Research Article — SACJ No. 55, December 2014 1

Database Application Schema Forensics

Hector Q. Beyers*, Martin S. Olivier’, Gerhard P. Hancke*

 Department of Computer Science, University of Pretoria
* Department of Electrical, Electronic and Computer Engineering, University of Pretoria

ABSTRACT

The application schema layer of a Database Management System (DBMS) can be modified to produce results that do not
reflect the data actually stored in the database. For example, table structures may be corrupted by changing the metadata
of a database, or operators of the database can be altered to produce incorrect results when used in queries. Such incorrect
results may lead to a forensic examination to determine the cause of the problem. Alternatively, such modifications may be
employed as an anti-forensic technique in an attempt to hide the actual data from an investigator when an investigation
lead to the examination of a database. In both cases forensic examiners need to be aware of the impact of such metadata
on queries and plan their examination of the database accordingly. Different versions of a layer of metadata may exist: a
version as found on the computer being investigated, the version that was initially designed, versions from backups, and so
on. It is possible that these versions are identical, but subtle ad hoc changes are often made over time and someone with
access and malicious intent can introduce changes to modify the behaviour of the DBMS to achieve some nefarious goal.

This paper initially discusses categories of possibilities that exist to (surreptitiously) change the application schema;
practical examples are used to illustrate these possibilities.

The paper is based on the premise that a specific combination of DBMS layers of metadata and data should be
assembled to test specific hypotheses. For example, questions about how a DBMS should have responded to a specific query
and how it does, in fact, respond are both facts that may be important to a forensic investigator. The paper illustrates
how such a combination of layers may be of use to examine a specific facet of the behaviour of the DBMS. The paper refers
to such a combination of layers as a configuration.

The primary purpose of the paper is to explore methods that may be used to construct a given configuration for
testing. A process is proposed on how forensic evidence should be extracted from the application schema layer of a DBMS.

KEYWORDS: Database Forensics, Database Forensic Process, Database Abstract Layers, Application Schema
Forensics

CATEGORIES: H.1.m, H.2.7

1 INTRODUCTION

that provides details that enables a user to ‘see’ the
table. Such metadata may, for example, provide the

In a period where the field of digital forensics attracted
increasing interest, database forensics remains a rel-
atively unexplored domain [I]. Database forensic re-
search still frequently reflects on the reasons why this is
the case; in fact, only a few years ago hardly any scien-
tific research existed about database forensics despite
the realisation that such work was urgently needed
[2]. One possible reason for the lack of research is
the inherent complexity of a database management
system (DBMS) when compared to, say, file systems.
While files are often abstracted as streams of bytes, a
database is a collection of data where data elements
are related to one another. Various layers of metadata
influence the way in which other metadata (or data)
is interpreted. A database table may, for example, not
be stored in a manner that would be recognised as a
table upon a cursory inspection. Metadata may exist

Email: Hector Q. Beyers hgbeyers@gmail.com, Martin
S. Olivier ms.olivier@olivier.ms, Gerhard P. Hancke
Gerhard.HanckeQup.ac.za

name of the table, the layout (in terms of number of
columns and the types of those columns), the names
of columns, access rights that may hide the existence
of some columns from some users, constraints that
are placed on columns (or attributes of a row in that
table), and so on. The table only takes shape when the
bits that constitute the table are viewed through the
‘lens’ provided by the metadata. However, to under-
stand this metadata one has to similarly make sense
of it by looking at it through another metadata ‘lens’.
In principle this may lead to the need for an infinite
chain of such ‘lenses’. However, in a beautiful example
of self-description this problem may be solved: if the
metadata that describes a table can itself be stored in
one or more tables, those tables describe themselves,
thus obviating the need for an infinite chain. Clearly
such a construction tends to be complex and subtle
changes to any metadata may have far-reaching conse-
quences on what is represented. Directly looking at the
bits and bytes that constitute a database may cause
the observer to misinterpret the semantics of what is

seen, if the observation does not take these layers of
description (and self-description) into account.

We have known about this use of metadata in a
database for about four decades [3]. The ANSI/SPARC
intentional /extensional model of databases divides the
database into four layers. Each layer contains some
data relevant to that layer; this forms the intentional
part of the layer. Each layer (apart from the bottom
layer) also contains information that describes the
lower layer, forming the extensional aspect of this
layer. The four abstract layers are the data model,
data dictionary, application schema and application
data layers. We have suggested in previous work [2]
that it may be useful to use these four layers to conduct
a forensic examination. Rather than attempting to
determine the impact of the interlinked metadata on
the behaviour of the DBMS it was suggested that
one could assemble a test configuration of the DBMS
in the laboratory and observe behaviour. How and
why one would choose a specific version of a layer
will be considered in more detail below. In previous
work we have also shown that it is indeed possible to
split a popular ‘real’ DBMS into these four layers and
reassemble them (with some layers sourced from an
earlier version of the database, or recreated for this
purpose) into a functioning DBMS [4].

The current paper focuses on forensic examination
of the application schema layer. It considers require-
ments posed by this layer and forensic approaches that
are useful to examine this layer. We are not aware of
any previous database forensic research that focused
on the application schema of the DBMS.

The application schema describes the physical
structure of the data [5]. A single database can hold
multiple application schema objects such as tables,
views, triggers, procedures, indexes, keys and other
database designer objects [6]. The application schema
is used by more database users on a daily basis than
the higher abstract layers (data model and data dic-
tionary). For example, application schema objects like
tables are known to more database users than the code
of the data model. The larger number of database
users on the application schema layer presents more
opportunity for the application schema to be altered
or damaged. Therefore it is expected that a foren-
sic investigation will be required more often on the
application schema layer than higher abstract layers.

Once it is determined that a forensic examination
of the application schema is required, the application
schema should be prepared to create an environment
where the application schema can be investigated. As
noted, preparation of the forensic environment is im-
portant because the metadata of the DBMS may be
altered by an attacker to influence the results of a query
[7]. In other words, if the forensic environment is not
prepared correctly, the DBMS may deliver incorrect
results which may lead to erroneous evidence.

