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ABSTRACT

Although computerized retinal image blood vessel segmentation has been extensively researched, there is still room for

improvement in the quality of the segmented images. Since retinal image analysis is still widely used in the diagnosis

of diabetic retinopathy, efficient and accurate image characterization techniques are required. Previous work has mainly

focused on improving segmentation accuracy rates with little regard to the false positives that are produced by illumi-

nation variation. This research work presents a hybrid approach towards the segmentation of retinal blood vessels. New

approaches towards the reduction of background illumination variation are proposed using normalized Gabor filtering.

These are the base-offset encoding and a modified version of an existing zero-integral kernel technique. The valley em-

phasis automatic thresholding scheme is used to segment the Gabor response images. Experiments are conducted on the

DRIVE and STARE retinal image data sets. Accuracy rates of up to 94% are achieved through the zero-integral and

base offset methods. This is comparable with results from literature, where the same data sets are segmented using other

classification techniques. The median-offset method is found to most effectively reduce background illumination variation.
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1 INTRODUCTION

Humans inherently possess image processing abilities
through their complex visual system. The role that
the retina plays in this process is substantial as it is
estimated that 80% of all sensory information in hu-
mans originates from the retina [1]. This indicates its
importance in our interaction with the physical world
and explains why it remains one of the most scientif-
ically explored components of the human body. The
retina is located on the posterior hemisphere of the
eye and can be clinically examined using an ophthal-
moscope [2]. This instrument projects a light beam
through the iris and then magnifies the correspond-
ing reflection from the retina [3]. The reflected image
which is known as the fundus image, reveals a few
prominent tissues such as the optic disk and blood
vessels [4].

The diagnosis of disorders such as diabetic
retinopathy relies on the analysis of retinal vascula-
ture [2]. This analysis has traditionally been done
with the aid of a process known as fluorescence an-
giography which requires a patient to be injected with
a dye called fluorescein [5]. This dye travels through
the blood stream and eventually causes the blood ves-
sels in the retina to have high contrast for easier visual
analysis. Alternative and less invasive automated dig-
ital techniques are now being sought after in order to
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expedite retinal visual analysis [6]. These techniques
typically rely on a laser digital ophthalmoscope to pro-
duce digital fundus images which are then electroni-
cally registered and analyzed [7].

To analyze blood vessels in electronic images, it is
important to first detect them accurately. Although
features such as branching angle, shape and thickness
of vessels are essential for diagnosis, their effectiveness
can be compromised by inaccurate segmentation. [8].
Two approaches commonly used for vascular segmen-
tation are supervised and unsupervised segmentation.
Supervised segmentation is dependent on a training
set and comprises methods such as Support Vector
Machines (SVM) [8] and neural networks [9, 10]. Un-
supervised segmentation is independent of a training
set and is exemplified by rule-based methods such as
vessel tracking [11, 12] and thresholding [6, 13]. The
focus of thresholding schemes is the selection of a gray
level that optimally segments an object from its back-
ground. This optimization problem remains a chal-
lenge due to the smooth distribution of gray level fre-
quencies in retinal image histograms.

Some of the previous work on retinal blood ves-
sel segmentation has used features based on the in-
tensity profile of vessel cross-sections. Examples in-
clude the matched filter [14, 15, 16] and Gabor filter
[6, 17, 18]. Although Gabor filters are an effective line
detection tool, they are dependent on response nor-
malization and parameter tuning. Sub-optimal nor-
malization can lead to image blurring, poor contrast
and false line detection. Poor parameter selection can
lead to the suppression of lines that should otherwise
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be enhanced. Previous studies have not focused on
the effect of normalization on Gabor filter effective-
ness and only a few normalization techniques have
been proposed [19, 20, 21].

This work investigates the performance of new and
existing Gabor filter normalization methods. Differ-
ent variants of Gabor filter normalization are investi-
gated in the context of Valley Emphasis Thresholding
(VET) [22]. This technique was originally designed for
defect detection in industrial artifacts and is, to the
best of our knowledge, being applied to blood vessel
segmentation for the first time.

The remainder of this paper is structured as fol-
lows: Section 1.1 gives a review of related previ-
ous work while Section 2 outlines the techniques and
methodology used in this study. This is followed by
a presentation and discussion of the results obtained.
Finally a comparison with previous literature is drawn
and possible areas of extension are highlighted.

1.1 Literature Survey

Many techniques exist for the segmentation of reti-
nal image blood vessels. They can be broadly cate-
gorized as supervised and unsupervised segmentation
techniques. Both are dependent on an effective fea-
ture set. Previous studies document a detailed review
of the various features that have been applied to reti-
nal blood vessel segmentation [5, 9, 23]. These stud-
ies show that line detection features such as matched
filters [24] and Gabor filters [25] are favored for the
enhancement of vasculature because vessels are gener-
ally linear. They also highlight the DRIVE [23] and
STARE [26] data sets as the most commonly used im-
age collections for bench-marking retinal segmentation
results. Some of the recent works that utilize line de-
tection filters for vascular segmentation on these data
sets are discussed below.

Chaudhuri et al. [24] document the first use of
matched filters for blood vessel segmentation. The
Otsu method [27] is used for automatic thresholding
and a segmentation accuracy of 87.73% is achieved on
the DRIVE data set [9]. Hoover et al. [26] improve the
work of Chaudhuri et al. by using a rule-based classi-
fication method in addition to local thresholding. A
segmentation accuracy of 92.67% is reported for ex-
periments on the STARE data set. HongQing et al.
[13] apply Gray Level Gradient Co-occurrence Matrix
(GLGCM) entropy thresholding to the Matched Fil-
ter Response (MFR) image. The results are evaluated
by visually inspecting the output based on 3 specimen
fundus images1.

