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ABSTRACT

We claim that modelling network traffic as a time series with a supervised learning approach, using known genuine and
malicious behaviour, improves intrusion detection. To substantiate this, we trained long short-term memory (LSTM)
recurrent neural networks with the training data provided by the DARPA / KDD Cup ’99 challenge.
To identify suitable LSTM-RNN network parameters and structure we experimented with various network topologies. We
found networks with four memory blocks containing two cells each offer a good compromise between computational cost
and detection performance. We applied forget gates and shortcut connections respectively. A learning rate of 0.1 and up to
1,000 epochs showed good results.
We tested the performance on all features and on extracted minimal feature sets respectively. We evaluated different feature
sets for the detection of all attacks within one network and also to train networks specialised on individual attack classes.

Our results show that the LSTM classifier provides superior performance in comparison to results previously published

results of strong static classifiers. With 93.82% accuracy and 22.13 cost, LSTM outperforms the winning entries of the

KDD Cup ’99 challenge by far. This is due to the fact that LSTM learns to look back in time and correlate consecutive

connection records. For the first time ever, we have demonstrated the usefulness of LSTM networks to intrusion detection.
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1 INTRODUCTION

In modern society, increasingly powerful technologies
have encouraged widespread dependency on informa-
tion and communication technology (ICT), which, in
turn, has created a strong requirement for depend-
able ICT functionalities. At the same time, however,
there are increasingly sophisticated and diverse threats
to modern ICT systems; this calls for novel security
mechanisms. Intrusion detection aims at identifying
various kinds of (malicious) activities, and is now a
strategic task of the highest importance in safeguard-
ing computer networks and systems. While traditional
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approaches to intrusion detection systems (IDSs) have
proven to be efficient at detecting intrusions based on
well-known parameters, they are completely ineffective
in cases involving novel intrusions.

The analysis of collected data is either static or
heuristic. When an IDS uses filters and signatures to
describe attack patterns, the analysis is static; this is
called signature detection (or misuse detection). Sig-
nature detection is limited to the detection of known
attack patterns. For the detection of unknown attacks,
heuristic methods must be used. Systems that use
these methods offer the possibility of detecting pat-
terns that are not ‘normal’; these detection methods
are termed anomaly detection. A third very common
approach for extending static detection methods is
called stateful protocol analysis. Here models of proto-
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cols and applications are compared to their observed
behaviour. Most systems combine static and heuristic
methods in an hybrid approach.

Current commercial products offering anomaly de-
tection are solely threshold-based, or make use of sta-
tistical measures [1]. These methods can model only
relatively simple patterns, expressed in counts or dis-
tributions. Similar to signature-based approaches, this
still limits their application to the detection of well-
known and precisely defined attacks.

One potential solution to this limitation could be
self-learning systems which are capable of detecting
previously unknown threats. This is due to their abil-
ity to differentiate between ‘normal’ and ‘anomalous’
traffic by learning from monitored-network and host
data. More precisely, machine learning methods can
learn complex system behaviour. By learning whole
classes of normal traffic and attacks, trained classifiers
have the potential to detect irregularities and previ-
ously unseen attacks. In addition, machine learning
methods promise to provide a solution that can detect
possible attacks in real time, so that countermeasures
can be taken in a timely manner.

At this time, since the implementation of machine
learning methods in intrusion detection is in the very
early stages of development, its practical applications
are still quite limited [2]. For instance, trained classi-
fiers still suffer from a high number of misclassifications
because intrusive activity is too rare [3]. Further-
more, powerful classifiers require significant resources
for training and optimisation [4], which is still unreal-
istic for commercial deployment. This is why feature
selection is another key element in advancing the use
of machine learning methods in intrusion detection.
These and other significant issues are summarised in
[5].

Here, we investigate the application to network
intrusion detection of long short-term memory (LSTM)
as introduced by [6], and enhanced by [7] and [8]. In
investigating the possibilities of this powerful dynamic
classifier, we were especially interested in the effects of
a reduced feature set on the network intrusion detection
performance.

We applied LSTM to the publicly available
DARPA1 / KDD Cup ’99 dataset2. The KDD Cup ’99
dataset consists of connection records with 41 features
whose relevance for intrusion detection are not clear.
This work documents experiments with different sub-
sets of these features. The experiments are of a general
nature and can be applied to any similar (e.g. more
recent) dataset. The KDD Cup ’99 dataset was mainly
chosen for reasons of comparison with other machine
learning algorithms.

This paper is structured in the following manner.
After referencing a selection of related work, we will
delve into standard recurrent neural networks. We
point out one of their major limitations and how it is

1http://www.ll.mit.edu/mission/communications/cyber/

CSTcorpora/ideval/data/
2http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.

html

resolved by long short-time memory recurrent neural
networks. Then we roughly cover the performance
measures used by us to compare the tested classifiers;
with a focus on the receiver operating characteristic
favoured by us. It follows a discussion on the available
training data. Therein we roughly explain how we
extracted various feature subsets for the detection ([9,
10]). Finally we present a detailed description of our
experiments and the results achieved.

2 RELATED WORK

Machine learning techniques have been used for net-
work intrusion detection for some time, but the choice
of the available training data is very limited. One
of the few widely used datasets is derived from the
DARPA datasets [11], which also happens to be one of
the most comprehensive. The tcpdump data provided
by the 1998 DARPA Intrusion Detection Evaluation
network was processed and used for the 1999 KDD
Cup contest at the Fifth International Conference on
Knowledge Discovery and Data Mining. The learning
task of this competition was to classify the prepro-
cessed connection records into either normal traffic,
or one out of the four given attack categories (‘dos’,
‘probe’, ‘r2l’, ‘u2r’).

