
Research Article – SACJ No. 52, July 2014 55

iSemServ: A model-driven approach to developing semantic

web services

Jabu Mtsweni∗† , Elmarie Biermann∗ , Laurette Pretorius‡

∗School of Computing, University of South Africa, Florida Campus, Johannesburg, South Africa
†Defense, Peace, Safety and Security, Council of Scientific and Industrial Research, Pretoria, South Africa
‡School of Interdisciplinary Research and Graduate Studies, University of South Africa, Pretoria, South Africa

ABSTRACT

The benefits of incorporating Semantic Web Services in web applications are well documented. However, both the real-world

implementation and adoption of these services are still rather limited in practice. This is despite the promises that

extend syntactic Web services with capabilities such as automatic service discovery, composition, and execution. Some

of the barriers to the real-world implementation are the complexities and tool support related to the development of

Semantic Web Services. In this article, the main challenge that is addressed is the tight coupling of existing Semantic Web

Services (SWS) development platforms to specific semantic description languages and service description languages, which

unintentionally lead to unbending service development environments. The main contribution in this article is therefore

a model-driven approach called iSemServ that exploits mature technologies, such as UML, and model-transformation

techniques for simplifying and semi-automating the development of SWS using description languages of choice, such as

Web Ontology Language for Services (OWL-S) and Web Application Description Language (WADL). A design science

research methodology was employed in conducting the study. The suggested approach was practically implemented as an

Eclipse plug-in and evaluated based on a real-world use case scenario and comparative analysis of related solutions. The

evaluation results show that our proposed solution is relevant and appropriate in aiding the semi-automatic development of

SWS, albeit with a number of limitations that could be addressed by extending the proposed practical solution.

KEYWORDS: iSemServ, Semantic Web, Web Services, Semantic Web Services, Ontologies, Web engineering,
Model-driven architecture

CATEGORIES: D.2, D.2.11

1 INTRODUCTION

The benefits of employing Semantic Web Services
(SWS) in web applications are well documented in
academia and industry [1] [2] [3] [4]. Some of the
benefits of utilising SWS include:

• improved representation, sharing, searching, rea-
soning and reuse of data and services on the Web
[5], and

• automation of various web-based tasks, such as
service discovery, selection, composition, choreog-
raphy, orchestration, and execution [5] [6].

Nevertheless, the real-world implementation and adop-
tion of SWS has remained limited to date. Various
major challenges that are contributing to this lack of
implementation and usage have been identified [1] [7]
[8] [9]. Some common issues include the lack of ef-
fective tools [4], non-integration of SWS technologies
into existing technologies [10], high costs of adopt-
ing service-oriented architectures [11], steep learning

Email: Jabu Mtsweni mtswenij@gmail.com, Elmarie
Biermann bierman@xsinet.co.za, Laurette Pretorius
pretol@unisa.ac.za

curves, high complexity of prominent heavy-weight
semantic models, and concerns over agreement in se-
mantic modelling standards [6].

Preliminary investigations suggest that existing
approaches for aiding the development of SWS are
fragmented and tightly coupled to specific semantic de-
scription languages and service description languages,
also referred to as service architectural styles, lead-
ing to standard-dependent and restrictive development
environments. This further leads to undesirable conse-
quences, such as prolonged service development pro-
cesses and additional implementation costs [6] [11].

New approaches that support multiple semantic
description languages and architectural styles of choice
are indeed essential towards facilitating, promoting,
and semi-automating the development of SWS. There-
fore, the main contribution of this article is the pre-
sentation and description of a model-driven approach
for designing and developing SWS using semantic de-
scription languages and service description languages
of choice.

A design science research methodology [12] was
followed to design and develop the proposed model-
driven approach. The proposed and evaluated solution

56 Research Article – SACJ No. 52, July 2014

is based on the principles of multiple description lan-
guages support and complexity hiding through model-
driven techniques, automatic code generation through
dynamic templates, and extensibility to accommodate
new description languages.

The remaining sections of this article are structured
as follows. Firstly, detailed background information
relating to SWS and their essential components is pro-
vided. This is followed by explaining the rationale of
the research methodology used for devising and eval-
uating the proposed model-driven approach. Related
existing solutions that attempt to address the SWS
development challenges are then discussed. Next, the
delineation of the essential design requirements that
serves as key building blocks for the proposed model-
driven approach are discussed. The approach, termed
iSemServ, for building SWS is then presented and de-
scribed. The implementation and evaluation results
of the suggested solution using a well-defined use case
scenario and comparative analysis are reported and
the article is concluded by highlighting possible future
research.

2 BACKGROUND

The fundamental elements that comprise SWS are
mainly web services, syntactic descriptions, semantic
descriptions, and ontologies. These discrete elements
demonstrate that the development of SWS is not a
trivial process. The understanding and discussion
of these elements is therefore essential, as they also
show the complexities and diversities involved when
Information System developers design and implement
SWS.

By definition, SWS originate from the integration
of syntactic Web Services (WS) and the Semantic Web
(SW), which is an extension of the current Web [10]
[13]. The term ‘syntactic’ is used in the context of this
article to distinguish the mostly HTML-based World
Wide Web from the Semantic Web, in which web pages
carry information that can be read and understood
by both machines and humans in a systematic way.
The leveraging of syntactic WS with semantic descrip-
tions [14] is preferred mainly for automating business
processes on the Web [3] [15], thus minimizing hu-
man intervention in performing tedious Web activities,
such as searching and discovery of large amounts of
information.

The main objective of SWS is to enable machine-
processable and machine-interpretable services with
limited human intervention by using ontologies and
semantic descriptions to unambiguously describe both
functional and non-functional aspects of services.

The following subsections discuss the salient com-
ponents of SWS.

2.1 Semantic descriptions

From the service-orientation perspective, semantic de-
scriptions are meant to formally describe the core capa-
bilities of a service, and this includes the procedure on

how these capabilities could be executed (i.e. service
behaviour), accessed, aggregated, and consumed by
users such as software agents and humans [2].

Within the SWS domain, a number of heavy-weight
and light-weight models on how to formulate semantic
descriptions that could be linked to syntactic descrip-
tions, using standards such as Web Service Description
Language (WSDL) [16] and Web Application Descrip-
tion Language (WADL) [17], are emerging. The main
prominent semantic models to date are Web Ontology
Language for Services (OWL-S) [18] and Web Service
Modeling Ontology (WSMO) [19].

The goal of heavyweight semantic models is to
exploit commonly agreed upon vocabularies as domain
and service ontologies to represent and describe dif-
ferent aspects of Web services (WS) separately from
syntactic descriptions. OWL-S is one of the first heavy-
weight semantic models based on the Web Ontology
Language (OWL). It provides a structure for defining
semantic descriptions through the use of so-called ser-
vice profiles that semantically describe what a service
is capable of offering to prospective consumers.

The service model, using OWL domain ontologies,
describes the specific behaviour of a service in terms of
its input, output, pre-conditions, and effect, and service
grounding describes how SWS could be automatically
invoked and executed by humans and software agents.