Sofka et al. [28] improve the detection of
low-contrast and narrow vessels through multiscale
matched filters in conjuction with confidence and
edge measures. The vessel confidence measure cal-
culates the similarity of a MFR to an ideal vessel pro-
file. Receiver Operating Characteristic (ROC) curves
based on both the DRIVE and STARE data sets
show that the hybrid method is superior to multiscale

1The source of these images is not specified in [13].

MFR alone. Al-Rawi et al. [29] improve the MFR
by using optimal filter parameters obtained through
an exhaustive search on the DRIVE training image
set. A segmentation accuracy of 95.35% is reported.
Zhang et al. [14] generate a Matched Filter Response
(MFR) image using fixed parameters and a threshold-
ing scheme that is enhanced by a first order derivative
of Gaussian response. Accuracy rates of 93.82% and
94.84% are reported for experiments on the DRIVE
test set and STARE data set respectively.

Gabor filters use kernels that are Gaussian modu-
lated sinusoidal waves [25, 30] while matched filters are
based primarily on the Gaussian distribution [24]. Ga-
bor filters therefore have an advantage over matched
filters in that they can be used for texture filtering in
addition to line detection. This makes them a more
suitable option for blood vessel enhancement [6]. Li
et al. [18] modify Gabor filters to include a scale pa-
rameter in a bid to increase the detection of vessels of
varying width. The thresholding scheme of Hoover et
al. [26] is used to binarize the output image. The re-
sults are presented visually and no empirical evidence
is given to show the effectiveness of the approach.

The robustness of Gabor filters has traditionally
been ensured through rotation and scale invariance.
Kyrki et al. [19] highlight the significance of illumina-
tion invariance for object recognition and recommend
normalized Gabor filters for implementing it. Normal-
ization is achieved through dividing the feature matrix
by the Euclidean norm of all the responses at a given
pixel. Effectively, this is the normalization by division
approach that is discussed in Section 2.4.1. Other nor-
malization approaches are not explored in the study.

Azzopardi et al. [20] propose a trainable fil-
ter called Combination Of Shifted FIlter REsponses
(COSFIRE) for keypoint detection and pattern recog-
nition. In these filters, normalization is important
for suppressing constant intensities and ensuring that
lines of a specific width have a maximum filter re-
sponse. The COSFIRE filters are demonstrated on
retinal images that are already manually segmented.
They are shown to detect vessel of specified widths,
bifurcations and crossings. The effectiveness of the
filters is however not tested on normal unsegmented
retinal images which are more complex. Wu et al.
[21] use adaptive contrast enhancement that is based
on the standard deviation of a Gabor Filter Response
(GFR) image window to highlight vessels. Two ran-
domly selected images from the STARE data set are
used for parameter training. A tracking segmentation
method is tested on the remaining 18 images. An ac-
curacy of 75% is reported on the small vessels which
consistute 42% of the total vessel pixel count.

Rangayyan et al. [31] improve the orientation sen-
sitivity of Gabor filters by introducing a coherence
score to measure the dominant direction of flow in a
window. Predetermined wavelengths and a threshold
are used to achieve an Area Under the Curve2 (AUC)
of 95% for the DRIVE test set. Osareh et al. [32]
rotate Gabor filters through several orientations and

2A ROC curve.
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wavelengths in search of an optimal response. Clas-
sification is done through principal component anal-
ysis, Gaussian Mixture Models (GMMs) and SVMs.
An AUC of 96.5% is achieved on the DRIVE test set.
Siddalingaswamy et al. [33] modify the approach of
HongQing et al. [13] by using Gray level co-occurrence
matrix (GLCM) entropy instead of GLGCM entropy
and replacing MFR with GFR. Although Gabor filter
normalization is not documented in the study, average
sensitivity rates of 86.47% and 85% are reported for
the DRIVE and STARE data sets respectively.

The surveyed literature reveals that not much at-
tention has been given to the development of more ef-
fective Gabor filter normalization techniques for vessel
segmentation. In most cases, this aspect of the filter
design is not mentioned. Image processing literature
documents two options for Gabor filter normalization,
namely the normalization by division [34, 35, 36] and
zero integral methods [20, 37]. This study seeks to
demonstrate that Gabor filter normalization is essen-
tial to robust vessel enhancement and that it affects
the effectiveness of automatic thresholding. Only a
few automatic thresholding schemes such as the Otsu
method [27, 26] and GLGCM entropy [13] have been
explored. The VET method [22] has previously been
successfully applied to automatic defect detection. In
this study, it is applied to vessel segmentation.

2 TECHNIQUES AND METHODOLOGY

2.1 Segmentation System Overview

Figure 1: Overview of the design of a retinal image seg-

mentation system

Figure 1 shows an overview of the segmentation
system. The main steps are preprocessing, Gabor fil-
tering and thresholding. Preprocessing prepares the
retinal image for filtering by converting its intensities
to an inverted gray scale. The intensities are taken
from the green channel of the color image as it is
known to contain the most contrast [8]. The inversion
is to ensure that the blood vessels are brighter than the
background in preparation for further enhancement by

the Gabor filter. Different normalization techniques
such as zero integral [20] and base-offset normaliza-
tion are tested in the Gabor filter.