How can we acquire trusted evidence from the
DBMS by preparing the application schema for a foren-
sic investigation? This paper will answer this question
by firstly describing why a forensic investigation on

Research Article — SACJ No. 55, December 2014

the application schema level could be required. Several
scenarios will illustrate how the application layer could
be damaged or altered to show why a forensic inves-
tigation could be required on the application schema
layer. Thereafter, the clean and found forensic environ-
ments will be introduced. Both the found and clean
environments will be justified by discussing the advan-
tages of each environment. The following section will
define several methods to illustrate how to prepare the
application schema for a forensic investigation. Several
methods will be discussed in order to give the foren-
sic investigator a variety of options to choose from.
Finally, a structured process will be defined for the
preparation of a forensic investigation environment on
the application schema of the DBMS. The process will
take into account the various steps that the investi-
gator needs to follow in order to prepare a forensic
environment where the results from the DBMS can be
trusted and consequently used for evidence in a court
of law. This forensic process will be the result of this
study.

2 BACKGROUND

Modern businesses are forced to manage their infor-
mation in order to survive in the digital era [§]. Or-
ganisations without a proper database system are rare.
Organisations increasingly rely on information systems
(IS), which results in an increase in the use of databases.
Databases have become an essential part of all indus-
tries today [9]. Computers and other electronic devices
are increasingly also used to commit crimes against
persons, organizations or even property [10]. Therefore
it is a concern that database forensics still lags behind
significantly [11].

Database forensics is an emerging field which fo-
cuses directly on the identification, preservation, and
analysis of the database data suitable for presentation
in a court of law [12]. In database forensics it is im-
portant to be able to retrace operations performed,
reconstruct deleted information, or reconstruct com-
promised data on the database. In a recent study the
field of database forensics was divided into three recon-
struction dimensions [T1]. The dimensions of database
forensics include compromised databases where the
metadata or code of the DBMS was tampered with,
damaged databases where parts of the DBMS was
deleted or damaged, and modified databases where the
DBMS changed due to normal operations since the
event of forensic interest occurred.

A ‘compromised database’ is defined as a DBMS
where the metadata or software of the DBMS has
been modified by an attacker and the DBMS is still
functioning. The best tool for collecting data for a
forensic analysis may be the DBMS, but the integrity
of the DBMS cannot be trusted if the DBMS was com-
promised to give false information [2]. An incident
response study encourages the use of a checklist during
the performance of a live response on Oracle databases
[13]. This checklist included various tasks to confirm
that the Oracle DBMS has not been compromised. A

Research Article — SACJ No. 55, December 2014

previous practical study by the authors of this paper
discussed a method how the metadata could be assem-
bled in order to conduct a forensic examination on a
compromised DBMS [4].

A ‘damaged database’ is defined as a DBMS that
has been damaged by deleting, editing or moving the
data contained within the DBMS or data files of the
DBMS. Most of the research on database forensics
falls into this category. Technical methods were pro-
posed to identify when data on an Oracle database
has been modified and methods were proposed to rec-
ognize vulnerabilities in the Oracle database [14]. In-
cident responses that relate in some way to database
forensics were conducted in corporate environments
where clients asked professionals to investigate their
databases for possible attacks [I5]. A series of papers
describe practical methods to recover data from an
Oracle database by making use of various sources [16],
[17), [18], [13], [19], [20], [21]. This information is very
specific towards the Oracle database management sys-
tem and interlinked with database security. In other
literature data mining techniques have been proposed
to simplify forensic investigations on large datasets [22].
The preceding information about damaged databases
confirms that the research done on database forensics is
divergent and often only partially focuses on database
forensics.

A ‘modified database’ is defined as a DBMS that
has not been compromised or damaged but has under-
gone changes due to normal business processes since
the event of forensic interest occurred [II]. A mod-
ified database will typically be a database which is
not directly involved in a crime being investigated, but
rather assists in solving the crime. Some work has been
published on reconstructing a database to an earlier
time even though modifications on the database have
occurred [23].

The three dimensions of database reconstruction
can be envisioned as being orthogonal. A database be-
ing investigated may belong to one or more dimensions
in this orthogonal structure. For example, a database
being investigated might resemble a damaged database
with only some elements of a compromised database
and no elements of modified database. In this study
our discussion will stretch over all three dimensions of
reconstruction in database forensics.

As noted above, a DBMS may be seen as consist-
ing of various layers of metadata and data, each of
which serves a different purpose in the system. For
example, the executable code in the DBMS serves a
completely different purpose than the data stored in
the tables of a database. This concept was identified by
the ANSI/X3/SPARC Study Group as early as 1975
[B]. The ANSI/X3/SPARC Study Group introduced
a model which is now known as the ANSI SPARC
database model where DBMSs can be divided into
different layers. Based on the ANSI SPARC model, we
divided DBMS into four abstract layers. They are the
data model, data dictionary, application schema and
application data layers.

The first abstract layer of the DBMS is the data

model which is a type of metadata and can be viewed
as the source code of the DBMS. The second layer of
the DBMS is the data dictionary which is the metadata
that applies to all databases of the DBMS. The appli-
cation schema includes user-created operations that
can manipulate data such as database triggers, proce-
dures, and sequences, as well as the logical grouping of
database objects such as views and tables. The applica-
tion schema metadata is relevant to one database only
as opposed to the data dictionary metadata which is
applicable to all databases. The fourth abstract layer
is the application data which is the rows stored within
the tables of a DBMS.

In a previous study we explored the forensic con-
cepts and methods that apply to the data model layer
[7]. This paper extends that work to forensic concepts
and methods that apply to the application schema
layer. The application schema layer borders with the
application data and data dictionary layers. The di-
viding lines between the layers need to be clear. The
application data layer consists of the raw data that
is stored within the application schema structures. It
may be said that application data rows are stored in
application schema tables. The dividing lines between
the application schema and data dictionary are more
complex. The application schema only consists of data
and metadata in the system that is relevant to one
database. For example, a trigger is a structure that
will always be stored in a single database; therefore a
trigger is part of the application schema. The same
principle applies to other application schema structures
like tables, views, indexes etc., which only apply to a
single database. Looking deeper into the DBMS, the
data dictionary is made up of metadata which applies
to more than one database.

