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ABSTRACT

Although computerized retinal image blood vessel segmentation has been extensively researched, there is still room for
improvement in the quality of the segmented images. Since retinal image analysis is still widely used in the diagnosis of
diabetic retinopathy, efficient and accurate image characterization techniques are required. Previous work has mainly
focused on improving segmentation accuracy rates with little regard to the false positives that are produced by illumination
variation. This research work presents a hybrid approach towards the segmentation of retinal blood vessels. New approaches
towards the reduction of background illumination variation are proposed using normalized Gabor filtering. These are the
base-offset encoding and a modified version of an existing zero-integral kernel technique. The valley emphasis automatic
thresholding scheme is used to segment the Gabor response images. Experiments are conducted on the DRIVE and STARE
retinal image data sets. Accuracy rates of up to 94% are achieved through the zero-integral and base offset methods. This
is comparable with results from literature, where the same data sets are segmented using other classification techniques.
The median-offset method is found to most effectively reduce background illumination variation.
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1 INTRODUCTION

Humans inherently possess image processing abilities
through their complex visual system. The role that
the retina plays in this process is substantial as it is es-
timated that 80% of all sensory information in humans
originates from the retina [I]. This indicates its impor-
tance in our interaction with the physical world and
explains why it remains one of the most scientifically
explored components of the human body. The retina is
located on the posterior hemisphere of the eye and can
be clinically examined using an ophthalmoscope [2].
This instrument projects a light beam through the iris
and then magnifies the corresponding reflection from
the retina [3]. The reflected image which is known as
the fundus image, reveals a few prominent tissues such
as the optic disk and blood vessels [4].

The diagnosis of disorders such as diabetic retinopa-
thy relies on the analysis of retinal vasculature [2]. This
analysis has traditionally been done with the aid of
a process known as fluorescence angiography which
requires a patient to be injected with a dye called fluo-
rescein [5]. This dye travels through the blood stream
and eventually causes the blood vessels in the retina
to have high contrast for easier visual analysis. Alter-
native and less invasive automated digital techniques
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are now being sought after in order to expedite retinal
visual analysis [6]. These techniques typically rely on a
laser digital ophthalmoscope to produce digital fundus
images which are then electronically registered and
analyzed [7].

To analyze blood vessels in electronic images, it is
important to first detect them accurately. Although
features such as branching angle, shape and thickness
of vessels are essential for diagnosis, their effectiveness
can be compromised by inaccurate segmentation. [§].
Two approaches commonly used for vascular segmen-
tation are supervised and unsupervised segmentation.
Supervised segmentation is dependent on a training
set and comprises methods such as Support Vector
Machines (SVM) [8] and neural networks [9], [I0]. Un-
supervised segmentation is independent of a training
set and is exemplified by rule-based methods such
as vessel tracking [I1], [12] and thresholding [6], [13].
The focus of thresholding schemes is the selection of
a gray level that optimally segments an object from
its background. This optimization problem remains a
challenge due to the smooth distribution of gray level
frequencies in retinal image histograms.

Some of the previous work on retinal blood vessel
segmentation has used features based on the intensity
profile of vessel cross-sections. Examples include the
matched filter [14], [15], [I6] and Gabor filter [6], [17],
[18]. Although Gabor filters are an effective line detec-
tion tool, they are dependent on response normaliza-
tion and parameter tuning. Sub-optimal normalization
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can lead to image blurring, poor contrast and false line
detection. Poor parameter selection can lead to the
suppression of lines that should otherwise be enhanced.
Previous studies have not focused on the effect of nor-
malization on Gabor filter effectiveness and only a few
normalization techniques have been proposed [19], [20],
[21].

This work investigates the performance of new and
existing Gabor filter normalization methods. Different
variants of Gabor filter normalization are investigated
in the context of Valley Emphasis Thresholding (VET)
[22]. This technique was originally designed for defect
detection in industrial artifacts and is, to the best of our
knowledge, being applied to blood vessel segmentation
for the first time.

The remainder of this paper is structured as follows:
Section|l.1|gives a review of related previous work while
Section[2]outlines the techniques and methodology used
in this study. This is followed by a presentation and
discussion of the results obtained. Finally a comparison
with previous literature is drawn and possible areas of
extension are highlighted.

1.1 Literature Survey

Many techniques exist for the segmentation of retinal
image blood vessels. They can be broadly categorized
as supervised and unsupervised segmentation tech-
niques. Both are dependent on an effective feature set.
Previous studies document a detailed review of the var-
ious features that have been applied to retinal blood
vessel segmentation [5], [9], [23]. These studies show
that line detection features such as matched filters
[24] and Gabor filters [25] are favored for the enhance-
ment of vasculature because vessels are generally linear.
They also highlight the DRIVE [23] and STARE [26]
data sets as the most commonly used image collections
for bench-marking retinal segmentation results. Some
of the recent works that utilize line detection filters for
vascular segmentation on these data sets are discussed
below.