A bank of Gabor filters with varying orientation
and wavelength is used. The maximum response from
the bank is chosen for each pixel [32, 38]. In the
thresholding phase, the normalized Gabor response
image is segmented using the VET method [22].

2.2 Gabor Filter Vessel Enhancement

Gabor filters convolve images with a sinusoidal Gaus-
sian modulated function that is sensitive to orienta-
tion, frequency and bandwidth [30]. The filter re-
sponse is a complex number with real and imagi-
nary components that are orthogonal [11]. This re-
sults in four options for representing the filter re-
sponse, namely the real, imaginary, phase and magni-
tude components. The real component can be repre-
sented as follows:

g(x′, y′, λ, θ, ψ, σ, γ) = G(x′, y′, σ, γ)W (x′, λ, ψ), (1)

where G, W , x′ and y′ are defined by the respective
equations (2-5) below.

G(x′, y′, σ, γ) = exp

[
−π
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2
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)]
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W (x′, λ, ψ) = cos
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2π
x′

λ
+ ψ

)
. (3)

x′ = x cos θ + y sin θ. (4)

y′ = −x sin θ + y cos θ. (5)

The Gaussian envelope is represented by G while the
sinusoidal wave is represented by W . The wavelength
and phase-offset of the sinusoidal wave are symbolized
by λ and ψ respectively. The angle of orientation is
represented by θ while the sigma and aspect ratio of
the Gaussian envelope are represented by σ and γ re-
spectively. The co-ordinates of the point to be filtered
are represented by x and y. The half response band-
width, b of the Gabor filter is measured in octaves and
is used to regulate the spread and shape of the filter.
It is related to σ and λ according to equation (6) [36].
Given λ and b, it is therefore possible to calculate σ.

σ

λ
=

1

π

√
ln 2

2

[
2b + 1

2b − 1

]
. (6)

Gabor filters are suited for texture segmentation
and are known to be a good model of how the hu-
man visual system processes light signals [39]. Their
effectiveness is however hindered by the tedious task
of parameter selection. Research that implements Ga-
bor filters therefore usually either uses predetermined
parameters or has an elaborate optimal parameter se-
lection process. Cross sections of blood vessels which
are perpendicular to the direction of blood flow usu-
ally have a Gaussian gray level distribution. As such,
Gabor filters are seen as effective features for vessel
detection.
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2.3 Gabor Filter Parameters

The Gabor filter requires several parameters to be
tuned based on the context of application. In this
study, the real component of the Gabor filter is used
due to its observed superior vessel enhancement in
comparison with the imaginary, magnitude and phase
responses. A phase offset of 0 is used due to the fact
that every retinal pixel is overlapped by the center of
a kernel window when it is convolved. This means
that the peak of the Gabor wave will correspond to
the pixel being convolved.

In standard data sets such as the DRIVE and
STARE collections, the width of a retina vessel may
lie within the range of [2,10] pixels [29]. In order to
detect a complete vessel profile at a given pixel, a wave
needs to be centered on the vessel’s cross section and
be oriented in the direction of the vessel. Additionally,
the kernel window needs to be large enough to capture
the vessel’s neighborhood so that the Gabor filter re-
sponse is effectively contextualized. A kernel size of
21x21 pixels was used in this study. Kernel sizes larger
than this were explored but they did not lead to any
improvement in results. The spread of the Gaussian
function in the kernel is ensured by using a bandwidth
of 0.25 octaves in all experiments. The ellipticity of
the Gabor filter is implemented using an aspect ratio
of 0.75. The wavelengths that are used in this study
are 4, 8 and 12. They are considered individually as
well as collectively. Wavelengths of less than 4 pixels
were found to be susceptible to noise interference.

The orientations are rotated by 15 degrees in the
range [0, 180) degrees as is the case in previous lit-
erature [9]. In the case of all 3 wavelengths being
used, each combination of wavelength and orientation
is considered, resulting in 36 combinations. Each of
these wavelength-orientation combinations is used to
create a Gabor kernel of size: 21x21 pixels. Every
retinal pixel is convolved with each of these kernels,
resulting in 36 Gabor filter responses. Non-retinal pix-
els within the kernel’s corresponding image window
are not convolved. The response image comprises of
the highest Gabor filter response for each pixel. This
image is subsequently thresholded in order to yield a
binary image.

2.4 Gabor Filter Normalization

The GFR may be affected by the general illumination
of a pixel’s neighborhood. Hence, normalization is
essential to ensure invariant responses [19]. In general,
normalization has the effect of scaling responses down
to a specific range whilst attempting to either preserve
desired characteristics of an image or suppress noise.

2.4.1 Gabor Filter Normalization by Division

One of the oldest methods for Gabor filter normal-
ization uses division to scale intensities down. It di-
vides a pixel’s GFR by a factor that is derived from its
neighborhood [36]. In [35], this factor is the average
gray level in a pixel window. The weakness of this ap-
proach is that it does not adequately suppress the illu-

mination in the optic disc and the resulting contrast is
very low. Figure 2 shows a typical histogram derived
from a normalization by division GFR image. The left
skewed histogram distribution shows the low contrast
in the response image. The multiple discontinuities of
this histogram make it cumbersome to automatically
detect the threshold that optimally separates vessels
from the background.

Figure 2: Histogram of a normalization by division Gabor

Filter Normalization response image.

2.4.2 Zero-Integral Gabor Filter Normalization

Figure 3: Gabor kernel superimposed on 2 surfaces of con-

stant intensity.