Preprocessing of the data for the KDD Cup ’99
competition was done with the MADAMID framework
described in [12]. Each connection record contains 41
input features grouped into basic features and higher-
level features. The dataset provides the training and
testing datasets in a full set, and also a ‘10%’ subset
version with modified class distributions.

During the KDD Cup ’99 competition, 24 entries
were submitted. The first three places were occupied
by entries that used variants of decision trees and
showed only marginal differences in performance [13,
14, 15]. In ninth place in the challenge, was the 1-
nearest neighbour classifier. The first 17 submissions
of the competition were all considered to perform well
and are summarised by [16].

Observing feature reduction on the KDD Cup ’99
datasets, the majority of published results are trained
and tested on the ‘10%’ training set only [17, 18, 19].
Some researchers used custom-built datasets, with
11,982 random records extracted from the ‘10%’ KDD
Cup ’99 training set [20, 21, 22].

After the challenge, a number of new results using
learning algorithms on the KDD Cup ’99 data were
published. In the following papers, the authors used
the same training and testing data as requested in the
challenge, and provided partially comparable results:
[23] evaluated a comprehensive set of machine learning
algorithms and suggest a multi-classifier model with
a multi-class topology. [24] applied the classical Ad-
aboost algorithm and a modified version of the same to
the KDD Cup ’99 datasets. Decision stumps were cho-
sen as a weak classifier and given as input to Adaboost.
[25] demonstrated a genetic programming approach
for large datasets comparing the results of using the
first 8 basic features only with using all features of

http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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the dataset. A machine learning approach, based on
unsupervised presentation of data, is applied by [26].
They used a multi-layer, self-organising feature-map
hierarchy with customised datasets.

There are also a number of interesting publications
where the results are not directly comparable due to
the use of different training and test datasets. In an
early paper, [27] suggested genetic algorithms and de-
cision trees for automatic rule generation for an expert
system that enhances the capability of an existing
IDS. [28] observed a nonparametric density estimation
approach, based on Parzen-window estimators with
Gaussian kernels. [29] compared the performance of
a linear genetic programming approach to artificial
neural networks and support vector machines.

[30] investigated the results of linear genetic pro-
gramming and multi-expression programming. Other
hybrid approaches combine neural networks and sup-
port vector machines [31], artificial neural networks
and a fuzzy inference system [20], decision trees and
support vector machines [32], and neural networks with
recurrent neural networks [33].

[34] and [35] suggested the use of neural networks
as components of intrusion detection systems; and an
application of recurrent neural networks is proposed
by [36]. [37] compared the performance of a selection
of neural network architectures for statistical anomaly
detection to datasets from four different scenarios. The
use of hidden Markov models to detect complex multi-
stage Internet attacks that occur over extended periods
of time is described by [38]. An event classification
scheme based on Bayesian networks is proposed by [39].
An approach using a modified Jordan recurrent neural
network is proposed by [40]. Another approach [41]
successfully applies Jordan recurrent neural networks
to detect SQL-based attacks.

A framework for unsupervised learning, with two
feature maps mapping unlabelled data elements to a
feature space, is suggested by [42]. [43] further illus-
trated that neural networks can be efficiently applied
to network data in both a supervised and an unsu-
pervised learning approach. [44] demonstrated that
supervised learning techniques applied to the KDD
Cup ’99 training data significantly outperform unsu-
pervised methods. The best performance is achieved
by non-linear methods.

With a focus on sequential relations between events
[45] show that hidden Markov models outperform neu-
ral networks; and [46, 47] show that recurrent neural
networks outperform neural networks likewise. [48]
show that recurrent neural networks perform well in
both anomaly and misuse detection.

A short time after the 1998 and 1999 DARPA
intrusion detection system evaluations, [49] wrote a de-
tailed critique identifying shortcomings of the provided
datasets. The primary criticism of the paper was that
the evaluation failed to verify that the network realisti-
cally simulated a real-world network. [50] looked more
closely on the content of the 1999 DARPA evaluation
tcpdump data and discovered that the simulated traffic
contains problematic irregularities. The authors state

that many of the network attributes, which have a
large range in real-world traffic, have a small and fixed
range in the simulation. Since the 1998 evaluation
data was generated by the same framework, it can be
assumed that it suffers from similar problems.

[51] investigated why classifiers fail to detect most
of ‘r2l’ and ‘u2r’ attacks in the KDD Cup ’99 datasets.
They conclude that it is not possible for any classifier
to accomplish an acceptable detection rate of these
two attack classes. The authors admit that this might
be not the case when the KDD Cup ’99 datasets are
used in an anomaly detection context.

[52] applied the tcpdump traffic data files provided
with DARPA datasets to the Snort intrusion detection
system (see [53]). The performance of this mainly
signature-based intrusion detection system was rather
poor. The authors reason that it is due to the fact
that it is difficult to detect ‘dos’ and ‘probe’ attacks
with a fixed signature. So the detection on the ‘r2l’
and ‘u2r’ attacks is in contrast much better. The
paper emphasises the need to build a more realistic
intrusion detection dataset with focus on false positive
evaluation and more recent attacks.