Another conceptual model for semantically describ-
ing salient aspects of Web services, called WSMO, has
also found prominence within the field of SWS. It is
based on Web Service Modeling Language (WSML)
[19]. It focuses on four elements that are important in
semantically describing services:

‘Ontologies’ provide formal concepts that could be
used by other WSMO elements

‘Web Services’1 describe the functional, non-
functional, and behavioural aspects of a service

‘Goals’ semantically capture consumers’ requests and
could invoke service capabilities; and

‘Mediators’ are responsible for handling the incom-
patibilities and mismatches between terminologies
used across different WSMO elements.

These semantic description specifications are consid-
ered to be efficient and expressive for realizing SWS.
However, their manual use by developers for creating
semantic descriptions [20] [21] are complex. Further-
more, current solutions for the development of SWS
are generally not tailored to address or hide some of
the complexities of semantic description specifications.
Furthermore, most of the development environments
are tightly coupled to specific description languages,
which might not cater for the needs of developers
familiar with other existing semantic and syntactic
description languages.

Moving to more light-weight approaches may be
one possible solution in eliminating some of the com-
plexities inherent in languages such as OWL-S and
WSMO, however, these light-weight approaches, such

1These are WSMO web services and not traditional web
services.

Research Article – SACJ No. 52, July 2014 57

as WSMO-Lite [22] are considered less expressive lead-
ing to hindrances in fully automating the various SWS
activities (e.g. service composition).

2.2 Ontologies

Semantic descriptions are generally derived from on-
tologies, which are defined as formal representations
of knowledge in a particular domain [23]. According
to [10], ontologies are an essential requirement for the
implementation of SWS, due to their “explicit dec-
laration of knowledge”, which makes it possible to
automate various activities on the Web. Ontologies
are core to the overall development of SWS. They are
essential toward enabling automatic service discovery,
composition, and execution as they make imparting
semantic data to Web resources possible. Furthermore,
ontologies are important in ensuring that information
is clearly understandable to both humans and ma-
chines [10], by minimizing ambiguities in concepts and
relations used in a specific domain.

Ontologies are often classified according to different
types of categories such as top-level, domain, task, and
application ontologies [24] [25]. In the context of this
article, the focus is mainly on service ontologies, which
fall into the category of application ontologies [25].
Domain ontologies are meant to capture common and
shared knowledge about a specific domain (for example:
health), whilst service ontologies (also referred to as
semantic descriptions) focus on semantically describing
the internal and external operations of Web services
using domain ontologies.

In practice, ontologies are often developed using
disparate ontological languages and tools [26]. How-
ever, in the semantic services domain, ontologies are
commonly produced with the assistance of semantic
models (e.g. WSMO). As highlighted in the introduc-
tory section, there are still concerns in the SWS domain
regarding the standardization of semantic models. To
date, there are no de facto standards for developing
service ontologies. In addition, there are no commonly
agreed-upon approaches on how to connect semantic
descriptions with syntactic descriptions. As a result,
existing semantic services platforms tend to support a
specific semantic model and service architectural style
(e.g. RPC-based services) [27]) and to ignore others.

The following subsection highlights background in-
formation on common syntactic descriptions languages,
which are the foundation for semantic descriptions as
discussed above.

2.3 Syntactic descriptions

The notion of traditional Web services (WS) has experi-
enced significant uptake both in industry and academia
over the past few years. Some of its successes could be
attributed to the maturity of tools and development
environments, and the backing of prominent IT compa-
nies, such as Oracle, Google and Microsoft. Similar to
SWS, WS rely heavily on descriptions. In the case of
WS, syntactic descriptions are the foundation, which

generally focuses on describing capabilities of services
without focusing on their intrinsic behaviour.

The most common syntactic description language,
as highlighted in the previous section, that exists to
date is the Web Service Description Language (WSDL),
targeted at what is referred to as “Big Web Services”
or SOAP-based and Web Application Description Lan-
guage (WADL) meant for describing RESTful services.
It should also be noted that WSDL has improved over
time in that it can now also be used to describe REST-
ful services.

WSDL is mature and standardized, and is widely
adopted. It exploits the XML language with stan-
dardized schemas to syntactically define and describe
WS capabilities [28]. However, services described with
WSDL lack semantic descriptions, which are essential
for producing SWS. On the other hand, WADL, an
XML-based description language, is beginning to be
used successfully by RESTful services developers. It
provides descriptions for web-based services and ap-
plications [17]. It is generally considered light-weight
compared to WSDL, due to its reliance on open proto-
cols [17]. In summary, different service architectural
styles can be used for implementing WS, which are a
foundation for SWS.

3 RELATED WORK

In this section we highlight some of the related studies
that proposed different ways to address the challenges
of designing and developing SWS.

One of the solutions that claims to be the first
towards SWS engineering is called INFRAWEBS [7].
It focuses on constructing semantic descriptions for
existing and new WS, and enables the integration of
disparate components. INFRAWEBS is made up of
different units (i.e. SWS creation, monitoring, selec-
tion, discovery, composition, and conversion), which
are paramount to the actual development and imple-
mentation of SWS. However, INFRAWEBS suffers
from being bound to a specific ontological language
(i.e. WSMO) and service architectural style (i.e. SOAP-
based services).

ODE-SWS, a SWS development environment [29],
focuses on the design and development of SWS at a
knowledge level. It does not put restrictions on the se-
mantic description language that could be used as long
as it is compatible with the WebODE framework, an
ontology engineering workbench, responsible for export-
ing provided ontologies into other ontology languages
[30]. However, it is limited in the sense that it only
supports “Big Web Services” described using WSDL
and does not attempt to hide some of the complexi-
ties that are inherent in different semantic description
languages. Nevertheless, the design requirements used
for the ODE-SWS approach are incorporated into our
proposed solution.

Another research endeavour that is closely related
to our work is a practical integrated development envi-
ronment (IDE) called OWL-S IDE, and formally known

58 Research Article – SACJ No. 52, July 2014

as CMU’s2 OWL-S Development Environment (CODE)
for developing, deploying, and consuming SWS [26].
OWL-S IDE adopts and extends existing WS tools
(e.g. OWL-S editor) in order to support developers
with the process of developing, deploying, and consum-
ing semantic services [31]. It is embedded within the
Eclipse environment, and is purely based on Java and
OWL-S.

It follows both code-driven and model-driven
methodologies in delivering SWS. This approach also
supports various SWS development stages, such as
discovery, invocation, and execution. However, it does
not cater for other specifications, such as WSMO or
WADL.

Lastly, a reverse engineering approach for build-
ing SWS is proposed by [15]. This solution opts for
a model-driven approach. Existing syntactic descrip-
tions in WSDL format are translated into UML class
and activity diagrams. The generated diagrams are
then manually annotated and converted into OWL-S
descriptions. Similar to all the approaches discussed,
this solution is tightly coupled to OWL-S descriptions.
A criticism of this approach is that it also relies en-
tirely on syntactic descriptions for generating semantic
descriptions through reverse engineering, which could
limit the expressiveness of intended SWS.

Based on the overview presented in this section, it
is apparent that current SWS development platforms
are restricted and in various cases tightly coupled to
specific service architectural styles and semantic de-
scription models.

We may therefore conclude that since there are no
common standards for defining semantic descriptions,
it is appropriate and essential that emerging SWS
development approaches should cater for diverse de-
scription languages and different semantic description
models.