3 REASONS FOR A FORENSIC EXAMINA-
TION OF THE APPLICATION SCHEMA

This section discusses some of the scenarios where
a forensic examination of a database’s application
schema might be useful. Examples are given of how
the application schema can be damaged or altered.
The alteration or damage to the application schema
then warrants a forensic investigation to discover what
happened on the DBMS.

It will generally not be possible to tell in advance
which of the database layers need to be examined; in
fact more than one layer may yield useful evidence.
However, in order to explore the topic systematically it
seems worthwhile to view each of the layers in isolation,
before a multi-layer case is considered. The data model
layer has already been explored in this regard [7]; other
layers still need to be considered in order to achieve a
comprehensive view of DBMS forensics.

There are various reasons why a malicious user may
want to transform the database application schema in a
way that requires the application schema to be investi-
gated. Customer loyalty programs, targeted marketing,
customer services, and the management of practically
every corporate resource depend on databases and

4

there are endless reasons why a user may intentionally
change, damage, or delete application schema struc-
tures [24]. Users may also unintentionally alter or
damage the application schema and a forensic investi-
gation will be required to determine what happened.

Alterations or damage to the application schema
poses various risks to the owners of the DBMS. These
risks include damage to the reputation of a company,
financial loss, and hiding of information. The reasons
why a person would want to cause harm to the owners
of a DBMS include, but are not limited to, vengeance,
greed or financial gain. The application schema could
be the perfect layer for attacks where the attacker
could change data in such a way that the modifications
are hard to find unless the investigator knows what
to look for. The fact that changes to the application
schema may, when properly executed, indirectly affect
results of queries makes it inherently harder to trace
to the source.

Under normal conditions the application schema
is modified to extend and maintain the database. The
possible malicious alterations to the application schema
are divided into categories below to illustrate the man-
ner in which such modifications may manifest them-
selves. The scenarios discussed are by no means an
exhaustive list of possible alterations to the applica-
tion schema that might warrant a forensic investigation.
There are too many possibilities to mention and a list
of such a nature will quickly become outdated and in-
complete due to the rapid evolution of databases. We
proceed with a discussion of some illustrative scenarios.

3.1 Damaging the application schema

The first category of application schema alterations
that might warrant a forensic investigation is direct
damage to the application schema. The scenarios men-
tioned in this section relate to application schema
alterations that manifest as damage to the application
data layer; the application schema structures need to
be recovered in order to access the application data
in its structured form. Scenarios include damage to
the schema with a SQL drop command, altering access
privileges and corrupting tables.

3.1.1 Damage Schema with the SQL Drop Command

A database user might use a SQL command such as
DROP to remove a table, column, keys or indexes to
damage the schema. For example, a table drop of the
user table on a web database server will deny users
from logging in and cause dissatisfied customers. Even
if backups of the database were kept, it might take
some time to rebuild the table. Further, the company
may not have a way to bill users anymore if backups
were not kept of the users’ table. Therefore damage to
the application schema by commonly used commands
is the first reason why an application schema forensic
investigation may be required.

Research Article — SACJ No. 55, December 2014
3.1.2 Alter Access Privileges

Access privileges are granted and revoked at regular
intervals on databases [25]. Every time a new user
or web server needs access to an application schema
structure, the database authenticates whether the user
has access to the application schema structure. The
application schema can be altered to disallow a user
access to a table structure. The following command
can be used to revoke the ‘select’ rights of a web server
on a services table.

REVOKE SELECT ON Services FROM
webserveruser;

When a web server loses connectivity to a table
which it depends on for crucial data, the owner of
the database may experience great losses during the
web server down time. A forensic investigation will
be required to determine what has gone wrong in the
application schema.

3.1.3 Corrupt Table

Another manner in which the application schema could
be damaged is to alter the metadata of the DBMS to
influence the application schema. A table can be cor-
rupted by changing crucial metadata. The metadata
repository can be defined as data which describes the
data warehouse itself [26]. The metadata includes
the description of the data model, database design
definitions, and descriptions of transformations and
aggregations. Some of this metadata is directly linked
to the application schema of the database. For in-
stance, a database table is defined by making use of
metadata. Further, aggregation functions are mapped
in metadata and directly influence the way queries are
performed on the application schema. This metadata
can be altered to change results of queries.

A PostgreSQL DBMS was used to test how a ta-
ble can be corrupted via metadata. The metadata
which constructs a table resides in the pg_class and
pg-attribute metadata tables of PostgreSQL. This
metadata can be altered to corrupt a table in such
a manner that the table displays an error message once
a SQL command is run on that table. Various possi-
bilities exist on how to corrupt the table. Values rele-
vant to the table can be deleted from the pg_attribute
metadata table, a column can be altered to belong
to another table in pg_attribute, the data type of a
column can be changed, the corrupted table’s columns
can be deleted from the pg_class metadata table, etc.
If a table is corrupted and cannot be queried anymore
it might incur huge losses to the owner of the data.
An investigation might be required to determine what
has happened, who was responsible, and what the goal
of the alteration was (to damage the data, an honest
mistake, for personal gain, etc.).

Research Article — SACJ No. 55, December 2014

3.2 Application Schema Alterations to Deliver
Wrong Results

The next category of alteration to the application
schema that might warrant a forensic investigation is
alterations that make the DBMS deliver erroneous re-
sults. The scenarios include database column swapping,
database operator swapping, creating a view to replace
a table and damage to the aggregation functions of a
database.

3.2.1 Column Swap

The first application schema alteration that could influ-
ence the DBMS to deliver erroneous results is to swap a
column in the metadata [2]. The authors of this paper
compromised the application schema by swapping two
column names within a table [4]. In PostgreSQL the
attnum sequence in the pg attribute table was changed
for these two columns. This means that if a select
query is executed on the compromised table using the
name of one column, the values of the other column
will be returned. Figure [1]illustrates what commands
can be used to swap two columns in the PostgreSQL
DBMS. The pg_attribute table consists of metadata
which constructs the tables of the PostgreSQL DBMS.
If this metadata is changed, the application schema is
altered significantly. A forensic investigation might be
required to examine an application schema alteration
of this nature.

update pg_attribute set attnum = 4’ where attrelid =
16888’ and attname = ‘number’;

update pg_attribute set attnum = ’2° where attrelid =
16388’ and attname = ’highnumber’;

update pg_attribute set attnum = '8’ where attrelid =
16388’ and attname = ‘number’;

Figure 1: Commands used to swap two columns of a
table in the application schema.