Illumination variation is suppressed when regions
of constant illumination generate a zero response. In
this case, non-zero responses are strictly a result of line
detection as opposed to high pixel intensities. Figure
3 shows a surface plot of a Gabor filter kernel with a
size of 21x21 pixels. This filter has been generated us-
ing equation (1) with a bandwidth of 0.25 Octaves, a
wavelength of 8 pixels, an aspect ratio of 0.75 and an
orientation of 45 degrees. The filter is superimposed
on two surfaces of constant intensity. Surface A rep-
resents an image of size 21x21 pixels, each of which
has an intensity of 0.5. Surface B represents a slightly
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darker image of the same size with an intensity of 0.2.
If this Gabor filter were illumination invariant it would
produce the same response when filtering each surface.
It however produces a response of 1.0173 and 0.4069
for surface A and B respectively. An effective nor-
malization method is needed to complement this filter
such that it is illumination invariant.

Algorithm 1 Method 1 for calculating Zero-Integral
Normalized Gabor Kernel, K ′w×w
Require: Kw×w: Un-normalized Gabor kernel of

size w × w
Ensure: K ′w×w: Zero-Integral normalized Gabor

kernel of size w × w
1: sum+ve := 0
2: sum−ve := 0
3: for all pixel(x, y) in Kw×w do
4: if pixel(x, y) ≥ 0 then
5: sum+ve = sum+ve + pixel(x, y)
6: else
7: sum−ve = sum−ve + pixel(x, y)
8: end if
9: end for

10: for all pixel(x, y) in Kw×w do
11: if pixel(x, y) ≥ 0 then
12: K ′w×w(x, y) :=pixel(x, y)× sum−ve

sum+ve+sum−ve

13: else
14: K ′w×w(x, y) :=pixel(x, y)× sum+ve

sum+ve+sum−ve

15: end if
16: end for

The sinusoidal component of the Gabor filter that
is represented in equation (3) creates both positive
and negative responses within a filter window. An ef-
fective way of implementing illumination invariance is
ensuring that both the positive and negative responses
sum up to zero [37]. This is tantamount to ensuring
that the integral of a Gabor filter is zero.

This study uses two algorithms for implementing
zero-integral normalization. Their details are shown
in Algorithms 1 and 2. The algorithms are inspired by
the implementation in [20], which is designed to work
with images that are already segmented. Algorithm
2 is same as that specified in [20] while algorithm 1
is a modification thereof. The objective of both algo-
rithms is to ensure that a Gabor filter yields the same
response for image windows of constant intensity.

In Algorithm 1, the proportion of positive re-
sponses is used as a weight for each negative response
while the proportion of negative responses is used as
a weight for each positive response. This ultimately
balances the effect of positive and negative responses
when computing the response of a pixel based on its
neighborhood. In Algorithm 2, the positive and nega-
tive responses are normalized so that they both have
an absolute total value of 1, resulting in a zero inte-
gral. Effectively these algorithms both work by scaling
the positive and negative responses of the Gabor ker-
nel separately such that the sum of all intensities in
the kernel is zero. Because algorithm 2 scales the pos-
itive and negative responses separately, it resembles

the original kernel more than the former. It is there-
fore expected to yield a smoother response image. Al-
gorithm 1 on the other hand, swaps the proportions
of positive and negative intensities in the kernel. The
gradient of the resulting kernel surface is expected to
change when it intersects with the plane of zero inten-
sity. Although this will effectively result in the loss
of some visual information, it is likely to increase the
contrast of the response image.

Algorithm 2 Method 2 for calculating Zero-Integral
Normalized Gabor Kernel, K ′w×w
Require: Kw×w: Un-normalized Gabor kernel of

size w × w
Ensure: K ′w×w: Zero-Integral normalized Gabor

kernel of size w × w
1: sum+ve := 0
2: sum−ve := 0
3: for all pixel(x, y) in Kw×w do
4: if pixel(x, y) ≥ 0 then
5: sum+ve = sum+ve + pixel(x, y)
6: else
7: sum−ve = sum−ve + pixel(x, y)
8: end if
9: end for

10: for all pixel(x, y) in Kw×w do
11: if pixel(x, y) ≥ 0 then

12: K ′w×w(x, y) := pixel(x,y)
sum+ve

13: else
14: K ′w×w(x, y) := pixel(x,y)

sum−ve

15: end if
16: end for

2.4.3 Base-offset Gabor Filter Normalization

This study proposes the incorporation of base-offset
encoding to Gabor filter normalization in a bid to
avert illumination inconsistency and improve vessel
enhancement in retinal images. The base-offset encod-
ing scheme is a common loss-less compression method
that is adequate for medical images [40].

A given neighborhood in an image exhibits
smoothness when its pixels have a high similarity with
each other. In such a case, the difference between
the maximum and minimum intensity in the neigh-
borhood is small. This property may be used to ef-
ficiently encode the intensities by representing them
based on their relative distance from a chosen base
intensity. In this study, either the median or mean of
an image window is used as the base. Effectively, this
technique reduces the importance of the actual inten-
sity whilst emphasizing on its relative intensity within
a neighborhood. Algorithm 3 describes the proposed
new method in the case of a median offset. The algo-
rithm accepts an input image that has been convolved
with the scaled Gabor equation in equation (7).

g′(x, y, λ, θ, ψ, σ, γ) =
√

γ
2πσ2 g(x, y, λ, θ, ψ, σ, γ). (7)

The scale factor represents the inverse of the volume
under the Gaussian surface [41] and this volume is
equivalent to the sum of intensities on the surface.
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The scale factor therefore ensures that the integral of
the Gaussian surface in the Gabor kernel window sums
up to one. The median is calculated from a window
that is cropped around a center pixel and has the same
size as the Gabor kernel. This median is used as the
base for calculating offsets within the cropped sub-
image due to its low rate of information loss during
filtering. When it is computed, its value is one of the
actual intensities in an image window. The resulting
filtered image is therefore likely to have a high resem-
blance of the original image. This is not the case with
bases such as the mean as they do not necessarily cor-
respond to an existing intensity in an image window.
The mean yields both negative and positive values like
the median when used as a base. This is desirable due
to the preservation of relative intensity information
within an image window.