Chaudhuri et al. [24] document the first use of
matched filters for blood vessel segmentation. The
Otsu method [27] is used for automatic thresholding
and a segmentation accuracy of 87.73% is achieved on
the DRIVE data set [9]. Hoover et al. [26] improve
the work of Chaudhuri et al. by using a rule-based
classification method in addition to local thresholding.
A segmentation accuracy of 92.67% is reported for
experiments on the STARE data set. HongQing et al.
[13] apply Gray Level Gradient Co-occurrence Matrix
(GLGCM) entropy thresholding to the Matched Filter
Response (MFR) image. The results are evaluated by
visually inspecting the output based on 3 specimen
fundus image

Sofka et al. [2§] improve the detection of low-
contrast and narrow vessels through multiscale
matched filters in conjuction with confidence and edge
measures. The vessel confidence measure calculates the
similarity of a MFR to an ideal vessel profile. Receiver

1The source of these images is not specified in [13].
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Operating Characteristic (ROC) curves based on both
the DRIVE and STARE data sets show that the hybrid
method is superior to multiscale MFR alone. Al-Rawi
et al. [29] improve the MFR by using optimal filter
parameters obtained through an exhaustive search on
the DRIVE training image set. A segmentation accu-
racy of 95.35% is reported. Zhang et al. [14] generate
a Matched Filter Response (MFR) image using fixed
parameters and a thresholding scheme that is enhanced
by a first order derivative of Gaussian response. Ac-
curacy rates of 93.82% and 94.84% are reported for
experiments on the DRIVE test set and STARE data
set respectively.

Gabor filters use kernels that are Gaussian modu-
lated sinusoidal waves [25], [30] while matched filters
are based primarily on the Gaussian distribution [24].
Gabor filters therefore have an advantage over matched
filters in that they can be used for texture filtering in
addition to line detection. This makes them a more
suitable option for blood vessel enhancement [6]. Li
et al. [I8] modify Gabor filters to include a scale pa-
rameter in a bid to increase the detection of vessels of
varying width. The thresholding scheme of Hoover et
al. [26] is used to binarize the output image. The re-
sults are presented visually and no empirical evidence
is given to show the effectiveness of the approach.

The robustness of Gabor filters has traditionally
been ensured through rotation and scale invariance.
Kyrki et al. [I9] highlight the significance of illumina-
tion invariance for object recognition and recommend
normalized Gabor filters for implementing it. Nor-
malization is achieved through dividing the feature
matrix by the Euclidean norm of all the responses at
a given pixel. Effectively, this is the normalization by
division approach that is discussed in Section [2.4.1
Other normalization approaches are not explored in
the study.

Azzopardi et al. [20] propose a trainable filter called
Combination Of Shifted FIlter REsponses (COSFIRE)
for keypoint detection and pattern recognition. In
these filters, normalization is important for suppress-
ing constant intensities and ensuring that lines of a
specific width have a maximum filter response. The
COSFIRE filters are demonstrated on retinal images
that are already manually segmented. They are shown
to detect vessel of specified widths, bifurcations and
crossings. The effectiveness of the filters is however not
tested on normal unsegmented retinal images which
are more complex. Wu et al. [21] use adaptive contrast
enhancement that is based on the standard deviation
of a Gabor Filter Response (GFR) image window to
highlight vessels. Two randomly selected images from
the STARE data set are used for parameter training.
A tracking segmentation method is tested on the re-
maining 18 images. An accuracy of 75% is reported
on the small vessels which consistute 42% of the total
vessel pixel count.

Rangayyan et al. [31] improve the orientation sen-
sitivity of Gabor filters by introducing a coherence
score to measure the dominant direction of flow in a
window. Predetermined wavelengths and a threshold
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are used to achieve an Area Under the Curveﬂ (AUC)
of 95% for the DRIVE test set. Osareh et al. [32]
rotate Gabor filters through several orientations and
wavelengths in search of an optimal response. Classifi-
cation is done through principal component analysis,
Gaussian Mixture Models (GMMs) and SVMs. An
AUC of 96.5% is achieved on the DRIVE test set.
Siddalingaswamy et al. [33] modify the approach of
HongQing et al. [I3] by using Gray level co-occurrence
matrix (GLCM) entropy instead of GLGCM entropy
and replacing MFR with GFR. Although Gabor filter
normalization is not documented in the study, average
sensitivity rates of 86.47% and 85% are reported for
the DRIVE and STARE data sets respectively.

The surveyed literature reveals that not much at-
tention has been given to the development of more
effective Gabor filter normalization techniques for ves-
sel segmentation. In most cases, this aspect of the filter
design is not mentioned. Image processing literature
documents two options for Gabor filter normalization,
namely the normalization by division [34], [35], [36]
and zero integral methods [20], [37]. This study seeks
to demonstrate that Gabor filter normalization is es-
sential to robust vessel enhancement and that it affects
the effectiveness of automatic thresholding. Only a
few automatic thresholding schemes such as the Otsu
method [27], [26] and GLGCM entropy [13] have been
explored. The VET method [22] has previously been
successfully applied to automatic defect detection. In
this study, it is applied to vessel segmentation.

2 TECHNIQUES AND METHODOLOGY

2.1 Segmentation System Overview
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Figure 1: Overview of the design of a retinal image
segmentation system

Figure [I| shows an overview of the segmentation
system. The main steps are preprocessing, Gabor
filtering and thresholding. Preprocessing prepares the
retinal image for filtering by converting its intensities
to an inverted gray scale. The intensities are taken

2An ROC curve.
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from the green channel of the color image as it is known
to contain the most contrast [8]. The inversion is to
ensure that the blood vessels are brighter than the
background in preparation for further enhancement by
the Gabor filter. Different normalization techniques
such as zero integral [20] and base-offset normalization
are tested in the Gabor filter.

A bank of Gabor filters with varying orientation
and wavelength is used. The maximum response from
the bank is chosen for each pixel [32], [3§]. In the
thresholding phase, the normalized Gabor response
image is segmented using the VET method [22].