4 RESEARCH METHODOLOGY

The primary research method used to arrive at the
proposed solution is the design science research (DSR)
methodology [12] [32]. DSR is suitable as it is a system-
atic problem-solving method for producing relevant,
new, and innovative Information Systems (IS) solu-
tions within a specific domain. DSR is also relevant
for addressing problems that have dynamic or variable
requirements and other constraints [33]. The chal-
lenge of supporting SWS development using multiple
description languages falls into this category.

According to [33], there are two positions that can
be assumed for conducting design science research, the
“paradigmatic-design” and the creation of Information
Technology (IT) artefacts, for example, methods, mod-
els, instantiations, or a combination of these. In our
context, we focus on the creation of an IT artefact.

The DSR guidelines used for arriving at the pro-
posed solution are depicted in Figure 1. Firstly, we
identified the relevant problem within the domain of
SWS development using extensive literature review

2Carnegie Mellon University.

	

Figure 1: Steps in the Design Science Research Method-
ology (adapted from [32])

as discussed in the previous sections. This process
resulted in a need for a new approach that could facil-
itate the semi-automatic development of SWS using
diverse description languages.

Secondly, the objective of the solution, viz. the
formulation of design requirements for guiding the
construction of the proposed model-driven approach
(referred to as an artefact in DSR [32]), was stated.
In particular, we dissected the identified problem and
features of the selected related solutions for building
SWS.

Thirdly, the requirements gathering phase formed
the basis for designing the new and innovative model-
driven approach for facilitating the practical construc-
tion of SWS using description languages of choice. The
approach is presented in a form of a process model, us-
ing a modelling-by-design strategy [34]. The modelling-
by-design method is preferred, as it has been found to
be appropriate for capturing the essential components
of a complex system or process [34].

Fourthly, in the demonstration phase, the modelled
approach was then practically implemented using ma-
ture and existing development methods and platforms,
such as UML, Acceleo, and Eclipse. These methods
and tools are discussed in the implementation section
of this article.

Finally, once the proposed solution was imple-
mented, it was then evaluated for utility, significance,
and relevance using a practical use case scenario and
comparative analysis approach (also referred to as
static analysis in the design evaluation phase of DSR
[32]). In this phase, the proposed model-driven solu-
tion was theoretically compared against other existing
solutions using the identified design requirements. It
should also be noted that DSR is iterative, allowing
the artefact to be improved through various iterations
as required. The results of the analysis are presented
in the evaluation section.

5 SOLUTION OBJECTIVE: DESIGN RE-
QUIREMENTS

In this section, we discuss the design requirements that
form the foundation of the proposed solution. These

Research Article – SACJ No. 52, July 2014 59

requirements are itemized and explained as follows:

Model-driven. According to [29], the development
of SWS needs to be carried out at the concep-
tual level using platform independent models that
could be transformed to platform-specific models,
and eventually to code. Thus, any solution that
attempts to address the semi-automatic develop-
ment of SWS using multiple languages needs to
consider a model-driven approach. Modelling as
a means of abstraction and automation is widely
accepted in software and web engineering [35],
especially for purposes of simplifying the devel-
opment experience. In addition, model-driven
approaches are considered efficient and effective
in relation to developing “complete” service-based
systems [31]. Models are also important for au-
tomatic code generation due to different levels
of abstractions [36], thus maximizing complexity
hiding and service engineering productivity. Our
aim is to enable developers to model SWS by
specifying their description languages of choice
using modelling languages, such as UML. The pro-
posed solution would then automatically translate
the model into all the necessary elements of SWS
based on the description language that is preferred
by the developer.

Decoupling. This requirement ensures that the pro-
posed solution promotes the separation of concerns
as much as possible. Similar to WSMO elements,
the proposed solution needs to support the defini-
tion of service descriptions, semantic descriptions,
and ontologies in a language-independent manner.
However, these elements still need to be aware of
each other, and be easily integrated when needed.
The ODE-SWS framework refers to this require-
ment as modular design, meaning the framework
is composed of a set of independent but related
modules [29].

Use of multiple description languages. Existing ap-
proaches as discussed tend to only accommodate
one particular language for describing services syn-
tactically and semantically. Those that claim to
support language independence, such as the ODE-
SWS framework tend to simply focus on semantic
descriptions, and not focus on syntactic descrip-
tions, which are core to the formation of SWS.
In our approach, multiple description languages
are accommodated as long as they are capable
of describing various aspects of WS and SWS,
such as functional, non-functional, technical and
behavioural.

Complexity hiding. The proposed solution needs
to support approaches that could aid developers
in rapidly implementing SWS components and
reusing existing ones. In addition, it should sup-
port the use of tools capable of reducing inherent
complexities when implementing SWS and related
applications [7].

Extensibility. The proposed approach needs to be ex-
tensible in a sense that new description languages
are easily supported and integrated into the de-

velopment environment as they become available.

Integrative. Developers of SWS need to be able to
uniformly and cohesively perform all the activities
(e.g. modelling, development, description, anno-
tation, and others) of building SWS within one
development environment. It is also asserted in
[29] that any SWS development solutions need
to be easily integrated with already existing and
mature Web services de facto standards.

6 PROPOSED APPROACH

The proposed model-driven approach is called iSem-
Serv (Intelligent Semantic Services). This is referred
to as an artefact in DSR. It should also be noted that
an extensive version of the proposed solution, which
includes the support for developing intelligent SWS
is presented in [9]. The approach as demonstrated in
Figure 2 is presented as a multi-layered architecture,
made up of three core layers, namely: services layer,
semantics layer, and knowledge layer. The layers are
derived from the core elements of SWS. Although the
layers are interlinked, they are not dependent on each
other for operation, but only for producing functional
SWS. The iSemServ also offers the ability to start the
development process from any layer as long as the
service model is made available.

In the subsequent section a detailed description of
the proposed iSemServ approach in terms of its core
layers is provided.

6.1 Services layer

In general, the service development process begins with
the concept of a raw service. That means the process
begins at the requirements elicitation phase. Once all
requirements to be satisfied by a concrete service are
identified, the iSemServ approach could be used as an
end-to-end approach to develop any type of SWS.

In the services layer, the initial step for develop-
ing SWS deals with service modelling facilitated by
the Service Modeller module. This component satis-
fies the model-driven requirement. It also contributes
towards addressing the challenge of building seman-
tic services by using multiple description languages
of choice. The multiple description languages require-
ment is addressed by the Service Modeller through the
use of the iSemServ UML profile, which is discussed
in the implementation section.

In the service modelling phase the envisaged SWS
is represented in platform independent models. This
step also promotes the decoupling of business logic and
service logic as highlighted in the design requirements
section.

Once a service model is available for specific SWS,
the model could then be automatically transformed us-
ing defined Model2Code templates and transformation
rules into code skeletons that represent the classes and
operations relevant for service logic implementation.
The automatic code generation process is necessary to
satisfy the complexity hiding design requirement.

60 Research Article – SACJ No. 52, July 2014

	

Figure 2: iSemServ model-driven approach

The code skeletons could be supplemented or
edited by a service developer using any relevant pro-
gramming editor. In this work, editors are integrated
within the overall development environment as ex-
plained in the implementation section. This is in line
with the design requirement of ensuring a unified SWS
development environment. As illustrated in Figure 2,
the iSemServ model supports the development of dif-
ferent types of Web services, made possible through
the Service Architectural Style Selector. The selector
depends on the transformation rules defined within the
Model2Code transformer module, which were consid-
ered for addressing the extensibility and complexity
hiding requirements.