Algorithm 3 Calculation of Median-offset normal-
ized GFR, IMGR, of an image, Isrc
Require: Isrc: Source Image
Require: Kw×w: Normalized Gabor kernel of

size w × w
Ensure: IMGR: Median-offset normalized Gabor

filter Response image
1: for all pixel(x, y) in Isrc do
2: rxy := 0
3: Cw×w = Square sub-image of Isrc centered at

(x, y) and of width w
4: mxy := Cw×w.median()
5: for i := −w2 to w

2 do
6: for j := −w2 to w

2 do
7: offset := Isrc(x+ i, y + j)−mxy

8: rxy := rxy + (offset× Cw×w(i, j))
9: end for

10: end for
11: IMGR(x, y) := rxy
12: end for

2.5 Vessel Segmentation

2.5.1 Valley Emphasis Thresholding (VET)

The VET method [22] is a revised version of the Otsu
[27] method and is recommended for detecting de-
fects. The VET method seeks to identify all the local
minimum points in a histogram and determine which
one maximizes the variance between an object and its
background. It can be formulated as follows [22]:

t∗ = arg max
0≤t<L

{(1− pt)
(
ω1(t)µ2

1(t) + ω2(t)µ2
2(t)

)
}, (8)

where the probability of occurrence of a gray level is
defined as:

pt =
ni
n

. (9)

Given an image of n pixels and L distinct gray levels,
ni represents the number of pixels with the ith gray
level, where 0 ≤ i < L. A threshold t divides the gray
levels of an image into two clusters C1 = {0, 1, ..., t}
and C2 = {t+ 1, t+ 2, ..., L− 1}. C1 and C2 generally
symbolize the object of interest and the background

respectively. The probabilities of clusters C1 and C2

are represented by ω1 and ω2 respectively in equation
(10). These probabilities are calculated by summing
the probabilities of all the gray levels in a cluster.

ω1(t) =

t∑
i=0

pi and ω2(t) =

L−1∑
i=t+1

pi. (10)

The average gray level index3 of the clusters C1 and C2

are represented by µ1 and µ2 in equation (11). Each
gray level index, i is weighted by its probability, pi.
The sum of the weighted indicies is normalized by the
corresponding cluster probability, ω1 or ω2.

µ1(t) =

t∑
i=0

ipi
ω1(t)

and µ2(t) =

L−1∑
i=t+1

ipi
ω2(t)

. (11)

When retinal images are effectively normalized, the
resulting histograms are usually either unimodal or
bimodal. In a unimodal histogram, the background
is typically represented by tail while the foreground
is depicted by a prominent spike. In a bimodal his-
togram, the background and foreground are both rep-
resented by spikes, the latter being more prominent
than the latter. In both unimodal and bimodal his-
tograms, the VET views the foreground and back-
ground as separate clusters in the histogram and at-
tempts to find a threshold that optimally delineates
them. This threshold is a local minimum that lies
between the distributions of the two clusters. The
most optimal local minimum has the highest inter-
cluster variance. The advantage of VET over the Otsu
method is that it is capable of effectively segmenting
the foreground and background of images with either
unimodal or bimodal histograms. Since background
pixels are generally of higher frequency, a bimodal his-
togram implies a high vessel pixel count while a uni-
modal one corresponds to an image whose vessels are
less prominent. The VET method is therefore a viable
option for automatic segmentation. In the context of
retinal image segmentation, the foreground is the ves-
sel network while the background is the non-vascular
tissue.

2.6 Segmentation Evaluation

Automated segmentation is a classification problem
and hence its different possible outcomes can be il-
lustrated using a contingency table as shown in Table
1. The ultimate goal of retinal image segmentation is
to accurately partition all the pixels as either vessel
or non vessel members. If a ground truth standard is
made available, it can be used to evaluate a segmenta-
tion system’s accuracy. In the contingency table, the
system’s decisions are judged against the ground truth
as being either true or false. The desirable system de-
cisions are true positives and true negatives as they
occur when the system segments pixels accurately.

3Gray levels are numbered from 0 to L− 1, therefore i rep-
resents the gray level’s index as opposed to its value.
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Ground Truth
Vessel↓ Non-Vessel↓

System

Verdict

Vessel→ True +ve False +ve
Non-Vessel→ False -ve True -ve

Table 1: Pixel classification contingency table

Let GV and GN represent the ground truth sets
of all the vessel and non-vessel pixels respectively. Let
SV and SN represent the sets of all pixels classified
by the system as pixels and non-pixels respectively.
These sets are used to define sensitivity, specificity,
accuracy and False Positive Rate (FPR) as shown in
equations (12-15) below.