2.2 Gabor Filter Vessel Enhancement

Gabor filters convolve images with a sinusoidal Gaus-
sian modulated function that is sensitive to orientation,
frequency and bandwidth [30]. The filter response is a
complex number with real and imaginary components
that are orthogonal [IT]. This results in four options
for representing the filter response, namely the real,
imaginary, phase and magnitude components. The
real component can be represented as follows:

g(ml7 y/ﬂ )\? 97 w’ 0-’ 7) = G(xI’ y/7 0—7 V)W(xlﬁ >\7 1‘/})7 (1)

where G, W, 2/ and 4y’ are defined by the respective
equations (215 below.

G2,y ,0,7) =exp | -7 7—1—— . (2)

o
{L‘/

W(x', X\, 1) = cos (277)\ + z/)>. (3)

x’ =xcosh+ ysinb. (4)

y' = —xsinf + y cos 0. (5)

The Gaussian envelope is represented by G while the
sinusoidal wave is represented by W. The wavelength
and phase-offset of the sinusoidal wave are symbolized
by A and ¢ respectively. The angle of orientation
is represented by 6 while the sigma and aspect ratio
of the Gaussian envelope are represented by o and
~ respectively. The co-ordinates of the point to be
filtered are represented by x and y. The half response
bandwidth, b of the Gabor filter is measured in octaves
and is used to regulate the spread and shape of the
filter. It is related to o and A according to equation @
[36]. Given A and b, it is therefore possible to calculate

o 1 /In2[2°+1
A—WV2[w_J~ (©)

Gabor filters are suited for texture segmentation
and are known to be a good model of how the human
visual system processes light signals [39]. Their effec-
tiveness is however hindered by the tedious task of
parameter selection. Research that implements Ga-
bor filters therefore usually either uses predetermined
parameters or has an elaborate optimal parameter se-
lection process. Cross sections of blood vessels which
are perpendicular to the direction of blood flow usu-
ally have a Gaussian gray level distribution. As such,
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Gabor filters are seen as effective features for vessel
detection.

2.3 Gabor Filter Parameters

The Gabor filter requires several parameters to be
tuned based on the context of application. In this
study, the real component of the Gabor filter is used
due to its observed superior vessel enhancement in
comparison with the imaginary, magnitude and phase
responses. A phase offset of 0 is used due to the fact
that every retinal pixel is overlapped by the center
of a kernel window when it is convolved. This means
that the peak of the Gabor wave will correspond to
the pixel being convolved.

In standard data sets such as the DRIVE and
STARE collections, the width of a retina vessel may
lie within the range of [2,10] pixels [29]. In order to
detect a complete vessel profile at a given pixel, a wave
needs to be centered on the vessel’s cross section and
be oriented in the direction of the vessel. Additionally,
the kernel window needs to be large enough to capture
the vessel’s neighborhood so that the Gabor filter re-
sponse is effectively contextualized. A kernel size of
21x21 pixels was used in this study. Kernel sizes larger
than this were explored but they did not lead to any
improvement in results. The spread of the Gaussian
function in the kernel is ensured by using a bandwidth
of 0.25 octaves in all experiments. The ellipticity of
the Gabor filter is implemented using an aspect ratio
of 0.75. The wavelengths that are used in this study
are 4, 8 and 12. They are considered individually as
well as collectively. Wavelengths of less than 4 pixels
were found to be susceptible to noise interference.

The orientations are rotated by 15 degrees in the
range [0, 180) degrees as is the case in previous litera-
ture [9]. In the case of all 3 wavelengths being used,
each combination of wavelength and orientation is con-
sidered, resulting in 36 combinations. Each of these
wavelength-orientation combinations is used to create
a Gabor kernel of size: 21x21 pixels. Every retinal
pixel is convolved with each of these kernels, resulting
in 36 Gabor filter responses. Non-retinal pixels within
the kernel’s corresponding image window are not con-
volved. The response image comprises of the highest
Gabor filter response for each pixel. This image is
subsequently thresholded in order to yield a binary
image.

2.4 Gabor Filter Normalization

The GFR may be affected by the general illumination
of a pixel’s neighborhood. Hence, normalization is
essential to ensure invariant responses [19]. In general,
normalization has the effect of scaling responses down
to a specific range whilst attempting to either preserve
desired characteristics of an image or suppress noise.

2.4.1 Gabor Filter Normalization by Division

One of the oldest methods for Gabor filter normaliza-
tion uses division to scale intensities down. It divides
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a pixel’s GFR by a factor that is derived from its
neighborhood [36]. In [35], this factor is the average
gray level in a pixel window. The weakness of this
approach is that it does not adequately suppress the
illumination in the optic disc and the resulting contrast
is very low. Figure[2]shows a typical histogram derived
from a normalization by division GFR image. The left
skewed histogram distribution shows the low contrast
in the response image. The multiple discontinuities of
this histogram make it cumbersome to automatically
detect the threshold that optimally separates vessels
from the background.
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X

Figure 2: Histogram of a normalization by division
Gabor Filter Normalization response image.

2.4.2 Zero-Integral Gabor Filter Normalization
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Figure 3: Gabor kernel superimposed on 2 surfaces of
constant intensity.