[54] argue that although the KDD Cup ’99 datasets
suffer from various problems [49], they are still an ef-
fective benchmark to compare different intrusion detec-
tion methods. To address some of the known issues the
authors created a revised version of the datasets, called
NSL-KDD3. The authors changed the class distribu-
tions by cleaning the training and testing datasets from
redundant records, and then adding records inversely
proportional to their percentage in the original KDD
data set. This was done to prevent learning algorithms
to be biased towards the more frequent records.

3 LSTM-RNN BACKGROUND

Recurrent neural networks (RNNs) are dynamic sys-
tems; they have an internal state at each time step of
the classification. This is due to circular connections
between higher- and lower-layer neurons and optional
self-feedback connections. These feedback connections
enable RNNs to propagate data from earlier events to
current processing steps. Thus, RNNs build a memory
of time series events.

Below we roughly cover simple RNNs and point
out their limitations prior explaining the LSTM-RNN
architecture and their extensions.

3.1 RNN Architecture

RNNs range from partly to fully connected, and two
simple RNNs are suggested by [55, 56]. The Elman
network is similar to a three-layer neural network, but
additionally, the outputs of the hidden layer are saved
in so-called ‘context cells’. The output of a context
cell is circularly fed back to the hidden neuron along
with the originating signal. Every hidden neuron has
its own context cell and receives input both from the
input layer and the context cells. Elman networks can

3http://iscx.cs.unb.ca/NSL-KDD/

http://iscx.cs.unb.ca/NSL-KDD/
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be trained with standard error backpropagation, the
output from the context cells being simply regarded as
an additional input. Jordan networks have a similar
structure to Elman networks, but the context cells are
instead fed by the output layer.

RNNs need to be trained differently to the feed-
forward neural networks (FFNNs). The most common
and well-documented learning algorithms for train-
ing RNNs in temporal, supervised learning tasks are
backpropagation through time (BPTT) and real-time
recurrent learning (RTRL). In BPTT, the network is
unfolded in time to construct an FFNN. Then, the
generalised delta rule is applied to update the weights.
This is an offline learning algorithm in the sense that we
first collect the data and then build the model from the
system. In RTRL, the gradient information is forward
propagated. Here, the data is collected online from
the system and the model is learned during collection.
Therefore, RTRL is an online learning algorithm.

3.2 Vanishing Error Problem

In RTRL all the information necessary to compute
the activity gradient is collected as the input stream
is presented to the network. This makes a dedicated
training interval obsolete. The algorithm comes at
significant calculation cost per update cycle, and the
stored information is non-local. But the memory re-
quired depends only on the size of the network. A
detailed description of the RTRL algorithm is given in
[57, 58].

Standard RNN cannot bridge more than 5–10 time
steps. Error signals tend to either blow-up or van-
ish. Blown-up error signals lead straight to oscillating
weights, whereas with a vanishing error, learning takes
an unacceptable amount of time, or does not work
at all. A detailed theoretical analysis of the problem
with long-term dependencies is presented in [59]. The
paper also briefly outlines several proposals on how to
address this problem.

3.3 Standard LSTM

One solution that addresses the vanishing error prob-
lem is a gradient-based method called long short-term
memory (LSTM) published by [6, 7, 8]. LSTM can
learn how to bridge minimal time lags of more than
1,000 discrete time steps [6]. The solution uses con-
stant error carousels (CECs), which enforce a constant
error flow within special cells. Access to the cells is
handled by multiplicative gate units, which learn when
to grant access.

In the absence of new inputs to the cell, we know
that the CEC’s backflow remains constant. However,
as part of a neural network, the CEC is not only
connected to itself, but also to other units in the neural
network. We need to take these additional weighted
inputs and outputs into account. Incoming connections
to neuron j can have conflicting weight update signals,
because the same weight is used for storing and ignoring
inputs. For weighted output connections from neuron
j, the same weights can be used to both retrieve j’s
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Figure 1: A standard LSTM memory cell with forget
gate and peephole connections. The state of the cell is
denoted as sc. Read and write access is regulated by
the input gate, yin, and the output gate, yout; cell reset
is handled by the forget gate yϕ. The internal cell state
is calculated by multiplying the result of the squashed
input, g, by the result of the input gate, yin, and then
adding the state of the last time step, sc(t−1). Finally,
the cell output is calculated by multiplying the cell
state, sc, by the activation of the output gate, yout.

contents and prevent j’s output flow to other neurons
in the network.

To address the problem of conflicting weight up-
dates, LSTM extends the CEC with input and output
gates connected to the network input layer and to other
memory cells. This results in a more complex LSTM
unit, called a memory cell; its standard architecture is
shown in Fig. 1.

3.4 LSTM Extensions

The self-connection in a standard LSTM network has
a fixed weight set to ‘1’ in order to preserve the cell
state over time. Unfortunately, the cell states sc tend
to grow linearly during the progression of a time series
presented in a continuous input stream. The main
negative effect is that the entire memory cell loses
its memorising capability, and begins to function like
an ordinary RNN network neuron. To address this
problem, [7] suggested that an adaptive forget gate
could be attached to the self-connection. Forget gates
can learn to reset the internal state of the memory cell
when the stored information is no longer needed.

In standard LSTM, gates do not have direct access
to the internal cell state. They are connected only to
the input units and the cell outputs. As long as the
output gate is closed, the output of the cell is close
to zero. Until the output gate starts to open, none of
the gates have any information about the state of the
CEC they should control. To address this problem,
[8] suggested adding weighted connections from the
internal cell state to all gates within a memory block.
These connections are labelled as peephole connections
which allow gates to learn to protect the internal cell
state from unwanted inputs during the forward pass,
whereas in the backward pass, they learn to protect
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the internal cell state from unwanted error signals.