Syntactic descriptions are automatically generated
by the Syntactic Descriptor module based on the ser-
vice model realized or reused within the Service Mod-
eller module. The type of syntactic descriptions to be
generated would depend on the annotations injected
into the service model using the iSemServ UML Pro-
file. For example, the developer could annotate the
service model with WSDL stereotypes to indicate the
preference to generate WSDL service descriptions.

In conforming to the decoupling requirement, at
this layer once the syntactic descriptions are generated,
and the service logic implemented, syntactic Web ser-

vices are available for deployment, publication, and
execution. However, these would be mere syntactic
services without any semantic descriptions, thus not
SWS.

6.2 Semantics layer

The semantics layer depends on the Service Mod-
eller and Model2Code transformer modules for semi-
automatically generating semantic descriptions based
on the language chosen by the developer. It should be
noted that the syntactic descriptions produced in the
services layer could also be used as input to the seman-
tics layer’s Semantics Descriptor module as depicted
in Figure 2. Nevertheless, this approach is not pre-
ferred as important semantic details might be lost when
translating the service model to syntactic descriptions.

Due to a diverse group of semantic description
languages that could be used to semantically describe
Web services, the proposed solution provides the devel-
oper with the ability, through the use of the iSemServ
UML profile, to choose the preferred semantic descrip-
tion language. The Semantic Description Language
Selector module is capable of deciphering such a choice
from the available service model in the services layer.

Depending on the selection, semantic descrip-

Research Article – SACJ No. 52, July 2014 61

tions could then be automatically generated using the
Model2Code transformation rules. However, since the
semantic descriptions generated by the Semantics De-
scriptor module might be incomplete due to incomplete
service models, the developer is also provided with a
Semantics Editor module to visualize, edit, augment,
and validate the generated semantic descriptions. The
semantic descriptions generated in this layer rely di-
rectly on domain ontologies delivered in the knowledge
layer.

6.3 Knowledge layer

It is possible for developers to use one language for
developing domain ontologies and another for defin-
ing semantic descriptions. In order to accommodate
this possibility, the iSemServ solution includes the
knowledge layer where the developer is offered the op-
portunity to choose a language for generating domain
ontologies. The Ontology Language Selector, which
depends on the service model, is one of these modules
as shown in Figure 2. The Domain Ontologies Genera-
tor would then use the information about the language
selected, available through the Ontology language Se-
lector, to automatically generate domain ontologies.
These could then be used by the Semantic Descriptor
to produce relevant semantic descriptions.

The outputs of the knowledge and semantics layer
are independent semantic descriptions and domain
ontologies that describe services realized in the services
layer. In this layer, when all the core elements are
integrated, we then have a functional semantic web
service.

The following section discusses the important
choices we made regarding the implementation of the
iSemServ model-driven approach.

7 IMPLEMENTATION: ISEMSERV

The iSemServ approach was implemented on the
Eclipse platform, which encompasses a variety of re-
usable service engineering components. It must be
noted that the proposed approach could be imple-
mented using any other SOA-based platform. The de-
cision to implement the framework using the Eclipse3

environment was motivated by a number of factors and
benefits, such as openness, wider support and commu-
nity involvement, the availability of plug-ins, ensuring
extensibility, and support of multiple programming
and modelling languages.

Although the implementation exercise was meant
to demonstrate the proof-of-concept, rather than a
fully-fledged iSemServ model-driven platform, an effort
was made to implement most of the salient features
necessary for using multiple description languages in
the development of SWS.

Adhering to the decoupling requirement, the im-
plementation was realized in phases. Thus, each layer
was implemented independently. Nevertheless, the
completed implementation involved the integration of

3http://www.eclipse.org.

all the layers into one operational iSemServ Eclipse
plug-in. The following subsections discuss the imple-
mentation details layer by layer.

7.1 Services layer

The service modeller, which represents the core module
responsible for capturing the internal and external
properties of the identified services, was implemented
by following the Model-Driven Architecture (MDE)
as coined by the Object Management Group (OMG)
[37]. In general, service models could be derived using
any modelling language of choice. However, MDA
compliant languages such as the Unified Modelling
Language (UML) are encouraged by OMG.

Thus, for the implementation of the service mod-
eller module, UML compliant models are preferred.
This is mainly because of their wide spread use in
industry and academia, and support for platform in-
dependency ensuring “portability, interoperability, ex-
tensibility and reusability through an architectural
separation of concerns between the specification and
implementation” [38].

Using the UML development kit integrated within
the Eclipse platform, the service designer would cap-
ture the structure of services identified using UML
class diagrams. The behaviour of identified services
could also be captured using UML activity diagrams.
Nonetheless, this was not implemented for this article.

For proper functioning of the service modeller mod-
ule, the class diagrams capturing the properties of ser-
vices need to be modelled following the novel iSemServ
UML profile. In a nutshell, UML profiles are a group
of custom keywords (i.e. stereotypes), data types and
tag values that could be used to annotate and extend
UML diagrams [15]. Moreover, the distinct stereotypes
within the UML profile provide the flexibility to an-
notate the model in a manner that would promote
different representations of the model, and in our case
support the development of SWS using multiple de-
scription languages. It also is important to note that
UML profiles are easily implementable using any UML
compliant tool, and could be extended by adding new
keywords and preferred rules.

Figure 3 shows the iSemServ UML profile imple-
mented for the proposed solution, as rooted within a
UML package. This is important for Java code gen-
eration, where classes are generally organized within
a package. The key stereotypes in the profile are
�RESTful� and �SOAP�. These two stereotypes
can only be applied to class diagrams. This means that
any class diagram capturing the structure of a service
could be annotated as �RESTful� or �SOAP�,
the two common Web services standards to date. The
other stereotypes deriving from the main stereotypes
are �WADL� and �WSDL�, which enable the de-
veloper to decide on the syntactic descriptions to be
generated from the service model.

In terms of the preferred semantic descriptions
and domain ontologies, �WSMO� and �OWL-S�
stereotypes are shown to demonstrate the plausibility
of multiple description languages for the development

62 Research Article – SACJ No. 52, July 2014

	

«package»
iSemServ

«stereotype»
RESTful

«stereotype»
SOAP

«stereotype»
OWL-­‐S

«stereotype»
WADL

«stereotype»
WSMO

«stereotype»
WSDL

Figure 3: iSemServ UML profile

	
 Table 1: UML2SOAP mappings

of SWS. Additional keywords could also be added to
accommodate other syntactic descriptions and light-
weight semantic descriptions or annotation standards,
such as WSDL-S [39].

The model2code transformer was implemented us-
ing a number of code transformation rules and tem-
plates defined solely for the proposed model. The rules
and templates are based on the Acceleo platform in-
tegrated within Eclipse. In brief, Acceleo [40] is an
open source model-to-text language (MTL) framework.
It provides a flexible and simple environment for de-
signing and developing a variety of code generators,
using simple and standard templates. It is used for our
proposed solution, primarily because its design prin-
ciples are based on increasing software development
productivity, satisfies the complexity hiding design re-
quirement, and supports different types of high-level
programming languages, such as Java that are com-
monly used for implementing Web services logic.