Illumination variation is suppressed when regions
of constant illumination generate a zero response. In
this case, non-zero responses are strictly a result of line
detection as opposed to high pixel intensities. Figure
[3 shows a surface plot of a Gabor filter kernel with
a size of 21x21 pixels. This filter has been generated
using equation with a bandwidth of 0.25 Octaves,
a wavelength of 8 pixels, an aspect ratio of 0.75 and
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an orientation of 45 degrees. The filter is superim-
posed on two surfaces of constant intensity. Surface
A represents an image of size 21x21 pixels, each of
which has an intensity of 0.5. Surface B represents a
slightly darker image of the same size with an intensity
of 0.2. If this Gabor filter were illumination invariant
it would produce the same response when filtering each
surface. It however produces a response of 1.0173 and
0.4069 for surface A and B respectively. An effective
normalization method is needed to complement this
filter such that it is illumination invariant.

Algorithm 1 Method 1 for calculating Zero-
Integral Normalized Gabor Kernel, K/ .,
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positive and negative responses of the Gabor kernel
separately such that the sum of all intensities in the
kernel is zero. Because algorithm |2] scales the positive
and negative responses separately, it resembles the
original kernel more than the former. It is therefore ex-
pected to yield a smoother response image. Algorithm
on the other hand, swaps the proportions of positive
and negative intensities in the kernel. The gradient of
the resulting kernel surface is expected to change when
it intersects with the plane of zero intensity. Although
this will effectively result in the loss of some visual
information, it is likely to increase the contrast of the
response image.

Require: K, «,: Un-normalized Gabor kernel of
size w X w

Zero-Integral normalized Gabor
kernel of size w X w

. roo.
Ensure: K, .,:

1: SUMgpe =0

20 SUM_ge :=0

3: for all pixel(x,y) in Kyxqy do

4:  if pixel(z,y) > 0 then

5: SUM 4ye = SUM 4y + Dixel(z,y)

6: else

7 SUM _pe = SUM _ye + pixel(z, y)

8: end if

9: end for

10: for all pixel(z,y) in Kyxw do

11:  if pixel(z,y) > 0 then

12: Ky (@) ==pixel(w, y) x o= —
13:  else

14: K, .., (z,y) :=pixel(x,y) x mﬂﬁ
15:  end if

16: end for

The sinusoidal component of the Gabor filter that
is represented in equation creates both positive and
negative responses within a filter window. An effective
way of implementing illumination invariance is ensuring
that both the positive and negative responses sum up
to zero [37]. This is tantamount to ensuring that the
integral of a Gabor filter is zero.

This study uses two algorithms for implementing
zero-integral normalization. Their details are shown
in Algorithms[T]and 2l The algorithms are inspired by
the implementation in [20], which is designed to work
with images that are already segmented. Algorithm
is same as that specified in [20] while algorithm [1}is a
modification thereof. The objective of both algorithms
is to ensure that a Gabor filter yields the same response
for image windows of constant intensity.

In Algorithm the proportion of positive re-
sponses is used as a weight for each negative response
while the proportion of negative responses is used as
a weight for each positive response. This ultimately
balances the effect of positive and negative responses
when computing the response of a pixel based on its
neighborhood. In Algorithm [2] the positive and nega-
tive responses are normalized so that they both have
an absolute total value of 1, resulting in a zero integral.
Effectively these algorithms both work by scaling the

Algorithm 2 Method 2 for calculating Zero-
Integral Normalized Gabor Kernel, K/, .,

Require: K, «x,: Un-normalized Gabor kernel of
size w X w

Zero-Integral normalized Gabor
kernel of size w X w

. o
Ensure: K, . .,:

1: SUM4qpe =0

20 SUM_ye := 0

3: for all pixel(z,y) in Kyxw do

4:  if pixel(z,y) > 0 then

5: SUM 4 pe = SUM 4y + Dixel(z, y)
6: else

7: SUM _ye = SUM _ye + pixel(x, y)
8: end if

9: end for

10: for all pixel(z,y) in K,xw do

11:  if pixel(z,y) > 0 then

120 Ky, (w,y) = ooy

13:  else _

1 Ky, (n,y) = EEOw)

15:  end if

16: end for

2.4.3 Base-offset Gabor Filter Normalization

This study proposes the incorporation of base-offset
encoding to Gabor filter normalization in a bid to
avert illumination inconsistency and improve vessel en-
hancement in retinal images. The base-offset encoding
scheme is a common loss-less compression method that
is adequate for medical images [40].

A given neighborhood in an image exhibits smooth-
ness when its pixels have a high similarity with each
other. In such a case, the difference between the maxi-
mum and minimum intensity in the neighborhood is
small. This property may be used to efficiently encode
the intensities by representing them based on their
relative distance from a chosen base intensity. In this
study, either the median or mean of an image window
is used as the base. Effectively, this technique reduces
the importance of the actual intensity whilst empha-
sizing on its relative intensity within a neighborhood.
Algorithm [3] describes the proposed new method in
the case of a median offset. The algorithm accepts an
input image that has been convolved with the scaled
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Gabor equation in equation .

g/(xa Y, )\7 97 wv g, 7) = 27:/0-2 g((E, Y, /\a 07 d)v g, 7) (7)

The scale factor represents the inverse of the volume
under the Gaussian surface [41] and this volume is
equivalent to the sum of intensities on the surface.
The scale factor therefore ensures that the integral
of the Gaussian surface in the Gabor kernel window
sums up to one. The median is calculated from a
window that is cropped around a center pixel and
has the same size as the Gabor kernel. This median
is used as the base for calculating offsets within the
cropped sub-image due to its low rate of information
loss during filtering. When it is computed, its value
is one of the actual intensities in an image window.
The resulting filtered image is therefore likely to have
a high resemblance of the original image. This is not
the case with bases such as the mean as they do not
necessarily correspond to an existing intensity in an
image window. The mean yields both negative and
positive values like the median when used as a base.
This is desirable due to the preservation of relative
intensity information within an image window.