The original LSTM training algorithm as described
in [8] used a combination of truncated BPTT and
RTRL. In [60] the authors suggest to use full BPTT
to ease the implementation. They found that the full
variant is slightly faster without changing results.

4 MEASURES OF PERFORMANCE

For a meaningful performance comparison of different
classifiers it is necessary to at least agree on the data,
and what performance metrics are applied. Models
build by the classifier from the data are an approxima-
tion of the true model. To evaluate these built models
we need to divide the available data into training and
testing data. The training data is used to build the
model, and the test data to evaluate it. Given that
the labels of the test data are known we can apply the
following performance metrics.

4.1 Mean-Squared Error

For numeric prediction tasks the ‘mean-squared er-
ror’ (MSE) is a common method. MSE quantifies the
amount by which an estimator differs from the tar-
geted value. The MSE of a dataset is the average of
the sum of all sqared errors of each pattern. Given n
patterns of the dataset, for the ith example, let pi be
the predicted value and ai the actual value. The MSE
of the tested dataset is

MSE =

∑n
i=0(ai − pi)

2

n

4.2 Confusion Matrix and Costs

For two-class problems, the result of a classification
can either be predicted correctly or incorrectly. This
yields four different conditions:

(a) True Positive - model correctly predicts positive

(b) False Negative (type II error) - model incorrectly
predicts negative

(c) False Positive (type I error) - model incorrectly
predicts positive

(d) True Negative - model correctly predicts negative

A confusion matrix shows the predicted and the
actual classifications. The size of a confusion matrix
is n× n, where n is the number of different classes.

The two types of errors can have different costs. A
cost matrix specifies the costs associated with different
error conditions. All elements of the confusion matrix
are then multiplied by the corresponding value of a
cost matrix. The total cost of a model is the sum of
all these products. The average cost is the total cost
divided by the total number of classifications.

The confusion matrix with exemplary cost values
shown in Table 1 is for a two-class problem. In this
case a type I error is multiplied with 4 and a type II
error with 1.

pred. → 1 2
actual ↓ positive negative
1 positive a (0) b (1)
2 negative c (4) d (0)

Table 1: A confusion matrix with cost values for a
binary problem.

4.3 Performance Measures Derived

From the counts of these four conditions we can calcu-
late the following simple performance measures:

• true positive rate (or detect rate) – portion of
positive instances correctly predicted positive
a/(a + b)

• false negative rate – portion of positive instances
wrongly predicted negative
b/(a + b)

• false positive rate – portion of negative instances
wrongly predicted positive
c/(c + d)

• true negative rate – portion of negative instances
correctly predicted negative
d/(c + d)

• precision – probability an instance gets correctly
classified
a/(a + c)

• accuracy – proportion of test results the model
predicts correctly
(a + d)/(a + b + c + d)

Accuracy and mean-squared error are the most
common performance measures; other performance
metrics can include the time an algorithm needs to
build a model from a dataset and/or the time to apply
it on a dataset.

Simple performance measures like accuracy or error
rate are problematic. Accuracy, for instance, does
not provide information on the performance per class.
Missing a positive or missing a negative is treated
the same. If the majority of examples in a dataset are
negative then a high accuracy might only be due to the
exceptional performance on these negative examples.
Observing the true positive rate may indicate that the
performance on the positive examples is very poor.

It is necessary to satisfy certain conditions to apply
these simple performance measures. These include an
equal number of examples in each class. For highly
skewed data where one class is much larger than the
other these metrics are not very meaningful.

4.4 ROC Analysis

The Receiver Operating Characteristic (ROC) analysis
evaluates an algorithm over a range of possible oper-
ating scenarios. The ROC-graph is a two-dimensional
plot of the false-positive rate (x-axis) of a model against
its true-positive rate (y-axis). A true-positive rate of
unity and false-positive rate of zero are indicators for
perfect performance. The lower left point (0,0) in the
graph represents a model with no false positive errors
but also no true positives. This model would always
classify negative but never positive. The opposite point
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at the upper right (1,1) represents a model that always
classifies positive and never negative. The point at the
upper left (0,1) on the ROC-graph represents a model
that always classifies correctly.

In two-type classification discrete classifiers gener-
ate as a result a one class decision for every instance
of a test set; and all classified instances yield to one
confusion matrix. Each matrix has exactly one true-
positive rate and one false-positive rate. These two
produce a single point on the ROC-graph.

This is in contrast to the result of probabilistic
classifiers, like neural networks, which produce a nu-
meric value. The value represents the probability that
the observed instance is a member of a specific class;
where a higher value indicates a higher probability. A
decision threshold of e.g. 0.5 is used to produce the de-
cision. If the value is above the threshold the instance
belongs to a specific class. A value under the threshold
is classified as noise. Every threshold applied produces
its own confusion matrix and a different point on the
ROC-graph.

To generate a ROC-curve the threshold is varied
from −∞ to +∞, or in case of neural networks with
target values in the range [0, 1] from 0 to 1. The
resulting ROC-curve of a successfully learned classifier
should look like an inverted ‘L’ with the corner pushing
toward the upper left of the graph. Results similar to
random guessing yield a diagonal line between [0, 0]
and [1, 1].

One powerful strength of ROC-analysis is that
it is independent from class distribution. The curve
remains the same if the proportion of positive and
negative examples changes.