Transformation rules that were implemented
include model2services, model2descriptions,
model2ontologies, and model2semantics. Table 1
shows the rules that are considered for automatically

translating a UML class diagram into RESTful
services. For any UML class that is annotated with
the �SOAP� stereotype, an equivalent Java-based
SOAP service, annotated with the @WebService
keyword, is generated. In addition, for all the
operations of the �SOAP� annotated UML class,
equivalent Java methods would be annotated with
the @WebMethod as prescribed by the JAX-WS
specification. These rules are then implemented with
the aid of the Acceleo framework. Listing 1 illustrates
the snippet of the Acceleo template implementing the
mappings in Table 1.

These templates are text-based and can be effort-
lessly defined for transformation rules to any high-
level programming language and description languages
meant for SWS.

7.2 Semantics layer

The Semantics Description Language Selector and
the Semantics Descriptor modules depend on the
Model2Code Transformer module, and were imple-
mented via desperate transformation rules such as
model2semantics. These rules comprise a number of

Research Article – SACJ No. 52, July 2014 63

	
 Listing 1: Acceleo template for UML2SOAP mappings

	
 Table 2: UML2OWL-S mappings

mappings, including UML2WSMO and UML2OWL-
S. The selector mainly infers the semantic description
language of choice, based on the service model’s annota-
tions. This simply means that the developer annotates
the service model using specific stereotypes, such as
�OWL-S� and the required code is then automati-
cally generated using the Semantics Descriptor. The
selector does not restrict the number of languages that
could be selected simultaneously.

Table 2 highlights the UML2OWL-S transforming
rules that are responsible for translating an annotated
service model with �OWL-S��profile� stereotypes
into various OWL-S service profiles.

Every OWL-S annotated class name is mapped to
an OWL-S class, Service Name, and Profile Name
according to the OWL-S specifications [18]. The
UML class operation input and output parameters are
mapped to OWL-S Profile properties such as Inputs,
Output, Parameters, and Results. UML-defined con-
straints are then aligned to OWL-S logical expressions

in Preconditions and Effects.

7.3 Knowledge layer

In this layer, we implemented the Ontology language
Selector and Domain Ontologies Generator using the
iSemServ UML Profile and the Acceleo defined trans-
formation rules and templates. For instance, for ev-
ery class name annotated with the �WSMO� and
�ontology� stereotypes, UML class operations and
enumerations are automatically translated into corre-
sponding WSML ontological concepts by the Domain
Ontologies Generator. The properties of the UML
class and the input parameters of operations are then
translated to the attributes of the relevant WSMO
concepts. For example, in Listing 2 the concept “per-
son” would have been generated from a UML class
with the name “person”. The attributes firstName and
lastName would have been the properties of the same
class.

Although the iSemServ approach is structured

64 Research Article – SACJ No. 52, July 2014

	
 Listing 2: WMSO concept and attributes

into various layers with disparate modules, the front-
end system representing the implemented platform is
only an Eclipse plug-in that could easily be integrated
within version 3.5 of Eclipse Galileo. The user inter-
face that the developer interacts with is depicted in
Figure 4.

	

Figure 4: iSemServe Eclipse plug-in

The service developer only needs to import a UML
compliant packaged service model, and select the types
of service elements that need to be auto-generated.
The plug-in would then, in the background, semi-
automatically generate all the selected service elements
depending on the model annotations. The developer
could then review, edit, and finalize the generated
modules or even reuse previously generated elements
(e.g. domain ontology) using various editors integrated
within the Eclipse environment as noted in the discus-
sion of the proposed solution.

8 EVALUATION OF ISEMSERV

In order to ensure validity and utility of the proposed
model-driven iSemServ approach and its implementa-
tion, the evaluation process plays an important part.
Moreover, evaluation is essential to the development
of any technical solution. For the proposed solution,
different types of evaluations were conducted using
practical use-case scenarios and comparative analysis

in order to qualitatively note the benefits and the lim-
itations of our solution against other related solutions.

8.1 Comparative analysis

Comparative analysis [41] plays an important role in
assessing any new solution against the existing similar
solutions. The existing solutions that formed part
of the analysis were discussed under the related work
section. The comparative criteria used for evaluation is
based on the design requirements presented in section
5.

As may be noted in Table 3, our proposed iSem-
Serv model-driven approach fills the gap that currently
exists in the literature by providing an environment
that makes it possible to develop SWS using semantic
and syntactic description languages of choice. ODE-
SWS also supports multiple description languages, but
only for semantic descriptions.

The majority of the solutions that were evaluated
pay attention to the principle of complexity hiding
when it comes to simplifying the process of building
SWS. Our solution addresses the issue of complexity
hiding through the auto-generation of the code neces-
sary for all SWS elements (i.e. service, descriptions,
and ontologies). However, it should be noted that the
developer still needs to understand and be proficient in
the description languages of choice in order to augment
or edit the generated skeletons of code.

From the evaluations, it was found that only our
proposed solution fully facilitates the development of
SWS within a unified environment. The unified envi-
ronment is demonstrated in Figure 3. INFRAWEBS
partially addresses the design requirement of a unified
development environment by allowing the import of
existing syntactic services and the creation of semantic
descriptions for imported services. However, in IN-
FRAWEBS, the process of building syntactic services
anew is not considered.

The solutions that were found to be supporting the
extensibility design requirement were iSemServ and
OWL-IDE. Both of these solutions adopt the plug-
in principle found in development environments such
as Eclipse. As may be noted from Table 3, all the
evaluated solutions adhere to the decoupling design
requirement.

Research Article – SACJ No. 52, July 2014 65

	
 Table 3: iSemServ Comparative Evaluation

	

User	
 enter	
 requests/search

User	
 Interface

	

SWS	
 &	
 Ontologies

SWS	
 &	
 Ontologies
[Search,	
 Order,	
 Payment]

StoreA

StoreC

StoreB
Server	
 return	
 results

SWS	
 &	
 Ontologies
[Search,	
 Order,	
 Payment]

SWS	
 &	
 Ontologies
[Search,	
 Order,	
 Payment]

Figure 5: Online multimedia trading use case scenario

8.2 Practical use case scenario

The scenario depicted in Figure 5 demonstrates how
Semantic Web Services could be designed and semi-
automatically developed in a simple and efficient man-
ner by using the iSemServ plug-in. It should be noted
that the main purpose of the practical use case sce-
nario was to demonstrate the underlying benefits of
the proposed solution particularly in addressing the
articulated challenges, and understanding some of the
limitations that are inherent to iSemServ.

This real-world scenario involves tasks that have
been assigned to the service developer. The tasks
involve developing an online multimedia trading Web
application that enables service providers to automate
a number of activities involved when customers buy
multimedia items (e.g., CDs and DVDs) from different
online stores. Some of the repeatable processes that

the sellers would like to automate include:

1. search for different products in a semantically
enabled multimedia catalogue,

2. order products from the shopping cart,

3. use external services to make payments,

among others.

It should also be noted that our goal in this section
is not to practically demonstrate the complete func-
tionality of the online multimedia trading scenario or
the value of SWS, but the main goal is to demonstrate
how the proposed solution could be used by a developer
to realize some of the disparate artefacts that make up
the scenario.