Algorithm 3 Calculation of Median-offset nor-
malized GFR, Iy;aRr, of an image, I,

Require: I, Source Image

Require: K, x.: Normalized Gabor kernel of

size w X w

Median-offset normalized Gabor

filter Response image

1: for all pixel(z,y) in I, do

2: Tyy = 0

3:  Cyxw = Square sub-image of I,.. centered at
(z,y) and of width w

Ensure: Iy gr:

4 Myy = waw-median()

5. fori:=—% to ¥ do

6 for j:= —% to ¥ do

7: of fset :=Ige(x + i,y + J) — Mgy
8: Ty 1= ’I"wy‘f'(offset X waw(i7j))
9 end for

10: end for
11: Inyar(z,y) i=ray
12: end for

2.5 Vessel Segmentation
2.5.1 Valley Emphasis Thresholding (VET)

The VET method [22] is a revised version of the Otsu
[27] method and is recommended for detecting defects.
The VET method seeks to identify all the local mini-
mum points in a histogram and determine which one
maximizes the variance between an object and its back-
ground. It can be formulated as follows [22]:

t* = arg o?iXL{(l —pr) (wi()pi(t) +wa(t)p3(t)}, (8)

where the probability of occurrence of a gray level is
defined as:
== ©)
bt o
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Given an image of n pixels and L distinct gray levels,
n; represents the number of pixels with the i** gray
level, where 0 <14 < L. A threshold ¢ divides the gray
levels of an image into two clusters Cy; = {0,1,...,t}
and Co = {t+1,t+2,...,L —1}. Cy and Cs generally
symbolize the object of interest and the background
respectively. The probabilities of clusters C; and Cy
are represented by w; and wsy respectively in equation
. These probabilities are calculated by summing
the probabilities of all the gray levels in a cluster.

L—1
and  wq(t) = Z Di. (10)

1=0 i=t+1

The average gray level indexE| of the clusters C7 and Cs
are represented by pq and po in equation . Each
gray level index, ¢ is weighted by its probability, p;.
The sum of the weighted indicies is normalized by the
corresponding cluster probability, w; or ws.

t . L—-1 .
O =S L and pe(t) = Pi_ 1)
m ; 0) e 2;1 wa(t)

When retinal images are effectively normalized, the
resulting histograms are usually either unimodal or
bimodal. In a unimodal histogram, the background is
typically represented by tail while the foreground is
depicted by a prominent spike. In a bimodal histogram,
the background and foreground are both represented
by spikes, the latter being more prominent than the
latter. In both unimodal and bimodal histograms,
the VET views the foreground and background as
separate clusters in the histogram and attempts to
find a threshold that optimally delineates them. This
threshold is a local minimum that lies between the
distributions of the two clusters. The most optimal
local minimum has the highest inter-cluster variance.
The advantage of VET over the Otsu method is that it
is capable of effectively segmenting the foreground and
background of images with either unimodal or bimodal
histograms. Since background pixels are generally of
higher frequency, a bimodal histogram implies a high
vessel pixel count while a unimodal one corresponds
to an image whose vessels are less prominent. The
VET method is therefore a viable option for automatic
segmentation. In the context of retinal image segmen-
tation, the foreground is the vessel network while the
background is the non-vascular tissue.

2.6 Segmentation Evaluation

Automated segmentation is a classification problem
and hence its different possible outcomes can be illus-
trated using a contingency table as shown in Table
The ultimate goal of retinal image segmentation is
to accurately partition all the pixels as either vessel
or non vessel members. If a ground truth standard is
made available, it can be used to evaluate a segmenta-
tion system’s accuracy. In the contingency table, the

3Gray levels are numbered from 0 to L — 1, therefore i repre-
sents the gray level’s index as opposed to its value.
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system’s decisions are judged against the ground truth
as being either true or false. The desirable system
decisions are true positives and true negatives as they
occur when the system segments pixels accurately.

Ground Truth
Non-Vessel|

Vessel|
True +ve

System Vessel—
Verdict | Non-Vessel—

Table 1: Pixel classification contingency table

Let GV and GN represent the ground truth sets
of all the vessel and non-vessel pixels respectively. Let
SV and SN represent the sets of all pixels classified by
the system as pixels and non-pixels respectively. These
sets are used to define sensitivity, specificity, accuracy
and False Positive Rate (FPR) as shown in equations

(12115)) below.

Sensitivity = w (12)
Speci ficity = w (13)

|GV N SV|+ |GN N SN
A = . 14
ccuracy GVUGN] (14)
FPR =1 — Specificity. (15)

These criteria are used to establish the effectiveness
of the different thresholding approaches in this study.
They represent the trade-off between true positive and
true negative optimization. An effective classifier will
have both values close to one. ROC curves can also
be used to evaluate segmentation effectiveness. They
are a graph plot of sensitivity against the FPR in the
context of a regulated parameter. For each value of the
regulated parameter within a given range, sensitivity
and the FPR are measured and plotted. An effective
classifier has an AUC close to one.