The Area Under the Curve (AUC) summarizes the
ROC curve in a single value as a measure for expected
performance. The AUC value of a classifier is equal
to the probability that a randomly chosen positive
instance will be ranked higher than a randomly chosen
negative instance. It is a value between 0 and 1. No
meaningful classifier should have a AUC value below
[0.5]. Depending on the shape of the ROC-curves, a
high AUC value of one classifier can perform worse in
a specific region of the curve than a low AUC value
of another classifier. But in practise the AUC value
performs very well.

In our experiments we will use ROC-curve and the
resulting AUC value as prefered performance measures.

5 IDS-DATASETS

The choice of training data available for machine learn-
ing in the field of network intrusion detection systems
is very limited. Two of the few labelled datasets are
the DARPA4/KDD Cup ’99 datasets5 [11, 12] and the
UNB ISCX 20126 as presented in [61]. The ISCX 2012
was collected more recently in 2010 and was intended

4http://www.ll.mit.edu/mission/communications/cyber/

CSTcorpora/ideval/data/
5http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.

html
6http://iscx.ca/datasets

as a replacement for the KDD Cup ’99. Unfortunately
availability of the dataset is discontinued. We used the
DARPA/KDD Cup ’99 datasets since they are still the
most comprehensive and widely used.

5.1 DARPA/KDD Cup ’99 Dataset

These datasets are called DARPA/KDD Cup ’99
datasets because their generation was sponsored
by the Defence Advanced Research Projects Agency
(DARPA ITO) and the Air Force Research Laboratory
(AFRL/SNHS). The 1998 DARPA Intrusion Detection
Evaluation network simulated an air force base local
area network. Seven weeks of training data and two
weeks of testing data were collected. The total col-
lected data contains more than 200 instances of 39
mostly network-based attack types embedded in back-
ground traffic similar to that of an air force base local
area network.

All traffic is either classified as (‘normal’) or as one
of various attack types. The attack types are grouped
into the four attack categories: denial-of-service (‘dos’),
network probe (‘probe’), remote-to-local (‘r2l’) and user-
to-root (‘u2r’) attacks. In addition, the data contains
anomalous user behaviour, such as a normal user acting
like a privileged user.

The aim of ‘dos’ attacks is to prevent users access-
ing a service. ‘TCP syn floods’ are an example of this
type of attack. ‘Probe’ attacks, such as ‘port scans’
and ‘ip sweeps’ are used to collect information about
potential targets. Attackers on a remote machine us-
ing ‘r2l’ attacks try to gain user access on a machine
they do not have access to. This can be achieved by,
for example, dictionary attacks based on password
guessing. A ‘u2r’ attack occurs when an attacker who
has already achieved user access on a system tries to
gain privileged access. Various buffer overflow attacks
against system services fall in this category.

Attackers often use combinations of the attack
types classified above. In the majority of cases, at-
tackers follow a ‘probe’ → ‘r2l’ → ‘u2r’ pattern of
behaviour.

The data provided by the 1998 DARPA Intrusion
Detection Evaluation network was further processed
and used for the 1999 KDD Cup contest at the fifth
International Conference on Knowledge Discovery and
Data Mining7. The learning task of this competition
was to classify the preprocessed connection records
into either normal traffic or one out of the four given
attack categories (‘dos’, ‘probe’, ‘r2l’, ‘u2r’).

The seven weeks of network traffic collected from
the DARPA training data were preprocessed into five
million labelled and categorised connection records
of approximately 100 bytes each; and the two weeks
of training data were processed into two million un-
labelled connection records. Preprocessing of the
DARPA data for the 1999 KDD Cup contest was done
with the MADAMID framework described in [12]. The

7The KDD Cup is an annual Knowledge Discovery and Data
Mining competition organised by the ACM Special Interest
Group on Knowledge Discovery and Data Mining.

http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://iscx.ca/datasets
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KDD Cup ’99 datasets are available from the UCI
KDD Archive as the 1999 KDD Cup Dataset8.

A connection record summarises the packets of a
communication session between a connection initiator
with a specified source IP address and a destination
IP address over a pair of TCP/UDP ports. The la-
belled connection records in the training set are either
categorised as ‘normal’ or indicate one of 22 types of
attack. As far as we know, the KDD Cup ’99 dataset
is, as of today, still the most thorough observed and
freely available dataset; with fully labelled connection
records spanning several weeks of network traffic and
a large number of different attacks.

Each connection record contains 41 input features—
34 continuous- and 7 discrete-valued—grouped into
basic features and higher-level features. The basic fea-
tures are directly extracted or derived from the header
information of IP packets and TCP/UDP segments
in the tcpdump files of each session. This was done
by using a modified version of the freely available Bro
Intrusion Detection System9 presented in [2]. Each
connection record was produced when either the con-
nection was terminated or Bro was closed. The listfiles
for tcpdump from the DARPA training data where
used to label the connection records.

The so-called content-based higher-level features
use domain knowledge to look specifically for attacks
in the actual data of the segments recorded in the tcp-
dump files. These address ‘r2l’ and ‘u2r’ attacks, which
sometimes either require only a single connection or are
without any prominent sequential patterns. Typical
features include the number of failed login attempts
and whether or not root access was obtained during
the session.

Furthermore, there are time-based and connection-
based derived features to address ‘dos’ and ‘probe’ at-
tacks. Time-based features examine connections within
a time window of two seconds and provide statistics
about these. To provide statistical information about
attacks exceeding a two-second time-window, such as
slow probing attacks, connection-based features use
a connection window of 100 connections. Both are
further split into same-host features, which provide
statistics about connections with the same destination
host, and same-service features, which examine only
connections with the same service.