Sensitivity =
|GV ∩ SV |
|GV |

. (12)

Specificity =
|GN ∩ SN |
|GN |

. (13)

Accuracy =
|GV ∩ SV |+ |GN ∩ SN |

|GV ∪GN |
. (14)

FPR = 1− Specificity. (15)

These criteria are used to establish the effectiveness
of the different thresholding approaches in this study.
They represent the trade-off between true positive and
true negative optimization. An effective classifier will
have both values close to one. ROC curves can also
be used to evaluate segmentation effectiveness. They
are a graph plot of sensitivity against the FPR in the
context of a regulated parameter. For each value of the
regulated parameter within a given range, sensitivity
and the FPR are measured and plotted. An effective
classifier has an AUC close to one.

2.7 Data Sets

The implementation of this study is based on the pub-
licly available DRIVE [23] and STARE [26] data sets.
The DRIVE data set consists of 40 color retinal im-
ages from different individuals. The images are di-
vided equally into training and testing samples for
convenient supervised classification experimentation.
The experiments in this study have been performed
on the test set to enable comparison with both super-
vised and unsupervised approaches as is the case in
[14]. To assist with finding the retinal Field Of View
(FOV), a mask which identifies the retinal area and
circumference is also provided. All the images in the
training and testing sets come with a binary classified
(gold standard) retinal image prepared by ophthal-
mology experts. This is useful for comparing com-
puted results against those of human experts. This
data set has been used in several previous studies such
as [8, 42]. It therefore lends itself well as a benchmark
for comparative research.

Other studies such as [17, 18] used the STARE
data set which is older than the DRIVE data set. Ad-
ditional experiments are carried out on this set to val-
idate the performance of our methods on a different
collection of images. Of the 20 images in the STARE

data set, 10 contain pathology. It is of interest to as-
sess the effectiveness of our methods in this context.

Unlike the DRIVE data set, the STARE data set
does not come with a mask to enable convenient iso-
lation of the FOV. The interpretation of true negative
classifications is dependent on whether all the pixels
in the entire fundus image are considered or just those
in the FOV. If the evaluation is limited to pixels in the
FOV, it is expected that the true positive rate is lower
than when evaluation is open to all pixels in entire im-
age. To provide consistency with our experiments on
the DRIVE data set, only pixels in the FOV are con-
sidered for classification evaluation in this study. To
this end, a mask is created manually for all images in
the data set as is consistent with other studies on this
collection such as [8]. This is achieved using the GIMP
image editor which allows images to be converted to
grayscale and manually thresholded with the aid of an
intensity histogram. This process was straightforward
for all the images.

All images in the data sets are manually seg-
mented by 2 observers resulting in the first and second
observer segmentation gold standards. The second ob-
server segments more thinner vessels that the first.
Since the general practice in previous studies is to use
the first observer’s standard as the ground truth [9],
this approach is followed in this study.

3 RESULTS AND DISCUSSION

3.1 Response Image Comparison

Figure 4(a) and 5(a) show an inverted gray scale reti-
nal image that exhibits several enhancement chal-
lenges. The optic disk region is visibly the darkest area
in the image. Its boundary is likely to be detected as
an edge and could eventually be segmented as a ves-
sel. The fovea appears as a high intensity blob in the
middle of the image. Effective normalization should
not detect this region as a vessel as it is biologically
known to have limited vasculature [1]. Segmenting the
inverted image based on gray level thresholding is not
viable as the blood vessels and the fundus background
are both of visibly varying intensity. Adaptive Gabor
filtering is therefore required to enhance vessels based
on their relative local intensity profile as opposed to
their actual gray level. In addition to the challenges
stated above, the image in 5(a) contains pathology. A
robust segmentation method should not falsely detect
this pathology as vessels.

Blood vessels have stabler inter-pixel gradients
due to their consistent pigmentation. The background
has more pronounced local intensity variation due to
illumination and textural inconsistency. Failure to
suppress background inconsistency leads to increased
false positive segmentation. Effective comparison of
retinal image segmentation methods should therefore
consider background suppression, illumination invari-
ance as well as vessel contrast enhancement.

The median-offset response image in Figure 4(e)
appears to be the best at suppressing the optic disk
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boundary. All the approaches effectively filter the
fovea region. The normalization by division response
image in Figure 4(b) is seen to be the most affected
by the optic disk illumination. Its low contrast en-
sures that it suppresses background noise effectively,
albeit at the expense of vessel enhancement. Al-
though the zero-integral response images in Figures
4(c) and 4(d) show the least background noise sup-
pression, their vessel contrast enhancement is of higher
quality than that of the normalization by division
response image. Zero-integral2 normalization shows
more pronounced vessels than zero-integral1 normal-
ization. This demonstrates the effectiveness of the in-
dependent normalization of positive and negative ker-
nel weights in zero-integral2 normalization. Both zero-
integral response images show erroneous enhancement
of the optic disk border.

(a) Inverted Gray Scale (b) Division

(c) Zero-Integral1 (d) Zero-Integral2

(e) Median-offset (f) Mean-offset

Figure 4: Gabor Filter Normalization on DRIVE Image.

The mean-offset response image in Figure 4(f) has
smoother vessel enhancement than the median-offset
response image. The vessels of the former are however
thinner than those of the latter. The smoothness of
the mean-offset response image is as a result of the
blurring effect that results from averaging intensities.
Median-offset normalization does not perform averag-

ing but it instead, uses actual intensities for its base.
This results in increased vessel enhancement and op-
tic disk border suppression. Figure 5 shows normal-
ization by division and median offset as the most ef-
fective at suppressing pathology. The former however
has poor contrast. The choice of wavelength or com-
binations thereof to use in the Gabor filter is likely to
have a bearing on the effectiveness of these normal-
ization methods. Section 3.2 investigates this issue
further.