2.7 Data Sets

The implementation of this study is based on the pub-
licly available DRIVE [23] and STARE [26] data sets.
The DRIVE data set consists of 40 color retinal images
from different individuals. The images are divided
equally into training and testing samples for conve-
nient supervised classification experimentation. The
experiments in this study have been performed on the
test set to enable comparison with both supervised
and unsupervised approaches as is the case in [I4]. To
assist with finding the retinal Field Of View (FOV), a
mask which identifies the retinal area and circumfer-
ence is also provided. All the images in the training
and testing sets come with a binary classified (gold
standard) retinal image prepared by ophthalmology
experts. This is useful for comparing computed results
against those of human experts. This data set has been
used in several previous studies such as [8,[42]. It there-
fore lends itself well as a benchmark for comparative
research.
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Other studies such as [I7], [I8] used the STARE
data set which is older than the DRIVE data set.
Additional experiments are carried out on this set to
validate the performance of our methods on a different
collection of images. Of the 20 images in the STARE
data set, 10 contain pathology. It is of interest to
assess the effectiveness of our methods in this context.

Unlike the DRIVE data set, the STARE data set
does not come with a mask to enable convenient isola-
tion of the FOV. The interpretation of true negative
classifications is dependent on whether all the pixels
in the entire fundus image are considered or just those
in the FOV. If the evaluation is limited to pixels in the
FOV, it is expected that the true positive rate is lower
than when evaluation is open to all pixels in entire
image. To provide consistency with our experiments
on the DRIVE data set, only pixels in the FOV are con-
sidered for classification evaluation in this study. To
this end, a mask is created manually for all images in
the data set as is consistent with other studies on this
collection such as [8]. This is achieved using the GIMP
image editor which allows images to be converted to
grayscale and manually thresholded with the aid of an
intensity histogram. This process was straightforward
for all the images.

All images in the data sets are manually segmented
by 2 observers resulting in the first and second observer
segmentation gold standards. The second observer
segments more thinner vessels that the first. Since
the general practice in previous studies is to use the
first observer’s standard as the ground truth [9], this
approach is followed in this study.

3 RESULTS AND DISCUSSION

3.1 Response Image Comparison

Figure and show an inverted gray scale retinal

image that exhibits several enhancement challenges.
The optic disk region is visibly the darkest area in the
image. Its boundary is likely to be detected as an edge
and could eventually be segmented as a vessel. The
fovea appears as a high intensity blob in the middle of
the image. Effective normalization should not detect
this region as a vessel as it is biologically known to
have limited vasculature [I]. Segmenting the inverted
image based on gray level thresholding is not viable
as the blood vessels and the fundus background are
both of visibly varying intensity. Adaptive Gabor
filtering is therefore required to enhance vessels based
on their relative local intensity profile as opposed to
their actual gray level. In addition to the challenges
stated above, the image in contains pathology. A
robust segmentation method should not falsely detect
this pathology as vessels.

Blood vessels have stabler inter-pixel gradients due
to their consistent pigmentation. The background has
more pronounced local intensity variation due to illumi-
nation and textural inconsistency. Failure to suppress
background inconsistency leads to increased false pos-
itive segmentation. Effective comparison of retinal
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image segmentation methods should therefore consider
background suppression, illumination invariance as well
as vessel contrast enhancement.

The median-offset response image in Figure
appears to be the best at suppressing the optic disk
boundary. All the approaches effectively filter the fovea
region. The normalization by division response image
in Figure is seen to be the most affected by the
optic disk illumination. Its low contrast ensures that
it suppresses background noise effectively, albeit at the
expense of vessel enhancement. Although the zero-
integral response images in Figures and show
the least background noise suppression, their vessel
contrast enhancement is of higher quality than that of
the normalization by division response image. Zero-
integral2 normalization shows more pronounced vessels
than zero-integrall normalization. This demonstrates
the effectiveness of the independent normalization of
positive and negative kernel weights in zero-integral2
normalization. Both zero-integral response images
show erroneous enhancement of the optic disk border.

(a) Inverted Gray Scale (b) Division

(¢) Zero-Integrall (d) Zero-Integral2

(e) Median-offset (f) Mean-offset

Figure 4: Gabor Filter Normalization on DRIVE Im-
age.

The mean-offset response image in Figure has
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smoother vessel enhancement than the median-offset
response image. The vessels of the former are however
thinner than those of the latter. The smoothness of the
mean-offset response image is as a result of the blurring
effect that results from averaging intensities. Median-
offset normalization does not perform averaging but it
instead, uses actual intensities for its base. This results
in increased vessel enhancement and optic disk border
suppression. Figure [5| shows normalization by division
and median offset as the most effective at suppressing
pathology. The former however has poor contrast. The
choice of wavelength or combinations thereof to use
in the Gabor filter is likely to have a bearing on the
effectiveness of these normalization methods. Section
investigates this issue further.

(a) Inverted Gray Scale (b) Division

(¢) Zero-Integrall (d) Zero-Integral2

(e) Median-offset (f) Mean-offset

Figure 5: Gabor Filter Normalization on STARE Im-
age.

3.2 Automatic Thresholding

Table [2] shows the segmentation effectiveness of the
five Gabor filter normalization methods in conjunction
with VET for specific wavelengths. Siddalingaswamy
et al. [33] recommend a wavelength of 4 pixels as ideal
for detecting most vessels within fundus images. In
this study, wavelengths of 4, 8 and 12 pixels are pre-
sented as wavelengths within the range [4,12] showed
the highest effectiveness in our experiments for both
thick and thin vessel detection. Sensitivity reflects the
rate of accurate vessel detection and the median-offset
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method shows the highest sensitivity in the context of
a high specificity. This is 67.81% with a corresponding
specificity of 97.9% when a wavelength of 8 pixels is
used for median offset normalization.