The KDD Cup ’99 competition provides the train-
ing and testing datasets in a full set, and also a so-called
‘10%’ subset version. The ‘10%’ subset was created due
to the huge amount of connection records present in
the full set; some ‘dos’ attacks have millions of records.
For this reason, not all of these connection records
were selected. Furthermore, only connections within
a time-window of five minutes before and after the
entire duration of an attack were added into the ‘10%’
datasets. To achieve approximately the same distri-
bution of intrusions and normal traffic as the original
DARPA dataset, a selected set of sequences with ‘nor-

8http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.

html
9http://bro-ids.org/

mal’ connections were also left in the ‘10%’ dataset.
Training and test sets have different probability distri-
butions.

The full training dataset contains nearly five mil-
lion records. The full training dataset and the corre-
sponding ‘10%’ both contain 22 different attack types
in the order that they were used during the 1998
DARPA experiments.

The full test set, with nearly three million records,
is only available unlabelled; but a ‘10%’ subset is pro-
vided both as unlabelled and labelled test data. It
is specified as the ‘corrected’ subset, with a different
distribution and additional attacks not part of the
training set. For the KDD Cup ’99 competition, the
‘10%’ subset was intended for training. The ‘corrected’
subset can be used for performance testing; it has over
300,000 records containing 37 different attacks. It is to
be noticed that the sample distribution of ‘probe’, ‘r2l’
and ‘u2r’ attacks varies strongly between the training
sets and the test set.

In the following, we roughly cover the applied
feature selection methods.

5.2 Extracting Salient Features

For feature selection we built and examined post-
pruned decision trees and backward elimination, as
covered in detail in [10]. The applied J4.8 decision
tree algorithm implements subtree raising as a pruning
operation. In subtree raising, the algorithm moves
nodes up towards the root of the tree and discards
other nodes on the way.

After the first build from the training set using all
features, we removed features from the dataset that
were not part of the tree. Then we continued with a
leave-one-out reduction until the removal of any fea-
ture led to significant performance loss in any of the
five applied classifiers. We used true positive rate,
false positive rate, precision, accuracy and costs as
performance metrics in each traffic class. We also fre-
quently estimated the ROC curve and calculated the
area under curve (AUC) value using the Mann Whit-
ney statistic. All values, except costs, were provided
by WEKA. Costs were manually calculated using the
suggested values provided by the KDD Cup ’99 as
shown in Table 2.

Table 2: The cost matrix provided by the KDD Cup ’99
challenge with a minor modification. To ensure com-
parability, we increased the cost for classifying ‘u2r’
attacks as ‘normal’ traffic from 3 to 4.

a
ct

u
al

prediction
normal probe dos u2r r2l

normal 0 1 2 2 2
probe 1 0 2 2 2
dos 2 1 0 2 2
u2r 4∗ 2 2 0 2
r2l 4 2 2 2 0

∗was 3 in original KDD Cup ’99 matrix

To limit the number of iterations, our leave-one-
out approach was biased. By default, we kept features

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://bro-ids.org/
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close to the root of the tree, and one-by-one, removed
features close to or at leaves. We preferred the removal
of features that require domain knowledge or detailed
traffic data analysis to features easily extracted from
network data. We also frequently observed the classi-
fication and run-time performance of the five applied
classifiers.

From the observed subsets, in every run with im-
proved or comparable performance, we picked the best-
performing attribute set. We declared the absent at-
tribute of the best-performing subset as an unimpor-
tant attribute. We tested the performance of the final
minimal feature set against the KDD Cup ’99 test set.

The first approach resulted in a set of 11 se-
lected features, which consisted of 7 basic features
and 4 higher-level features [9]. The selected mini-
mal features were ‘duration’, ‘protocol type’, ‘service’,
‘source bytes’, ‘dst bytes’, and ‘wrong fragment’. Cho-
sen higher-level features were ‘serror rate’, ‘dst host -
srv count’, ‘dst host diff srv rate’, ‘dst host same src -
port rate’, and ‘dst host rerror rate’.

The exhaustive, feature-by-feature reduction of our
second approach led to 8 important features, in which
we identified the 4 most important minimal features.
The 4 features are ‘service’, ‘src bytes’, ‘dst host diff -
srv rate’, and ‘dst host rerror rate’. Additional impor-
tant features are ‘dst bytes’, ‘hot’, ‘num failed logins’,
and ‘dst host srv count’.

6 EXPERIMENTS

Experiments were run with different parameters and
structures of an LSTM recurrent neural network; such
as the number of memory blocks and the cells per
memory block, the learning rate, and the number of
passes through the data. We also ran experiments with
a layer of hidden neurons, with peephole connections,
with forget gates, and with LSTM shortcut connections;
all being extensions of LSTM as documented in [7].

For training we used a combination of truncated
BPTT and RTRL, as originally described in [8]. The
input squashing function of the LSTM memory cells
was in the range [-2,2], and the output squashing func-
tion in the range [-1,1]. For the gates and standard
neurons we used an logistic sigmoid activation in the
range [0,1].

6.1 LSTM Network Parameters

To identify suitable network parameters and structure,
experiments were started with a basic LSTM network
structure using 43 input neurons connected to a hid-
den layer of two memory blocks with two cells each
and peephole connections. The input neurons were
fully connected to the hidden layer. The output was
provided by five target neurons.