3.2.2 Operator Swap

Another modification of the application schema meta-
data that may warrant a forensic investigation is an
operator swap. This causes the DBMS to yield incor-
rect results on a query that uses the affected operator.
The DBMS makes use of metadata to define what
processes should be used to perform mathematic op-
erator calculations. The metadata, for example, links
the plus operator (4) to an addition processes. Such
metadata can be changed to link an operator to the
wrong process. For example, the division operator
might be changed to make use of the multiplication
process. Every time the division operator is used, a
multiplication will be carried out. This is defined as
an operator swap. Figure [2]illustrates a command that
may be used to alter a division operator to execute
multiplication in PostgreSQL.

update pg_operator set oprcode = ‘int2mul’ where
oprname = ‘/7 and oprleft = ‘217 and oprresult =
‘21°;

Figure 2: Commands used to alter the division operator
to multiply.

3.2.3 Create View to Replace Table

Creating a view to mimic a table to hide data is another
way the application schema can be modified to yield
incorrect results. Imagine a situation where a table
with the name MinimumCost exists. The table is
mostly used to perform SELECT queries and is rarely
updated. The table is then renamed by some party to
MinimumCost2 and a view is created with the name
MinimumCost to replace the table. However the table
can be modified to hide some rows from the original
table. The following SQL command can, for example,
be used to create the view to hide some rows from the
initial table.

CREATE VIEW MinimumCost AS SELECT *
FROM MinimumCost2 WHERE ID <> 858;

3.2.4 Aggregation Damage

DBMSs use aggregation functions in SQL commands to
calculate and summarize data [27]. These aggregation
functions are captured in the metadata in a similar way
to the mathematic operators mentioned above. The
pg-aggregate table in PostgreSQL holds the metadata
about how to handle aggregation functions [28]. The
values of this table can be altered to cause damage
to an aggregation function. The pg_attribute table
matches an aggregation function with a function that
handles the aggregation function calculation. An ag-
gregation function can then be mismatched with an
incorrect function. For example, the SUM aggrega-
tion function can be altered to make use of the AVG
function calculation processes and therefore deliver un-
reliable results. Aggregation functions are frequently
used in databases and all the queries that make use of
the damaged aggregation function will return incorrect
results. Figure [3] displays how an aggregation function
can be altered in the PostgreSQL database. After this
alteration the SUM aggregation function will return in-
correct and unpredictable results, but no error is given
which will require someone to work out the actual sum
to figure out that the database is sending incorrect
results.

3.3 Database Behaviour Alterations

This section illustrates why a forensic investigation
may be required due to alterations to the application
schema that change the behaviour of the database. The
examples discussed below include slowing the DBMS
down by dropping table indexes and modifying the
storage engines of a table.

update pg_aggregate set aggtransfn =
“int4_avg_accum’::regproc where aggtransfn =
“int4_sum’::regproc;

update pg_aggregate set aggfinalfn =
int8_avg’::regproc, aggtranstype = 1016,
agginitval = { 0,0} where aggtransfn =
“int4_avg_accum’::regproc;

Figure 3: Commands used to alter an existing aggre-
gation function.

3.3.1 Slow the DBMS Down by Dropping Indexes

The first way to change the application schema in order
to affect the behaviour of the DBMS is to drop the
indexes from a table and slow down large database
searches tremendously. A dropped index is something
that may not be easily be detected by the system
administrator and may cause damage to the reputation
of a customer-facing database software product. Even
if the database administrator eventually finds the cause
of the problem, a forensic investigation may still be
required to determine what happened.

3.3.2 Blackhole Storage Engine

Another method of altering the application schema
which might warrant a forensic investigation is the use
of different storage engines. MySQL supports various
storage engines which act as handlers of different table
types [29]. By default the MyISAM engine is used
in MYSQL, but the storage engine can be changed
by altering a table in the application schema. The
storage engine can be altered and consequently change
the behaviour of the database. The blackhole storage
engine is used in scenarios where there are a large
number of database slaves plus a busy master machine
[30]. Network load can become significant even when
compression methods are used. The blackhole stor-
age engine acts as a blackhole that accepts data, but
discards rather than stores it. For example, if a user
inserts 100 values into a table, the database will accept
the insert command and report a successful insertion,
but no values will in fact be inserted into the table.
This engine might enable a malicious user to prevent
a database from updating information. This exam-
ple also demonstrates that some features in particular
DBMSs may be used to exploit the application schema.

3.3.3 Custom Storage Engines

Yet another threat stems from the fact that database
experts can write their own storage engines to perform
potentially malicious tasks. Such a custom storage
engine can then be activated in the application schema
of the database. The coding of the custom storage
engine takes place in the data model abstract layer
when the code of the DBMS is changed, but the ap-
plication schema is changed to activate the custom
storage engine. More information on writing a custom
storage engine can be found in [31].

Research Article — SACJ No. 55, December 2014

4 SELECTING AN APPLICATION SCHEMA
FORENSICS ENVIRONMENT

The previous section discussed some practical exam-
ples of when application schema forensics might be
required. This section focuses on how to approach a
forensic examination of an application schema. Envi-
ronments are introduced where a forensic investigation
can be conducted in and several advantages of the
various environments will be mentioned. A forensic
environment should be selected that will best fit the
forensic context.

For any given layer, two obvious alternatives exist
when the DBMS is assembled for forensic testing. One
alternative is to use a layer as it was found on a DBMS
server to be examined. The other alternative is to use
a clean version of the layer—that is, a version that is
‘correct’. For some layers this is usually rather simple.
It has been noted that the data model layer in practice
consists of the DBMS software. To obtain a ‘clean’
version of this software to examine the underlying files
is not problematic (although care may have to be taken
to ensure that the clean version is patched to the same
extent as the software it replaces has been patched).
In fact, found and clean options are often not the
only options: An examiner may, for example, expressly
decide to use an unpatched version of the software if
the specific examination requires it.