=

pe = £

n 1) ]
= | Division 1 0 0.1332
EO Zerolntegrall | 0.4872 | 0.9801 | 0.9172
= Zerolntegral2 | 0.4982 | 0.9747 | 0.914
Z | MedianOffset | 0.5109 | 0.9953 | 0.9335
= [ MecanOffset | 0.465 | 0.9965 | 0.9275
2 Division 0.9699 | 0.0716 | 0.1912
*éo Zerolntegrall | 0.4901 | 0.9929 | 0.9286
= Zerolntegral2 | 0.5106 | 0.9916 | 0.93
Z | MedianOffset | 0.6781 | 0.979 | 0.9404
= [ MecanOffsct | 0.612 | 0.9845 | 0.937
= | Division 0.9699 | 0.0717 | 0.1913
§o Zerolntegrall | 0.4943 | 0.9916 | 0.928
g | Zerolntegral2 | 0.511 0.9906 | 0.9293
C | MedianOffset | 0.676 | 0.9714 | 0.9338
= [ MeanOffset | 0.627 | 0.979 | 0.935

Table 2: Segmentation effectiveness of normalization
methods on DRIVE test data set at wavelengths of 4,
8 and 12 pixels.

B
= b= z
] Q =
3 5|8
Division 0.9698 | 0.0712 | 0.1856
= [Zerolntegrall | 0.5014 | 0.9924 | 0.9296
= Zerolntegral2 | 0.5229 | 0.9908 | 0.931
2 "MedianOffset | 0.683 | 0.0722 | 0.9354
MeanOffset | 0.652 | 0.9785 | 0.9365
Division 0.9698 | 0.0712 | 0.1856
% [ Zerolntegrall | 0.5995 | 0.9795 | 0.94
ﬁ Zerolntegral2 | 0.6125 | 0.978 0.94
A | MedianOffset | 0.6885 | 0.9615 | 0.932
MeanOffset | 0.682 | 0.9655 | 0.9355

Table 3: Segmentation effectiveness of normalization
methods on DRIVE and STARE test data set for
maximum response over wavelengths: 4,8 and 12

The normalization by division method consistently
shows low overall accuracy for all wavelengths con-
sidered and hence it can be confirmed that the VET
method does not effectively threshold its histogram as
is alluded to in section 2.4.11 The other normalization
methods show similar effectiveness with accuracy rates
of over 90% for each wavelength. The actual individ-
ual wavelength used seems to have very little effect
on the average accuracy and relative performance of
each normalization method. It is however notable that
the mean offset method has a higher accuracy than
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the median offset method at a wavelength of 12 pixels.
Since this wavelength is the highest of those used in
this study, it more effectively enhances thick vessels
than the other wavelengths. As previously noted, the
median offset method yields thicker vessels that the
mean offset method when enhancing retinal images.
At high wavelengths this enhancement may be overem-
phasized and hence the median offset method has a
lower specificity than the mean offset method.

Table [3] shows segmentation effectiveness of the
normalization methods over a sequence of wavelengths
for both the DRIVE and STARE data set. When each
pixel is filtered, all wavelengths within the sequence
are considered and the maximum response is recorded.
The accuracy rates show a similar trend to that of
Table 2] and very little improvement is achieved. The
median-offset method shows the highest vessel segmen-
tation accuracy with a sensitivity and specificity of
68.3% and 97.2% on the DRIVE data set. Similar
results are obtained on the STARE data set, namely a
sensitivity and specificity of 68.85% and 96.15% respec-
tively. The average accuracy rates are 18.56%, 92.96%,
93.1%, 93.54% and 92.87% for the normalization by
division, zero-integrall, zero-integral2, median-offset
and mean-offset methods respectively on the DRIVE
data set. A similar trend is shown on the STARE data
set despite the existence of pathology in this data set.
A notable improvement is shown in the sensitivity of
zero-integral methods. This may be attributed to the
lower illumination variation in this data set.
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Figure 6: ROC curves for segmentation based on nor-
malization methods and manual thresholding

The ROC curves in Figure [6] show the trade-off be-
tween sensitivity /true-positive rate and FPR for each
normalization method when the image in Figure
is manually thresholded. The regulated parameter in
these ROC curves is the threshold intensity used to
segment the image. The GFR images from each nor-
malization method are repeatedly thresholded using
each gray level within the minimum and maximum
intensity of the response image. For each threshold,
corresponding sensitivity and FPR values are calcu-



Research Article — SACJ No. 55, December 2014

lated and plotted on the ROC curve. All normalization
methods record an area under the curve of at least
75%. This shows that they are all viable for use in
retinal image segmentation. The zero-integral methods
both yield very smooth curves while the graphs of the
other methods are angular. The angular graphs are as
a result of multi-modal histograms and small response
ranges.

Normalization| Manual | Auto | Maximum
Division 18 8 110

Zerol 10 16 101

Zero2 7 9 72
Median-offset 1 1 11
Mean-offset 1 1 11

Table 4: Comparison of manual and automatic thresh-
olding

(a) Gold standard (b) Division (manual threshold-

ing)

(e) Median-offset

(f) Mean-offset

Figure 7: DRIVE Image segmented through automatic
thresholding.