(a) Inverted Gray Scale (b) Division

(c) Zero-Integral1 (d) Zero-Integral2

(e) Median-offset (f) Mean-offset

Figure 5: Gabor Filter Normalization on STARE Image.

3.2 Automatic Thresholding

Table 2 shows the segmentation effectiveness of the
five Gabor filter normalization methods in conjunction
with VET for specific wavelengths. Siddalingaswamy
et al. [33] recommend a wavelength of 4 pixels as ideal
for detecting most vessels within fundus images. In
this study, wavelengths of 4, 8 and 12 pixels are pre-
sented as wavelengths within the range [4,12] showed
the highest effectiveness in our experiments for both
thick and thin vessel detection. Sensitivity reflects the
rate of accurate vessel detection and the median-offset
method shows the highest sensitivity in the context of
a high specificity. This is 67.81% with a correspond-
ing specificity of 97.9% when a wavelength of 8 pixels
is used for median offset normalization.
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W
av

el
en

g
th

:8 Division 0.9699 0.0716 0.1912

ZeroIntegral1 0.4901 0.9929 0.9286

ZeroIntegral2 0.5106 0.9916 0.93

MedianOffset 0.6781 0.979 0.9404

MeanOffset 0.612 0.9845 0.937
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ZeroIntegral1 0.4943 0.9916 0.928

ZeroIntegral2 0.511 0.9906 0.9293

MedianOffset 0.676 0.9714 0.9338

MeanOffset 0.627 0.979 0.935

Table 2: Segmentation effectiveness of normalization

methods on DRIVE test data set at wavelengths of 4, 8

and 12 pixels.
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Division 0.9698 0.0712 0.1856

ZeroIntegral1 0.5014 0.9924 0.9296

ZeroIntegral2 0.5229 0.9908 0.931

MedianOffset 0.683 0.9722 0.9354

MeanOffset 0.652 0.9785 0.9365
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Division 0.9698 0.0712 0.1856

ZeroIntegral1 0.5995 0.9795 0.94

ZeroIntegral2 0.6125 0.978 0.94

MedianOffset 0.6885 0.9615 0.932

MeanOffset 0.682 0.9655 0.9355

Table 3: Segmentation effectiveness of normalization

methods on DRIVE and STARE test data set for max-

imum response over wavelengths: 4,8 and 12

The normalization by division method consis-
tently shows low overall accuracy for all wavelengths
considered and hence it can be confirmed that the
VET method does not effectively threshold its his-
togram as is alluded to in section 2.4.1. The other
normalization methods show similar effectiveness with
accuracy rates of over 90% for each wavelength. The
actual individual wavelength used seems to have very
little effect on the average accuracy and relative per-
formance of each normalization method. It is however
notable that the mean offset method has a higher ac-
curacy than the median offset method at a wavelength
of 12 pixels. Since this wavelength is the highest of
those used in this study, it more effectively enhances
thick vessels than the other wavelengths. As previ-
ously noted, the median offset method yields thicker
vessels that the mean offset method when enhancing

retinal images. At high wavelengths this enhancement
may be overemphasized and hence the median offset
method has a lower specificity than the mean offset
method.

Table 3 shows segmentation effectiveness of the
normalization methods over a sequence of wavelengths
for both the DRIVE and STARE data set. When
each pixel is filtered, all wavelengths within the se-
quence are considered and the maximum response is
recorded. The accuracy rates show a similar trend
to that of Table 2 and very little improvement is
achieved. The median-offset method shows the high-
est vessel segmentation accuracy with a sensitivity
and specificity of 68.3% and 97.2% on the DRIVE
data set. Similar results are obtained on the STARE
data set, namely a sensitivity and specificity of 68.85%
and 96.15% respectively. The average accuracy rates
are 18.56%, 92.96%, 93.1%, 93.54% and 92.87% for
the normalization by division, zero-integral1, zero-
integral2, median-offset and mean-offset methods re-
spectively on the DRIVE data set. A similar trend is
shown on the STARE data set despite the existence of
pathology in this data set. A notable improvement is
shown in the sensitivity of zero-integral methods. This
may be attributed to the lower illumination variation
in this data set.
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Figure 6: ROC curves for segmentation based on normal-

ization methods and manual thresholding

The ROC curves in Figure 6 show the trade-off be-
tween sensitivity/true-positive rate and FPR for each
normalization method when the image in Figure 4(a)
is manually thresholded. The regulated parameter in
these ROC curves is the threshold intensity used to
segment the image. The GFR images from each nor-
malization method are repeatedly thresholded using
each gray level within the minimum and maximum
intensity of the response image. For each threshold,
corresponding sensitivity and FPR values are calcu-
lated and plotted on the ROC curve. All normaliza-
tion methods record an area under the curve of at least
75%. This shows that they are all viable for use in
retinal image segmentation. The zero-integral meth-
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ods both yield very smooth curves while the graphs of
the other methods are angular. The angular graphs
are as a result of multi-modal histograms and small
response ranges.

Normalization Manual Auto Maximum
Division 18 8 110
Zero1 10 16 101
Zero2 7 9 72
Median-offset 1 1 11
Mean-offset 1 1 11

Table 4: Comparison of manual and automatic threshold-

ing

(a) Gold standard (b) Division (manual thresh-
olding)

(c) Zero-Integral1 (d) Zero-Integral2

(e) Median-offset (f) Mean-offset

Figure 7: DRIVE Image segmented through automatic

thresholding.

