k = 1, .., N) satisfy the following
equation (where λkis the kth eigenvalue of C):

Cpk = λkpk (14)

Each eigenvalue indicates the amount of variance
explained by its corresponding eigenvector. It is gen-
erally the case that a significant amount of variance
can be explained by a small number of modes, t [7].
This enables us to approximate instances in a space
of N dimensions by using only t dimensions - without
losing much information as a result of the approxima-
tion. An appropriate value chosen for t should balance
variation with model compactness. If t is too low, the
ASM will not be able to represent finer variations in
shape. Conversely, if t is too large, the ASM will con-
tain too many parameters - creating a large parameter
search space. The variance represented by t modes can
be evaluated in proportion to the total variance λT ,
calculated by summing the eigenvalues:

λT =

N∑
k=1

λk (15)

The feature vector, P = (p1p2...pt), is then created
as a matrix of the first t eigenvectors. Any shape
in the ASD can now be approximated by adding the
mean shape description vector to the product of the
feature vector and a transposed vector of basis weights
b = (b1b2...bt)

T [7]:

x̃ = x̄+ Pb (16)

By varying the values of the weights in b, we can
generate new shapes that are not part of our training
set, but are also within the ASD. This is the funda-
mental concept on which ASMs are based. If land-
mark points were reparametrised prior to PCA, these
will need to be mapped back into Euclidean coordi-
nates to be of use when fitting the ASM to target
data.