From the proposed solution perspective, such a sce-
nario could be implemented using different languages.
Furthermore, since there are a number of sellers in-
volved, each seller could opt to implement their SWS

66 Research Article – SACJ No. 52, July 2014

	

+createCustomer(in customerData : String) : Boolean
+deleteCustomer(in custID : Boolean) : Boolean
+requestLogin(in custName : String, in custPass : String) : Boolean

-custID : Integer
-custName : String
-custPass : String
-custEmail : String
-custLocation : String
-custType : String

«WSMO»Customer

+checkOrderStatus(in orderID : Integer) : String
+requestLogin(in custEmail : String, in custPass : String)

-buyerID : Integer
-currentOrderID : Integer

«RESTful WSMO»Buyer

+requestLogin(in sellerEmail : String, in sellerPass : String) : Boolean
+addItems(in xmlData : String) : Boolean

-sellerID : Integer
-currentItems : String

«RESTful WSMO»
Seller

+addToCart(in itemData : String) : Boolean
+removeCart(in cartID : Boolean) : Boolean

-itemCode : String
-itemQty : Integer
-itemPrice : Double

«RESTful WSMO»ShoppingCart

+searchItems(in keywords : String) : String
+addItems(in itemData : String) : String
+updateItems(in itemData : String) : String
+removeItems(in itemID : Integer) : Boolean

-itemsData : String

«RESTful WSMO»
MultimediaItems

+setAmount(in paymentData : String) : void

-paymentID : Integer
-amount : Double

«RESTful»Payment

Figure 6: Use case scenario service model

in the languages of choice. However, because the con-
sumer does not care much about the underlying imple-
mentation or languages used to implement the services,
what is important is that the system is implemented
in a manner that allows for interoperability in terms
of different ontologies and semantic descriptions.

For experimentation purposes, we therefore opted
to demonstrate the relevance of our solution by imple-
menting most of the services using the RESTful archi-
tectural style and WSMO semantic model. However,
in order to also demonstrate the support for multiple
languages, some elements were auto-generated using
OWL-S. Furthermore, in demonstrating the ability
of our solution to interoperate with already existing
elements, available domain ontologies describing mul-
timedia products4 were also exploited.

4http://www.wsmo.org/ontologies/amazonECS/

In developing some elements of the highlighted
scenario, the following steps were taken using the
iSemServ plugin as depicted in Figure 4. The service
developer used the UML2 SDK plugged into Eclipse
to design service models capturing both the services’
structures and semantic concepts. The services model
is defined according to the iSemServ UML profile. The
partial service model in the form of a UML class dia-
gram is illustrated in Figure 6.

As may be noted, 6 classes are modelled and an-
notated with appropriate keywords (e.g. �RESTful�
and �WSMO�). From the service model, syntac-
tic RESTful services are generated according to the
�RESTful� annotation. In this regard, the iSem-
Serv environment facilitates the generation of skeleton
syntactic RESTful services. The amount of time it

amazonOntology.wsml.

Research Article – SACJ No. 52, July 2014 67

takes, for example, to generate the skeleton code for
the classes depicted in the model is only a few millisec-
onds compared with manually coding the structure
of RESTful services. However, this is not novel, as
this method is used extensively in a number of mature
development environments, such as Eclipse and Visual
Studio. The key difference is that in the iSemServ
platform, the service developer is in control of what
code skeletons could be generated through the use of
service models and profiles.

A snippet of the generated code structure is shown
in Figure 7. This structure demonstrates the number of
Java classes, representing RESTful services, generated
based on the number of classes modelled in UML.

	

Figure 7: Syntactic RESTful services

As illustrated in the service model (cf. Figure 6),
the five classes in UML represent five RESTful services,
while one, viz. the Customer class, is not a RESTful
service, but a pure Java POJO class. Nevertheless,
semantic descriptions and domain ontologies for this
class are also generated on the basis of the �WSMO�
annotation.

Semantic descriptions and domain ontologies are
dynamic, in a sense that they evolve over time. As
a result, they are resource intensive to build and up-
date. In Figure 8, the snippet of semantic descriptions
and domain ontologies auto-generated for each class
annotated with �WSMO� stereotype are shown.

	

Figure 8: Generated semantic descriptions

Basically, the [ClassName]+WSCapability.wsml
files represent Web Service capabilities according to
WSMO specifications. The generated WS capability

skeleton code for the CheckOrderStatus and Request-
Login operations is demonstrated in Listing 3. The
service engineer could further edit the generated code
using semantic tools, such as the WSMO editor em-
bedded within the Eclipse environment. The code is
generated based on the mapping rules discussed in
Section 7.

As may be noted in Listing 3, Lines 10-25, illustrate
the auto-generated semantic descriptions (e.g. service
name, capability name, and non-functional properties)
necessary for semantically enabling the buyer RESTful
service. Nevertheless, the developer could change the
descriptions to suit own development requirements. In
addition, Line 11 indicates that external ontologies
can also be referenced for purposes of augmenting the
generated descriptions. The rest of the code is directly
linked to the necessary mappings (e.g., UML2WSMO).

For purposes of demonstrating that the solution
supports diverse service and semantic description lan-
guages, Figure 9 shows an example of a partial OWL-S
service grounding that was auto-generated by the pro-
posed solution when the multimedia items class was
annotated with the �OWL-S� stereotype. This ser-
vice grounding shows the auto-generated operations
that could be invoked by an agent within the Multi-
media Items RESTful service. It should be noted that
all of these elements are auto-generated based on the
service model as depicted in Figure 6.

The evaluation approach of using the proposed
solution to partially implement the use case scenario
has provided several insights with regard to the design
and development of semantic services. The following
benefits were observed:

1. The development of different building blocks that
make up semantic services can be realized within
a unified environment

2. The development effort is reduced through the
auto-generation of different implementation arte-
facts, which may lead to high development times
and costs, if a manual approach is followed

3. The service developer controls the development life
cycle, and the iSemServ plug-in does not impose
restrictions on the types of service or the semantic
descriptions languages. The only requirement per-
tains to the usage of UML-based service models
for structuring services and domain knowledge

4. The implemented Eclipse plugin interoperated
effectively with other tools in Eclipse (e.g.
UML2SDK), demonstrating that our solution
could exploit other tools to simplify the generation
of domain ontologies and semantic descriptions.