The ‘10%’ KDD Cup ’99 training dataset was used
for training, and the corresponding ‘10% corrected’
dataset was used for testing. All values of the input
features were preprocessed to the range [-1,1], includ-
ing numeric and nominal features. The number of
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Figure 2: The detection rate results for all traffic
types using well-performing LSTM recurrent neural
networks, containing two memory blocks with two cells
each. We trained the networks for 50 epochs, with
different learning rates, in the interval between [0.01–
0.5]. From the results, we can conclude that we can
already get good results classifying the traffic classes
‘normal’, ‘dos’ and ‘probe’ when using a learning rate
of around 0.1.

iterations was fixed to 50 training cycles (referred to
as epochs). The performance evaluation of the learned
networks was supported by manual observation of the
confusion matrix and by accuracy. We trained neural
networks and ran performance tests to find optimal
parameters for learning rate, network type, and LSTM
features. We varied the learning rate in the interval
[0.01–0.5], and we did not use any weight decay.

We experimented with different ‘pure’ feed-forward
networks and hybrid networks, including hidden neu-
rons and LSTM memory blocks. The number of hidden
layers was fixed to one in all experiments. For both
types of networks we ran experiments with 5–86 hid-
den neurons. Each experiment consisted of eight trials.
Finally, we consecutively added forget gates (no man-
ual reset), peephole connections and shortcuts to the
basic LSTM network to assess their impact on learning
performance.

Experiments with lower learning rates showed a
slightly better classification performance. Naturally,
for a low learning rate (0.01), the expected number of
required iterations for low frequency attacks are very
large (≥ 10,000 epochs). As a trade-off between train-
ing time and classification performance, we decided to
set the learning rate to not lower than 0.1 for follow-
ing experiments. The best detection rate is shown in
Fig. 2. We conclude from these results that 50 epochs
are not sufficient to train ‘r2l’ and ‘u2r’ attacks using
any learning rate; but for the traffic classes ‘normal’,
‘dos’ and ‘probe’, a learning rate of around 0.1 then
already provides good results.

All LSTM-hybrid-networks showed good perfor-
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mance in terms of accuracy. Learning of hybrid net-
works was noticeably faster as well. The ‘best’ results
were achieved using one feed-forward network layer
with 20 hidden neurons. All trained networks achieved
‘good’ results with an accuracy value of over >90%, but
these results were slightly less accurate than results
possible with a standard LSTM network. From this
we conclude that adding hidden neurons makes LSTM
prone to over-fitting. Furthermore, we noted that the
detection rate on rare and ‘difficult-to-learn’ ‘r2l’ and
‘u2r’ attacks decreased.

Experiments with forget gates, peephole connec-
tions and shortcuts yielded an average to better clas-
sification. In all further experiments forget gates and
shortcuts were used. Peephole connections were only
activated in experiments on datasets using all features.

6.2 LSTM Network Structure Identification

To find a suitable network structure for training the
KDD Cup ‘99 data, experiments were run with LSTM
networks using four different topologies:

• Two memory blocks with two cells each,

• four memory blocks with two cells each,

• four memory blocks with four cells each, and

• eight memory blocks with four cells each.

All LSTM networks used forget gates and shortcuts;
additionally we activated peephole connections when
training with all features. The learning rate was fixed
at 0.1 and the decision threshold was set to 0.5. Traffic
classification was according to the first value larger
than the threshold in the order ‘normal’, ‘dos’, ‘probe’,
‘r2l’ and ‘u2r’. Default classification was ‘normal’. The
preprocessed ‘10% training’ and the ‘10% corrected’
test set datasets with all features.

To find the minimum number of required iterations
the training data was presented from five to up to one
thousand epochs to each of the four observed network
structures. We ran eight trials of each network setup.
Results with good accuracy for attack detection (at-
tack/normal two class classification) at reasonable cost
was reached at 60–150 epochs. The lowest standard
error was achieved after little more than 500 epochs for
all four network topologies. More complex LSTM net-
works needed more iterations to get acceptable results,
but finally attained a higher accuracy as well.

For each of the five attack classes the LSTM net-
work requires a different number of optimal iterations.
After learning a specific traffic type the network starts
overfitting. From that point the network improves in
memorizing the training data and the generalisation
performance decreases for that specific traffic type.

After 25–90 epochs, most networks learned DoS
attacks. With further training the detection rate first
peaks at 125 epochs, and then again at about 500
epochs. Network probes are mostly learned after 50–
125 epochs and also peak at about 500 epochs. The
rare attack categories, ‘r2l’ and ‘u2r’, need many more
presentations of the training data. Attacks of the
class ‘r2l’ need 200–1,000 epochs, and ‘u2r’ attacks
need 125–1,000 epochs before they are learned as well
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Figure 3: This figure shows the performance of the
LSTM network structure with four memory blocks,
containing two memory cells each (labelled as 4M2C),
which proved to be a good compromise between com-
putational cost and detection performance. Detection
rate performance was measured for each traffic class
according to the number of epochs trained.

as possible. Rare attacks might require more than
1,000 presentations of the training data; but it remains
questionable if they can be learned at all using the
available training data.

After 500–600 epochs, approximately 50% of the
trials achieve results with a low error rate. The perfor-
mance of all networks decreases after further training.
In comparison to standard neural networks with a hid-
den layer, LSTM is much more prone to over-fitting.
After learning a specific traffic type, the network im-
proves in memorising the learned traffic types in the
training data, and the generalisation performance for
these continuously decreases. Naturally, the detec-
tion performance of trained networks on the test set
quickly degrades after reaching peak performance for
the most frequent traffic type, which are, in this case,
DoS attacks.