A found version of the application schema layer can
readily be obtained. One option is to image the server’s
hard drive (or equivalent) and obtain the relevant data
from the image. However, it may often not be possible
to find an ‘original’ (or clean) version of such a schema.
Exceptions exist when the design documentation of the
database is available and no changes have been made to
the original database, or authorised changes have been
meticulously documented through a proper change
management process. If a clean version is not available,
a backup that was made before any suspected malicious
activity occurred may have to be used as a ‘clean’
version. In fact, as noted above, found and clean are
not the only options—a forensic examination may be
focussed on changes that may have been made between
two dates and layers extracted from backups made on
(or near) those dates may be appropriate choices to
use in the reconstructed DBMS. The expertise of the
examiner and the purpose of the examination will
determine choices made. The examiner should be able
to justify such choices and note the effect of choices
on the outcome of the examination. For the sake of
simplicity we proceed with found and clean as the only
choices, noting that these alternatives will in many
cases be the important ones. However, when these
two are used below the reader should recall that other
alternatives exist.

The following sections will discuss why it might
be necessary to have a found and/or clean layer for a
forensic investigation.

Research Article — SACJ No. 55, December 2014

4.1 Indications for using a clean layer

Using a clean layer ensures that the layer will not dis-
tort data (or metadata) obtained via it; it will present
any results obtained via it as originally intended by
the designers. Phrased differently, a clean layer is
chosen or constructed to behave exactly like it did in
the DBMS being examined, but we are certain that
it is free from modifications or other artefacts that
may corrupt output retrieved from the DBMS. A clean
data schema layer has several uses when a forensic
examination of a database is conducted. Some of these
uses are discussed in the following sections.

4.1.1 Application Schema Structure Recovery

The first reason for using a forensic environment where
parts of the application schema are clean (or have been
cleaned) is the possibility to repair application schema
structures. If an application schema structure (like
a table) is damaged on the DBMS being examined,
it may be helpful to recreate that application schema
structure on a replica DBMS in order to query the table
‘naturally’. Note that it is risky to attempt to repair
application schema structures on the live environment
since evidence cannot be altered. Using a replica of
the original minimises the risk of damaging evidence
when repairing application schema structures.

4.1.2 Clean Metadata

The second reason for using a clean application schema
layer is that a comparison between results derived from
a replica with a such a clean layer and the original
may reveal differences that have forensic value. More
specifically, such differences may help to isolate and
determine the extent of modifications made to this
layer as it was being used. Clean metadata may also
reveal application schema structures that have been
hidden in some manner during use of the database.
Additionally, clean metadata may restore basic DBMS
functions that enable the examiner to use such func-
tions when searching for forensic evidence. If the layer
is only partially cleaned, it should be clear what meta-
data (cleaned or found) is used whenever a forensic
query is executed. Note that cleaning metadata tables
such as pg-attribute in PostgreSQL will cause all table
information to be lost and these tables will have to be
recreated.

4.1.3 Integrity

A DBMS can be modified in various ways to produce
results that are unusual or unexpected. As mentioned
previously in this study, the metadata of a database
can be changed to deliver erroneous results or an ap-
plication schema structure can be corrupted not to
deliver results. A clean environment provides a degree
of integrity where the investigator can be sure that evi-
dence results are not influenced by modifications made
to the application schema. Metaphorically, a clean
data application layer provides a ‘clean lens’ through
which the application data may be inspected.

4.1.4 Elimination of Layers

Imagine a situation where the database is producing
unpredictable (or consistently incorrect) results due
to a modification made to a particular layer of the
DBMS. An investigator may take an educated guess
about which layer is causing the unpredictable results.
However, in many cases the various layers of the DBMS
will need to be eliminated as the cause of the problem.
This elimination can be done by using clean versions
of the various layers (where available) one at a time,
with the other layers as found to determine if the un-
predictable results persist. A clean layer may therefore
assist to find the source of a problem through a process
of elimination.

4.2 Arguments for a found environment

A found environment is one that reflects the state of
the DBMS at the time the investigation started (or, if
possible, when the event of forensic interest occurred).
A found environment exists, by definition, on the live
server (but may have to be preserved) if examination
cannot start immediately. The term found is also used
to refer to a copy of a layer that was obtained from the
DBMS at such a time, and where the copy is used for
examination as part of a replica in the laboratory. It is
important to understand that the found environment is
not precisely the same here as the traditional meaning
of a live digital forensic environment, due to the fact
that the environment may fully or partially exist on the
live machine or on another machine. Several reasons
for using a found application schema layer for forensic
examination are discussed in the following sections.

4.2.1 Cost of Forensic Investigation

The first argument to use a found forensic environ-
ment is the fact that it may decrease the cost of the
investigation. There are a couple of reasons why a
forensic investigation on a found environment is may
be cost-effective:

1. expertise is not required to prepare the clean foren-
sic environment,

2. institutions can barely afford the time required to
prepare a new forensic environment.

When there is little reason to think that a DBMS layer
could have been modified, using the found environment
could yield results much quicker.

4.2.2 Test Hypothesis

A hypothesis can be tested in the found environment
without making any changes to the environment of
the DBMS. Sometimes in digital forensics a hypothesis
needs to be tested based on a hunch of the forensic
investigator. The found environment provides an easy
accessible platform to test hypotheses. Here we are
referring to leads that may be useful for further inves-
tigation, rather than extraction of evidence for court
use.

8

5 METHODS TO DEAL WITH APPLICATION
SCHEMA FORENSICS

The previous section argued why a clean or found en-
vironment may be useful in a forensic investigation.
In this section we will discuss how application schema
forensic methods can be applied. This section is di-
vided into a discussion of methods to achieve a clean
environment and methods to achieve a found envi-
ronment for a forensic examination of an application
schema. Several methods will be suggested for the
clean and found environments. Finally we briefly dis-
cuss some known evidence-searching techniques.