The iSemServ solution presented in this article has
some practical limitations as well. For instance, key
features such as dynamic semantic services discovery,
selection, composition, and monitoring are not ad-
dressed. Furthermore, checking the correctness and
validity of the auto-generated skeleton code is not sup-
ported by the proposed solution. This task is left to the
developer, which can be a tedious process when dealing
with a large set of code and descriptions. Nevertheless,

68 Research Article – SACJ No. 52, July 2014

1. wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"
2. comment <!--Generated by SemServ Model2Semantics transformer using Acceleo 2.8-->
3. comment <!--Date: November 25, 2013 [11:19:42 AM] -->
4. namespace { _"http://www.isemserv.co.za/services/buyerSemantics#",
5. buy _"http://www.isemserv.co.za/ontologies#",
6. dc _"http://purl.org/dc/elements/1.1#",
7. wsml _"http://www.wsmo.org/wsml/wsml-syntax#",
8. xsd _"http://www.w3.org/2001/XMLSchema#",
9. desc _"http://www.isemserv.co.za/descriptions#"}

10. webService checkOrderStatusrequestLoginService

11. importsOntology {_"http://www.wsmo.org/ontologies/amazonECS/amazonOntology.wsml"}
12. capability checkOrderStatusrequestLoginCapability

13. nonFunctionalProperties
14. dc#typehasValue"service ontology"
15. dc#descriptionhasValue"Enter description for this capability"
16. dc#titlehasValue"Capability for a buyer Web service"
17. dc#creatorhasValue {"Your Name"}
18. dc#publisherhasValue"isemserv"
19. dc#datehasValue"Nov 25, 2013 [11:19:42 AM]"
20. dc#typehasValue _"http://www.wsmo.org/2004/d2#ontologies"
21. dc#identifierhasValue _"http://www.isemserv.co.za/services/buyer"
22. dc#languagehasValue"en-US"
23. dc#formathasValue"text/plain"
24. desc#serviceDescription hasValue"COMPLETE URL FOR SERVICE DESCRIPTION"
25. endNonFunctionalProperties

26. sharedVariables {?orderID}
27. sharedVariables {?custEmail, ?custPass}

28. precondition
29. nonFunctionalProperties
30. dc#descriptionhasValue"condition(s) that need to be satisfied before service is

invoked"
31. endNonFunctionalProperties
32. definedBy
33. ?orderID memberOf OrderID
34. ?custEmail memberOf CustEmail
35. ?custPass memberOf CustPass

Listing 3: Partial WMSO service capability

one of the key principles of our solution is extensibil-
ity, which is intended to enable other researchers and
developers to extend the iSemServ solutions with any
required modules via the Eclipse environment.

9 CONCLUSION

Semantic Web Services will play a significant role in
revolutionizing the current Web, where business pro-
cesses would be executed and automated by machines
with minimal user interventions. However, implemen-
tation support for such services is lacking in real-life
environments, due to a number of challenges such as
tedious and error-prone SWS development processes,
lack of integration of SWS solutions with other emerg-
ing Web service technologies, and the complexities of
semantic description languages.

Although there are a number of relevant and suc-
cessful case studies in the SWS space with regard to
solutions that purports to address some of these issues,
most of them do not appreciate the diversity of the
different semantic and syntactic description languages
that exist and may even emerge. Most of the exist-
ing tools are tightly coupled to one specific language

and ignoring others, thus leading to restrictive and
exclusive SWS development environments.

The main objective of the article was to devise a
model-driven approach that would facilitate and semi-
automate the construction of SWS using a variety of
description languages. This approach was produced by
following the design science research (DSR) methodol-
ogy, which is a problem-solving technique that leads
to the development of novel IT artefacts.

The proposed model-driven approach, termed
iSemServ, was designed following the decoupling, inte-
gration, extensibility, multiple language support, ex-
tensibility, and complexity hiding design requirements,
which were derived by evaluating existing solutions,
related literature, and the identified challenges expe-
rienced when building SWS. The iSemServ approach
is made up of three modular layers that function inde-
pendently from each other. These layers consist of all
the important components that adhere to the design
requirements, such as the service modeller, semantic
descriptions language selector, and domain ontologies
generator.

The proposed approach was implemented using
open technologies embedded in the widely adopted

Research Article – SACJ No. 52, July 2014 69

<grounding:WsdlGrounding rdf:ID="MultimediaOnlineGrounding">
<service:supportedBy
rdf:resource="http://www.isemserv.co.za/services/MultimediaOnlineProcess.owl"/>
<grounding:hasAtomicProcessGrounding rdf:resource="#SearchItems"/>
<grounding:hasAtomicProcessGrounding rdf:resource="#AddItems"/>
<grounding:hasAtomicProcessGrounding rdf:resource="#UpdateItems"/>
<grounding:hasAtomicProcessGrounding rdf:resource="#RemoveItems"/>
</grounding:WsdlGrounding>

Figure 9: Partial OWL-S multimedia items service grounding

Eclipse framework. Some of the contributions in the
proposed approach include the iSemServ UML profile
that enables the use of multiple description languages
through flexible model annotations. Another impor-
tant contribution is the definition of the mapping rules
and templates that are necessary for automatically gen-
erating a number of elements that make up the SWS
from a service model created using MDA-compliant
standards, such as UML.

The iSemServ solution was tested for validity and
relevance through a practical use case scenario and by
performing a comparative analysis against the iden-
tified similar solutions. The results indicate that the
proposed solution addresses the challenge of support-
ing multiple description languages for building SWS.
It further supports uniformity and extensibility re-
quirements, which are important in ensuring that ex-
isting and future semantic and syntactic description
languages could be accommodated. Overall, the pro-
posed iSemServ solution succeeds in addressing one
of the pertinent issues, restrictive and exclusive envi-
ronments, faced by developers when developing SWS.
The proposed solution is presented as simple and yet
useful for supporting average and expert service engi-
neers in building SWS using syntactic and semantic
descriptions of choice.

Further research of this work points to the advance-
ments of the transformation rules, code generation
templates, and the UML profile to enable the auto-
generation of SWS elements that are more complete
and expressive.

REFERENCES

[1] D. Bachlechner and K. Fink. “Semantic Web Service
research: Current challenges and proximate achieve-
ments”. IJCSA, vol. 5, no. 3b, pp. 117–140, 2008.

[2] J. d. Bruijn, D. Fensel, U. Keller and R. Lara. “Using
the web service modeling ontology to enable semantic
e-business”. Communications of the ACM, vol. 48,
no. 12, pp. 43–47, 2005.

[3] V. Janev and S. Vraneš. “Applicability assessment of
Semantic Web technologies”. Information Processing
& Management, vol. 47, no. 4, pp. 507–517, 2011.

[4] B. Blake, L. Cabral, B. König-Ries, U. Küster and
D. Martin. Semantic Web Services: Advancement
through evaluation. Springer, 2012.

[5] T. Wahl and G. Sindre. “A survey of development
methods for semantic web service systems”. In Infor-
mation systems and new applications in the service

sector: Models and methods, pp. 117–132. IGI Global,
2011.

[6] R. Witte, B. Sateli, N. Khamis and J. Rilling. “Intelli-
gent software development environments: integrating
natural language processing with the eclipse platform”.
In Advances in Artificial Intelligence, pp. 408–419.
Springer, 2011.

[7] G. Agre, Z. Marinova, T. Pariente and A. Micsik.
“Towards Semantic Web Service engineering”. Service
Matchmaking and Resource Retrieval in the Semantic
Web, p. 91, 2007.

[8] J. Cardoso. Semantic Web services: Theory, tools,
and applications. IGI Global, 2007.

[9] J. Mtsweni, E. Biermann and L. Pretorius. “iSemServ:
Towards the engineering of intelligent semantic-based
services”. In Current Trends in Web Engineering, pp.
550–559. Springer, 2010.

[10] H. Barros, A. Silva, E. Costa, I. I. Bittencourt,
O. Holanda and L. Sales. “Steps, techniques, and
technologies for the development of intelligent applica-
tions based on Semantic Web Services: A case study
in e-learning systems”. Engineering Applications of
Artificial Intelligence, vol. 24, no. 8, pp. 1355–1367,
2011.