Table 4 compares the optimal thresholds ob-
tained manually against those obtained using the VET
method for all the normalization methods considered
in this study. It also shows the maximum gray level in-
tensity produced by each normalization method. In all
cases the minimum was 0. The VET method predicted
the most optimal threshold for both the median-offset

and mean-offset methods. The normalization by divi-
sion Gabor filter gave a maximum gray level response
value of 110. The VET predicted the intensity 8 in-
stead of 18 as the most optimal threshold. This is the
highest error margin between the manual and auto-
matic thresholds from all the normalization methods.

Figure 7(a) shows an example of a segmenta-
tion performed by an expert for comparison with
the thresholded images from normalized response im-
ages. Figures 7(c) and 7(d) show that the zero-integral
methods generally tend to produce thin vessels. This
explains their low sensitivity rates of below 55% on the
DRIVE data set. The median-offset method seems to
have most effectively suppressed the optic disk illu-
mination. Generally all methods perform well with
regards to detecting thick vessels. There is room for
more improvement with regards to thin vessel detec-
tion.

(a) Gold standard (b) Division (manual thresh-
olding)

(c) Zero-Integral1 (d) Zero-Integral2

(e) Median-offset (f) Mean-offset

Figure 8: STARE Image segmented through automatic

thresholding.

Figure 8 shows segmentation results for a STARE
image with pathology. Although the manually thresh-
olded image from the normalization by division re-
sponse image shows high pathology suppression, a sig-
nificant proportion of the vessel network is also sup-
pressed. The zero-integral and mean offset methods
showed poor pathology suppression. Although the me-
dian offset method yields an image showing little evi-
dence of pathology, there is room for improvement in
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this regard.

4 LITERATURE COMPARISON
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Siddalingaswamy et al.
[6]

86.47 96 —

Human observer[9] 77.63 97.23 94.70
Yin et al. [12] 62.52 97.10 92.67
Zhang et al. [14] 71.20 97.24 93.82
Niemeijer et al. [23] 68.98 96.96 94.17
Chaudhuri et al. [24] — — 87.73
Median-offset 68.3 97.22 93.54
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Siddalingaswamy et al.
[6]

85 96 —

Human observer[9] 89.51 93.84 93.48
Hoover et al. [26, 9] 67.51 95.67 92.67
Zhang et al. [14] 71.77 97.53 94.84
Mendonca et al. [43] 69.96 97.3 94.4
Median-offset 68.85 96.15 93.2

Table 5: Performance comparison of vessel segmentation

methods on DRIVE and STARE data sets

(a) Gray scale (b) Gold standard

(c) Median-offset (d) Siddalingaswamy

Figure 9: Comparison of median-offset and Siddalin-

gaswamy et al. [6] segmentation of DRIVE image.

Table 5 compares the segmentation results from
previous studies that are based on the DRIVE and
STARE data sets. The performance of the thresh-
olded median-offset normalized Gabor filter is compa-

rable with previous methods. The sensitivity of the
median-offset approach outperforms some of the re-
cent studies such as that of Yin et al. [12] on the
DRIVE data set. Performance on the STARE data
set is not as competitive against recent studies. It is
notable that although the sensitivity and specificity
reported by Zhang et al. [14] are higher than those
of Niemeijer et al. [23], the average accuracy is lower.
Siddalingaswamy et al. [6] report a sensitivity that is
significantly higher than that of other approaches, in-
cluding the performance of a trained human observer
on the DRIVE data set. This observer’s segmenta-
tions are included in the DRIVE data set for compar-
ison with the performance of human experts. Due to
the number of previous studies on the segmentation of
DRIVE and STARE images, compiling an exhaustive
list in Table 5 is impractical. A comprehensive review
of the segmentation results of previous studies can be
found in [9].

(a) Gold standard (b) Median-offset

(c) Hoover (d) Li

Figure 10: Comparison of median-offset, Hoover et al. [26]

and Li et al. [18] segmentation of STARE image.

Figure 9 visually compares an example segmented
image obtained by Siddalingaswamy et al. against that
of the median-offset approach. There is very little dif-
ference between the two output images. The median
approach suppressed the fovea and optic disk more
effectively resulting in fewer false positives in these
regions. Figure 10 compares the segmentation out-
put from the median offset with that of Hoover et al.
and Li et al. on a STARE image. Although the for-
mer shows the lowest pathology suppression, its de-
tected vessels are more prominent that those from
other methods. In addition, it successfully detected
the illumination variation around the optic disk as
non-vascular tissue unlike the other methods.
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5 CONCLUSION

To investigate the effect of Gabor filter normaliza-
tion on retinal image segmentation, five normalization
techniques were tested with application to the VET
technique. All the investigated normalization meth-
ods except normalization by division achieved an av-
erage accuracy of approximately 93% on both data
sets. The median offset method managed to suppress
illumination variation in the fundus images from both
data sets. Although the other normalization tech-
niques in this study achieved lower sensitivity rates,
they effectively handle the illumination variation in
the fovea. This shows that normalization techniques
have a bearing on the effectiveness of Gabor filter
based retinal image segmentation.

Future work will focus on exploring the effect
of normalization in the context of other automatic
thresholding techniques, such as first and second order
entropy thresholding; and combining the different ap-
proaches to create an adaptive thresholding approach.
Focus will also be given to improving the performance
on the STARE data set such that pathology is sup-
pressed during classification. This study has investi-
gated image enhancement using normalization in the
spatial domain; future work will also explore normal-
ization based on the image frequency domain.
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