5.1 Clean Application Schema Environment

A clean application schema environment is achieved by
establishing a new forensic environment on a different
database server in order to determine what has been
done on the database or to determine why the database
is behaving in a particular way. The following sections
discuss methods to achieve a clean application schema
environment.

5.1.1 Rebuild from Previous Dumps

One method to achieve a clean application schema
environment is to rebuild the application schema from
previous dumps of the database of interest. The dump
file to be used should have been created before the event
of forensic interest occurred. Dump files include an
application data section which is generally represented
as ‘insert’ SQL commands, and an application schema
section which is generally identified by the ‘create’
SQL commands. The SQL commands in the dump
file which affect the application schema can be used
to rebuild the application schema on a new database
server. Either a whole clean installation should be
made or the current database installation should be
copied over from the live database server depending on
the state of the data model layer. Since our focus is on
the application schema it will be discussed in isolation
in the following sections. Lastly, an old dump of the
application schema should be applied to the database
which will be investigated. Thereafter the application
data of the live database should be dumped and that
data should be applied to the clean application schema.
This method does not take a lot of time, expertise or
effort.

5.1.2 Rebuild According to Documentation

If previous dumps are not available, database design
documentation may be used to rebuild the application
schema. This is the second method to achieve a clean
application schema forensic environment. Database
design documentation may be available in a variety of
forms. These forms include an entity-relationship (ER)
model, database design software that was not synchro-
nised with the application schema of forensic interest
(such as MySQL Workbench) or official sketches or
diagrams [32]. The application can be rebuilt by run-
ning SQL commands to restore the application schema

Research Article — SACJ No. 55, December 2014

according to the available documentation. After the ap-
plication schema has been rebuilt, a data dump of the
live database can be applied to the clean application
schema. The amount of effort required to apply this
method depends on the size of the application schema
and the type of documentation available. Large appli-
cation schemas will require a lot of effort to be rebuilt
from an ER Diagram, but will not require much time
when using database design software, which can build
the application schema automatically.

5.1.3 Rebuild from Pieces

Another method to construct a clean application
schema forensic layer is to rebuild the application
schema from pieces after an event has caused major
damage to the database. This method is particularly
relevant to cases where the DBMS has been destroyed
to some extent and a forensic investigation is warranted.
During such an event data may be lost and database
structures destroyed. The application schema might
be rebuilt from the leftover data to varying degrees
depending on what could be recovered. This leftover
data will typically be found on the file system of the
server where the DBMS was installed. In this scenario
the console of the DBMS might not even work any-
more and the application schema should be retrieved
on the file system because no data dumps or appli-
cation schema reports are available from the DBMS
console. The relevant DBMS installation files should
be understood and the required DBMS files from the
file system should be copied into a working version of
the DBMS. In this way some of the application schema
data may be retained and a better understanding can
be attained on the state of the application schema be-
fore the DBMS was destroyed. This method requires
a significant degree of expertise and effort but might
be the only forensic option in some cases.

5.1.4 New Metadata Template and Metadata Alter-
ations

The final method to obtain a clean application schema
layer is to replace the metadata of the application
schema with clean metadata. Some DBMSs (like Post-
greSQL) make use of metadata to store data about ap-
plication schema structures. This data can be changed
in order to change the structure and behaviour of the
DBMS. If it could be determined that the metadata of
the application schema is the cause of suspect DBMS
behaviour, then parts of the metadata template may
be replaced with clean chunks of metadata in order
to test the hypothesis. With this method a copy of
the application schema should be set up on another
database server (not on the live database server) and
the metadata of that DBMS should be changed accord-
ing to the requirements of the forensic investigation.
The application schema can now be tested to either re-
veal forensic evidence or to confirm a hypothesis. This
is an advanced method that requires a lot of expertise
on the particular DBMS.

Research Article — SACJ No. 55, December 2014

5.2 Found Application Schema Environment

The found application schema environment is a setting
where the application schema could be forensically ex-
amined as it was found by the forensic investigator.
As opposed to the clean environment, the found ap-
plication schema environment does not make use of
methods to clean the application schema in any way.
The evidence should stay the same on the applica-
tion schema level. The found environment is similar
to a post-mortem forensic environment, but a found
environment may be mirrored onto another machine
and the forensic investigation could commence on that
machine. The following sections will discuss meth-
ods to achieve a found application schema forensic
environment.

5.2.1 Live Environment

The first method to achieve a found application schema
environment is to leave the application schema un-
touched on the database where the incident of forensic
interest occurred. The application schema will still be
in a live state and a typical live investigation needs
to be done on the application schema. During a live
investigation the best practices should be used to leave
the evidence unchanged as far as possible. This sce-
nario may also be useful in circumstances where a low
cost forensic investigation is a high priority.

5.2.2 Copy of the Application Schema

Another way a found environment can be set up for a
forensic investigation is by mirroring the application
schema onto another installation of the database. Note
that in this scenario the entire application schema is
mirrored after the incident of forensic interest occurred.
This method could be achieved by dumping the live ap-
plication schema and importing the application schema
into the desired database environment. This method
becomes complicated when we suspect that the data
model has been affected by the incident and we can no
longer trust the data model’s dump function. In this
instance the application schema will need to be copied,
along with the application data, from the data files
on the operating system. This method is particularly
useful when the behaviour of the application needs to
be tested or simulated.

5.3 Techniques to find evidence in the forensic
environment

At this stage of this study we have discussed the ad-
vantages of the found and clean environment; and we
discussed how a clean or found application schema envi-
ronment can be achieved. In the following sections we
will mention some approaches to identify evidence dur-
ing an investigation once either of these environments
has been established.

5.3.1 Find Inconsistencies

One method to identify application schema evidence is
to find inconsistencies in audit trails. Various sources

of data can be used as the audit trail and they include
(and are not limited to) the database table, log files
and application data.

5.3.2 Output Based Investigation

Another approach to an application schema forensic
investigation is to search for evidence based on the
output of the DBMS. For example, if a certain appli-
cation schema structure returns unpredictable values,
the particular application schema structure and closely
related structures can be targeted for forensic evidence.