[11] J. Shen, G. Beydoun and G. Low. “A multi agent
system based implementation for semantic web ser-
vices”. Information systems development: Reflections,
challenges and new directions, pp. 231–241, 2013.

[12] A. Hevner, S. March, J. Park and S. Ram. “Design sci-
ence in information systems research”. MIS Quarterly,
vol. 28, pp. 75–105, 2004.

[13] T. Berners-Lee, J. Hendler, O. Lassila et al. “The
semantic web”. Scientific american, vol. 284, no. 5,
pp. 28–37, 2001.

[14] J. Lu, D. Ruan and G. Zhang. E-Service intelligence:
Methodologies, technologies and applications. Studies
in computational intelligence. Springer, 2007.

[15] D. Amar Bensaber and M. Malki. “Development of
semantic web services: Model driven approach”. In
Proceedings of the 8th international conference on New
technologies in distributed systems, p. 40. ACM, 2008.

[16] R. Chinnici, J.-J. Moreau, A. Ryman and S. Weer-
awarana. “Web services description language (WSDL)
version 2.0 part 1: Core language”. W3C recommen-
dation, vol. 26, p. 19, 2007.

[17] M. J. Hadley. “Web application description language
(WADL)”. W3C Member Submission, 2006.

[18] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. Mc-
Dermott, S. McIlraith, S. Narayanan, M. Paolucci,
B. Parsia, T. Payne et al. “OWL-S: Semantic markup

70 Research Article – SACJ No. 52, July 2014

for web services”. W3C member submission, vol. 22,
pp. 2007–04, 2004.

[19] D. Roman, J. De Bruijn, A. Mocan, H. Lausen,
J. Domingue, C. Bussler and D. Fensel. “WWW:
WSMO, WSML, and WSMX in a nutshell”. In The
Semantic Web–ASWC 2006, pp. 516–522. Springer,
2006.

[20] J. Nern, G. Agre, T. Atanasova, Z. Marinova, A. Mic-
sik, L. Kovács, J. Saarela and T. Westkaemper. “IN-
FRAWEBS semantic Web service development on
the base of knowledge management layer”. Interna-
tional journal on information theories and application
(IJITA), 2006.

[21] J. Mtsweni. “Exploiting UML and acceleo for develop-
ing semantic web services”. In International Confer-
ence for Internet Technology and Secured Transactions,
London, UK, 2012, pp. 753–758. 2012.

[22] D. Fensel, F. Fischer, J. Kopeckỳ, R. Krummenacher,
D. Lambert and T. Vitvar. “WSMO-Lite: Lightweight
semantic descriptions for services on the web”. W3C
Member Submission, vol. 23, 2010.

[23] T. R. Gruber. “A translation approach to portable
ontology specifications”. Knowledge acquisition, vol. 5,
no. 2, pp. 199–220, 1993.

[24] R. Studer, S. Grimm and A. Abecker. Semantic
web services: concepts, technologies, and applications.
Springer, 2007.

[25] I.-W. Kim and K.-H. Lee. “A model-driven approach
for describing semantic web services: From UML to
OWL-S”. Systems, Man, and Cybernetics, Part C: Ap-
plications and Reviews, IEEE Transactions on, vol. 39,
no. 6, pp. 637–646, 2009.

[26] D. Kuropka, P. Trger, S. Staab, M. Weske, D. Kuropka,
P. Trger, S. Staab and M. Weske. Semantic service
provisioning. Springer Publishing Company, Incorpo-
rated, 2008.

[27] O. F. Ferreira Filho and M. A. G. V. Ferreira. “Se-
mantic web services: A RESTful approach”. In Pro-
ceedings of the IADIS International Conference on
WWW/Internet, pp. 169–180. 2009.

[28] P. M. Kelly, P. D. Coddington and A. L. Wendelborn.
“A simplified approach to web service development”.
In Proceedings of the 2006 Australasian workshops on
Grid computing and e-research-Volume 54, pp. 79–88.
Australian Computer Society, Inc., 2006.

[29] O. Corcho, A. Gómez-Pérez, M. Fernández-López and
M. Lama. “ODE-SWS: A semantic web service devel-
opment environment”. In Proceedings of the 2003 1st
international workshop on semantic web and databases
(SWDB03). Universidad de Berlin, 2003.

[30] WebODE. “WebODE ontology en-
gineering platform”. Available:
http://webode.dia.fi.upm.ex/WebODEWeb/index.html,
April 2003.

[31] N. Srinivasan, M. Paolucci and K. Sycara. “Semantic
web service discovery in the OWL-S IDE”. In System
Sciences, 2006. HICSS’06. Proceedings of the 39th
Annual Hawaii International Conference on, vol. 6,
pp. 109b–109b. IEEE, 2006.

[32] V. Vaishnavi and W. Kuechler. “Design sci-
ence research in information systems”. Avail-
able: http://www.desrist.org/design-research-in-
information-systems/, 2004.

[33] S. Weber, R. Beck and R. Gregory. “Combining design
science and design research perspectives: Findings of
three prototyping projects”. In 45th Hawaii Inter-
national Conference on System Science (HICSS), pp.
4092–4101. 2012.

[34] M. S. Olivier. Information technology research: A
practical guide for computer science and informatics.
Van Schaik, 2009.

[35] C. Pahl. “Semantic model-driven architecting of
service-based software systems”. Information and soft-
ware Technology, vol. 49, no. 8, pp. 838–850, 2007.

[36] M. Nassar, A. Anwar, S. Ebersold, B. Elasri,
B. Coulette and A. Kriouile. “Code generation in
VUML profile: A model-driven approach”. In Com-
puter Systems and Applications, 2009. AICCSA 2009.
IEEE/ACS International Conference on, pp. 412–419.
IEEE, 2009.

[37] W. Sun, S. Li, D. Zhang and Y. Yan. “A model-
driven reverse engineering approach for semantic web
services composition”. In Software Engineering, 2009.
WCSE’09. WRI World Congress on, vol. 3, pp. 101–
105. IEEE, 2009.

[38] F. Lautenbacher. “A UML profile and transformation
rules for semantic web services”. Tech. rep., University
of Augsburg, Germany, 2006.

[39] R. Akkiraju, J. Farrell, J. A. Miller, M. Nagarajan,
A. Sheth and K. Verma. “Web service semantics
(WSDL-S)”. W3C Member Submission, 2005.

[40] “Acceleo—transforming models into code”, April 2011.
URL http://www.eclipse.org/acceleo.

[41] E. Hofstee. Constructing a good dissertation: A prac-
tical guide to finishing a master’s, MBA or PhD on
schedule. EPE, 2006.

http://www.eclipse.org/acceleo

	 iSemServ: A model-driven approach to developing semantic web services to 3em Jabu Mtsweni*, Elmarie Biermann*, Laurette Pretorius to.44em.
	Introduction
	Background
	Semantic descriptions
	Ontologies
	Syntactic descriptions

	Related work
	Research methodology
	Solution objective: Design requirements
	Proposed approach
	Services layer
	Semantics layer
	Knowledge layer

	Implementation: iSemServ
	Services layer
	Semantics layer
	Knowledge layer

	Evaluation of iSemServ
	Comparative analysis
	Practical use case scenario

	Conclusion