Table [4] compares the optimal thresholds ob-
tained manually against those obtained using the VET
method for all the normalization methods considered
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in this study. It also shows the maximum gray level in-
tensity produced by each normalization method. In all
cases the minimum was 0. The VET method predicted
the most optimal threshold for both the median-offset
and mean-offset methods. The normalization by divi-
sion Gabor filter gave a maximum gray level response
value of 110. The VET predicted the intensity 8 instead
of 18 as the most optimal threshold. This is the high-
est error margin between the manual and automatic
thresholds from all the normalization methods.
Figure shows an example of a segmentation
performed by an expert for comparison with the thresh-
olded images from normalized response images. Fig-
ures|7(c)|and show that the zero-integral methods
generally tend to produce thin vessels. This explains
their low sensitivity rates of below 55% on the DRIVE
data set. The median-offset method seems to have
most effectively suppressed the optic disk illumina-
tion. Generally all methods perform well with regards
to detecting thick vessels. There is room for more
improvement with regards to thin vessel detection.

(a) Gold standard (b) Division (manual threshold-

ing)

(e) Median-offset

(

f) Mean-offset

Figure 8: STARE Image segmented through automatic
thresholding.

Figure [8] shows segmentation results for a STARE
image with pathology. Although the manually thresh-
olded image from the normalization by division re-
sponse image shows high pathology suppression, a
significant proportion of the vessel network is also sup-
pressed. The zero-integral and mean offset methods
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showed poor pathology suppression. Although the
median offset method yields an image showing little
evidence of pathology, there is room for improvement
in this regard.

4 LITERATURE COMPARISON

o Q) —
L
-
Q =3 oA
Approach n n <
Siddalingaswamy et al. | 86.47 | 96 —
[6]
S Human observer f] | 77.63| 97.23 | 94.70
= Yin et al. [12] 62.52 | 97.10 | 92.67
R Zhang ot al. |14] 71.20| 97.24 | 93.82
Niemeijer et al. [23] 68.98 | 96.96 | 94.17
Chaudhuri et al. [24] — — 87.73
Median-offset 68.3 | 97.22| 93.54
Siddalingaswamy et al. | 85 96 —
= 6]
& Human observer [0] | 8951 | 93.84 | 93.48
E Hoover et al. [26], [9] | 67.51 | 95.67 | 92.67
Zhang et al. [14] 71.771 97.53 | 94.84
Mendonca et al. [43] 69.96 | 97.3 | 94.4
Median-offset 68.85 96.15| 93.2

Table 5: Performance comparison of vessel segmenta-
tion methods on DRIVE and STARE data sets

(a) Gray scale (b) Gold standard

(c) Median-offset

(d) Siddalingaswamy

Figure 9: Comparison of median-offset and Siddalin-
gaswamy et al. [6] segmentation of DRIVE image.

Table [5| compares the segmentation results from
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previous studies that are based on the DRIVE and
STARE data sets. The performance of the thresholded
median-offset normalized Gabor filter is comparable
with previous methods. The sensitivity of the median-
offset approach outperforms some of the recent studies
such as that of Yin et al. [I2] on the DRIVE data set.
Performance on the STARE data set is not as compet-
itive against recent studies. It is notable that although
the sensitivity and specificity reported by Zhang et al.
[14] are higher than those of Niemeijer et al. [23], the
average accuracy is lower. Siddalingaswamy et al. [6]
report a sensitivity that is significantly higher than
that of other approaches, including the performance of
a trained human observer on the DRIVE data set. This
observer’s segmentations are included in the DRIVE
data set for comparison with the performance of hu-
man experts. Due to the number of previous studies
on the segmentation of DRIVE and STARE images,
compiling an exhaustive list in Table [5|is impractical.
A comprehensive review of the segmentation results of
previous studies can be found in [9].

(¢) Hoover

Figure 10: Comparison of median-offset, Hoover et al.
[26] and Li et al. [18] segmentation of STARE image.

Figure [9] visually compares an example segmented
image obtained by Siddalingaswamy et al. against that
of the median-offset approach. There is very little
difference between the two output images. The median
approach suppressed the fovea and optic disk more
effectively resulting in fewer false positives in these
regions. Figure [0 compares the segmentation output
from the median offset with that of Hoover et al. and Li
et al. on a STARE image. Although the former shows
the lowest pathology suppression, its detected vessels
are more prominent that those from other methods.
In addition, it successfully detected the illumination
variation around the optic disk as non-vascular tissue
unlike the other methods.
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5 CONCLUSION

To investigate the effect of Gabor filter normaliza-
tion on retinal image segmentation, five normalization
techniques were tested with application to the VET
technique. All the investigated normalization methods
except normalization by division achieved an average
accuracy of approximately 93% on both data sets. The
median offset method managed to suppress illumina-
tion variation in the fundus images from both data sets.
Although the other normalization techniques in this
study achieved lower sensitivity rates, they effectively
handle the illumination variation in the fovea. This
shows that normalization techniques have a bearing
on the effectiveness of Gabor filter based retinal image
segmentation.

Future work will focus on exploring the effect of nor-
malization in the context of other automatic threshold-
ing techniques, such as first and second order entropy
thresholding; and combining the different approaches
to create an adaptive thresholding approach. Focus
will also be given to improving the performance on
the STARE data set such that pathology is suppressed
during classification. This study has investigated im-
age enhancement using normalization in the spatial
domain; future work will also explore normalization
based on the image frequency domain.
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