5.3.3 Find the origin of the problem

This approach overlaps with the two approaches to an
application schema forensic investigation mentioned
above, but is worth mentioning here. In a forensic
investigation it is critical to find the source of the
problem in order to investigate the surroundings for
evidence. For instance, if a table returns wrong results
on an aggregation query the logical path to take will be
to check the query, check the data of the table, check
the table structure and check triggers or procedures
running on the function. If no evidence is found at
this stage, then the aggregation function of the DBMS
should be investigated to ensure it is still working. If
the origin of the problem was found at the aggregation
function itself, then evidence directly related to the
aggregation function and aggregation tables can be
targeted.

6 APPLICATION SCHEMA
PREPARATION PROCESS

FORENSIC

In this section an application schema forensic prepa-
ration process will be introduced. As illustrated by
Cohen [33], the entire forensic process to obtain evi-
dence from digital devices, from the identification of
evidence to presentation in court, is an elaborate one.
Here the focus will be on one of the steps that the au-
thors of this paper consider one of the most important
parts of the forensic process: the forensic preparation
process. Figure [] illustrates this process as a flow
diagram.
The process can be divided into three key areas:
1. choose forensic environment,
2. select and implement method to achieve the
environment,
3. extract evidence.
These key areas are ordered in a logical way and need
to be executed consecutively as illustrated in Figure [4]
The selection of a forensic environment is made
by first considering the crime scene or forensic setting
where the evidence should be extracted from. These
settings may vary significantly. As mentioned earlier,
the selection of a suitable environment is a vital part in
ensuring the integrity of the evidence we receive from
the DBMS. A clean environment may be impractical
or unnecessary in some settings and the only option in
other settings. Equally, the found environment may be

10

Start

Investigation required on
Application Schema layer

I
k
|Cu:nnsider Situation |
Choose = -
A Detenmine possible
Environment e —
Sealect
rVIFCnImer
Clean Found
Consider “clean’ Consider found'
methods methods
Salect and ¥ ¥
Imglement | Select mathod] | Select mathod]
Method
Imgdement method Implement
on different machine Method
I
i1
¥
] Selact method to
find evidence
Search for
Evidence evidence
Extraction

vidence
Found?

Figure 4: The Application Schema Evidence Identifi-
cation Process.

an incorrect choice in some settings and the only feasi-
ble choice in other settings. The forensic investigator
needs to choose one of these two environments.

Once a forensic environment is selected we need
to select a method on how to transform the forensic
setting into the selected forensic environment. It is
important to select a method to transform the crime
scene into the correct forensic environment because our
actions should not affect the evidence in the DBMS.
Methods should be used which sustain the integrity of
the evidence from the DBMS. Several methods have
been discussed in this paper on how to achieve a found
or clean application schema environment. The type
of method will be dependent on the environment that
was selected for the investigation. Only found methods
can achieve a found forensic environment and only
clean methods can achieve a clean forensic environment.
The method most suited for the forensic investigation
should be selected. Thereafter the method should be
implemented.

Once the forensic environment has been prepared
we are ready to start searching and identifying forensic
evidence in this environment. Typical forensic evidence
searching methods may be used at this stage. Some
of them were discussed earlier in this paper. If foren-
sic evidence cannot be found in the current forensic

Research Article — SACJ No. 55, December 2014

environment the forensic environment can be changed
and the process started over again. Alternatively, if
evidence was found, the application schema evidence
identification process is completed and the investigator
can move on to collecting the evidence, preserving the
evidence, transporting the evidence, etc.

7 CONCLUSION

The application schema layer of a DBMS can be altered
in various ways to achieve a wide variety of results that
may warrant a forensic investigation. The found and
clean forensic environments are two forensic environ-
ments that can assist a forensic investigator to identify
evidence in the application schema layer of the DBMS.
The investigator should understand the advantages of
each environment and be familiar with the methods
required to implement these environments. This study
concluded with a process that will apply to various
different forensic scenarios of the application schema.
The application schema forensic evidence identification
process will assist an investigator in making good deci-
sions while conducting a forensic investigation on the
application schema layer of the DBMS. Future work
will bring all layers of the DBMS together in order to
design an evidence collection process that includes all
layers of the DBMS.

REFERENCES

[1] E. Chickowski. “Database forensics still in the dark
ages”, 2011. URL
http://www.darkreading.com/attacks-
breaches/database-forensics-still-in-dark-
ages/d/d-id/1136132. Last accessed 15 Nov 2014.

[2] M. S. Olivier. “On metadata context in database
forensics”. Digital Investigation, vol. 5, no. 3—4, pp.
115-123, 2009.

[3] ANSI/X3/SPARC Study Group. “Data base
management systems: Interim report”. ACM
SIGMOD bulletin, vol. 7, no. 2, 1975.

[4] H. Beyers, M. S. Olivier and G. P. Hancke. “An
approach to examine the metadata and data of a
database management system by making use of a
forensic comparison tool”. In H. S. Venter,

M. Coetzee and M. Loock (editors), Proceedings of
the 2011 Information Security for South Africa (ISSA
2011) Conference. Johannesburg, South Africa, 8
2011. (Work in Progress Paper; published
electronically).

[5] R. M. Riordan. Designing effective database systems.
Addison-Wesley Professional, Massachusetts, USA,
2005.

[6] C. Coronel, S. Morris and P. Rob. Database Systems:
Design, Implementation, and Management. Cengage
Learning, Boston, USA, 2009.

[7] H. Q. Beyers, M. S. Olivier and G. P. Hancke.
“Arguments and methods for database data model
forensics”. In Seventh International Workshop on
Digital Forensics & Incident Analysis (WDFIA), pp.
139-149. Hersonissos, Crete, Greece, 6 2012.

http://www.darkreading.com/attacks-breaches/database-forensics-still-in-dark-ages/d/d-id/1136132
http://www.darkreading.com/attacks-breaches/database-forensics-still-in-dark-ages/d/d-id/1136132
http://www.darkreading.com/attacks-breaches/database-forensics-still-in-dark-ages/d/d-id/1136132

Research Article — SACJ No. 55, December 2014

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

23]

[24]

E. Fernandez-Medina and M. Piattini. “Designing
secure databases”. Information and Software
Technology, vol. 47, pp. 463-477, Nov. 2005.

S. Sumathi and S. Essakkirajan. Fundamentals of
Relational Database Management Systems — Studies
in computational intelligence. Springer, 2007.

J. Ashcroft. “Electronic crime scene investigation: A
guide for first responders”. NIJ Guide NCJ 187736,
National Institute of Justice, Office of Justice
Programs, U.S. Department of Justice, 2001.

O. M. Fasan and M. S. Olivier. “On dimensions of
reconstruction in database forensics”. In Seventh
International Annual Workshop on Digital Forensics
& Incident Analysis (WDFIA), pp. 97-106.
Hersonissos, Crete, Greece, Jun. 2012.

K. Fowler. SQL Server forensic analysis.
Addison-Wesley Professional, NJ, USA, 2008.

D. Litchfield. “Oracle forensics part 4: Live
response”. Insight security research publication,
NGSSoftware, Apr. 2007.

P. M. Wright. “Oracle database forensics using
Logminer”. Global information assurance
certification paper, SANS Institute, Jan. 2005.

K. Fowler. “Forensic analysis of a SQL Server 2005
database server”, Apr. 2007. URL
http://www.sans.org/reading_room/whitepapers/
application/forensic-analysis-sql-server-
2005-database-server_1906. Last accessed on 15
Nov 2014.

D. Litchfield. “Oracle forensics part 1: dissecting the
redo logs”. Insight security research publication,
NGSSoftware, Mar. 2007.

D. Litchfield. “Oracle forensics part 2: Locating
dropped objects”. Insight security research
publication, NGSSoftware, Mar. 2007.

D. Litchfield. “Oracle forensics part 3: Isolating
evidence of attacks against the authentication
mechanism”. Insight security research publication,
NGSSoftware, Mar. 2007.

D. Litchfield. “Oracle forensics part 5: Finding
evidence in the absence of auditing”. Insight security
research publication, NGSSoftware, Aug. 2007.

D. Litchfield. “Oracle forensics part 6: Examining

undo segments, flashback and the Oracle recycle bin”.

Insight security research publication, NGSSoftware,
Aug. 2007.

D. Litchfield. “Oracle forensics part 7: using the
Oracle system change number in forensic
investigations”. Insight security research publication,
NGSSoftware, Nov. 2008.

N. Beebe and J. Clark. “Dealing with terabyte data
sets in digital investigations”. In Proceedings of the
IFIP International Conference on Digital Forensics.
Orlando, USA, February 2005.

O. M. Fasan and M. S. Olivier. “Reconstruction in
database forensics”. In G. Peterson and S. Shenoi
(editors), Advances in Digital Forensics VIII, pp.
273-287. Springer, 2012.

E. Oz. Management information systems. Course
Technology, Boston, USA, 6 edn., 2009.

[25]

[26]
[27]
[28]

[29]

32]

[33]

11

B. Thomas. OCA: Oracle database 11g Administrator
Certified Associate study guide. John Wiley and Sons,
Indianapolis, USA, 2010.

P. Ward and G. Dafoulas. Database management
systems. Thomson Learning, London, UK, 2006.

R. Narang. Database management systems. PHI
Learning, New Delhi, India, 2006.

D. L. et al. The database hacker’s handbook. Wiley,
Indianapolis, USA, 1st edn., 2005.

MySQL AB. MySQL Administrator’s Guide and
Language Reference. MySQL Press, Uppsala, Sweden,
2nd edn., 2006.

D. Schneller and U. Schwedt. MySQL admin
cookbook. Packt Publishing, Brimingham, UK, 2010.

MySQL Forge. “MySQL internals custom engine”,
2010. URL http://forge.mysql.com/wiki/MySQL_
Internals_Custom_Engine. Last accessed on 2 May
2012.

Sideris Courseware Corp. Data modelling: Logical
database design. Sideris Courseware Corp, Newton,
USA, 2011.

F. Cohen. “Fundamentals of digital forensic
evidence”. In P. Stavroulakis and M. Stamp (editors),
Handbook of Information and Communication
Security, pp. 789-808. Springer, San Jose, USA, 2010.

http://www.sans.org/reading_room/whitepapers/application/forensic-analysis-sql-server-2005-database-server_1906
http://www.sans.org/reading_room/whitepapers/application/forensic-analysis-sql-server-2005-database-server_1906
http://www.sans.org/reading_room/whitepapers/application/forensic-analysis-sql-server-2005-database-server_1906
http://forge.mysql.com/wiki/MySQL_Internals_Custom_Engine
http://forge.mysql.com/wiki/MySQL_Internals_Custom_Engine

	 Database Application Schema Forensicsto 3em Hector Q. Beyers, Martin S. Olivier, Gerhard P. Hancke to.44em.
	Introduction
	Background
	Reasons for a forensic examination of the application schema
	Damaging the application schema
	Damage Schema with the SQL Drop Command
	Alter Access Privileges
	Corrupt Table

	Application Schema Alterations to Deliver Wrong Results
	Column Swap
	Operator Swap
	Create View to Replace Table
	Aggregation Damage

	Database Behaviour Alterations
	Slow the DBMS Down by Dropping Indexes
	Blackhole Storage Engine
	Custom Storage Engines

	SELECTING AN Application Schema Forensics ENVIRONMENT
	Indications for using a clean layer
	Application Schema Structure Recovery
	Clean Metadata
	Integrity
	Elimination of Layers

	Arguments for a found environment
	Cost of Forensic Investigation
	Test Hypothesis

	Methods to Deal with Application Schema Forensics
	Clean Application Schema Environment
	Rebuild from Previous Dumps
	Rebuild According to Documentation
	Rebuild from Pieces
	New Metadata Template and Metadata Alterations

	Found Application Schema Environment
	Live Environment
	Copy of the Application Schema

	Techniques to find evidence in the forensic environment
	Find Inconsistencies
	Output Based Investigation
	Find the origin of the problem

	Application Schema FORENSIC Preparation Process
	Conclusion