With increasing size of the LSTM network, learning
requires more presentations of the training data. Rare
‘r2l’ attacks require more than 1,000 epochs on the
two larger LSTM networks. On the other hand, the
small LSTM network with two memory blocks has
problems learning the very rare and difficult-to-learn
‘u2r’ attacks.

We think that networks with four memory blocks
containing two cells each offer a good compromise
between computational cost and detection performance.
This type of network structure was used by us for
our next experiments. Fig. 3 shows a performance
comparison of the best results of the four different
network types evaluated.
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6.3 Classifier Performance Analysis

As learned from previous experiments in which we
evaluated different network parameters and network
structures, LSTM networks with four memory blocks
containing two memory cells each were built. We used
forget gates and shortcut connections. For experiments
training on all features we activated peephole connec-
tions. Fig. 4 outlines the applied LSTM network.

We applied learning rates of 0.5 and 0.1. Addition-
ally, we applied in selected experiments an exponential
learning decay of 0.99 or 0.999 consecutively. For
training the ‘10% training’ dataset was used. The
performance was tested on the training set and as well
on the ‘10% corrected’ test set. The networks were
trained for up to 1,000 epochs. The performance of the
trained network was measured at 25, 50, 75, 90, 100,
125, 150, 175, 200, 250, 300, 400, 500, 600, 750 and
1,000 epochs. Every experiment contained 30 trials.

At the end of every trial a 5×5 confusion matrix
was generated, accuracy and mean-squared error were
calculated, and for every target neuron detection rate,
precision and the AUC value were calculated. As
required for ROC analysis no classification threshold
was applied. All output values of all five target neurons
for every tested pattern were recorded. Every target
neuron represented one of the five target classes. The
target output with the highest numerical value was
used for traffic classification.

For the ROC calculations, we used the library
version of the proproc.2.8.0 software [62] with an non-
parametric estimate for our curve calculations. The
proproc software and support was kindly provided with-
out cost on request by the developers.

Since multi-class ROC graphs are not plotable
we examined the five target neurons of every trained
LSTN network separately. We generated an ROC-
Graph for every target neuron, representing each of
network traffic classes: ‘normal’, ‘dos’, ‘probe’, ‘r2l’
and ‘u2r’.

We trained LSTM networks and ran performance
tests for

• all features for all attacks in a single network,

• all features for all attacks in different networks,

• minimal features for all attacks in a single network,
and

• minimal features for individual attacks in individ-
ual networks.

6.4 Experiments Using All Features

We ran two experiment series, using all features, for
training LSTM recurrent neural networks with all at-
tack classes. The aim of the first experiment series
was twofold: On the one hand, we plotted ROC curves
to confirm that LSTM is actually able to correctly
classify all five traffic classes in the training data. On
the other hand, we estimated the minimum required
training epochs for each traffic class.

We trained networks for 20–1,000 epochs, with 30
trials each, adding up to a total of 480 experiments.
We applied a fixed learning rate of 0.1. At the end of

each trial, we tested the performance of the trained
neural network. For every test, we calculated the AUC
values for every target neuron and saved the sequence
of empirical operating points to plot the ROC curves.

We used all features of the preprocessed datasets,
except two features with non-changing values in the
training data. This left us with 39 input features,
which we mapped to an input layer of size 40. We
mapped the target feature, categorising one of the five
traffic classes, to five target neurons.

In the second experiment series, we focused on
training well-performing networks. Here, we directly
calculated the AUC values, without saving the para-
metric points for the ROC curves. This dramatically
reduced processing time and the amount of collected
data. We kept the previously selected network archi-
tecture and parameters, but did not anymore consider
peephole connections because they showed no benefit.
We also added mean-squared error, to accuracy and
AUC, as a standard performance measure.

Furthermore, we added an exponential decay to
the learning rate. We initialised the learning rate to
either 0.5 or 0.1, and set a decay of either 0.99 or 0.999
consecutively. Generally, training was stopped after
1,000 epochs. We also changed our testing procedure
by freezing the weights after each epoch and testing
the performance on the training and the test set, which
led us to much better results.

We first analysed the results of the first experiment
to find the best-performing LSTM network trained us-
ing all features and attack types. We observed all
the trained LSTM networks in terms of ROC perfor-
mance. We examined the five target neurons of every
trained LSTM network separately. For each neuron,
we generated a separate ROC graph and calculated
the corresponding AUC value, representing one of the
five traffic classes: ‘normal’, ‘dos’, ‘probe’, ‘r2l’ and
‘u2r’.

For the majority of trained networks, we found
that the target neurons representing normal traffic and
network probes showed an excellent ROC performance.
The 10 highest AUC values achieved for normal traf-
fic results were in the range between [0.9665–0.9716],
and for network probes, in the range between [0.9679–
0.9826]. The corresponding ROC curves are shown in
Figures 5 and 6.

The target neuron representing ‘dos’ attacks
achieves a close to perfect discrimination between ‘dos’
attacks and other traffic classes (perfect = AUC value
equal to 1.0) in well-performing networks. Here, the 10
highest AUC values are in the range between [0.9950–
0.9971]. The corresponding ROC curves are shown in
Fig. 7.

For ‘u2r’ attacks, we still achieved a good ROC
performance. The 10 networks with the highest AUC
values have a range of [0.8766–0.8909]. ‘r2l’ attacks
proved to be the most difficult to classify in the test
set. The 10 highest AUC values, in the range between
[0.5380–0.5627], all show a poor performance. We also
note that only 60% of all trained networks showed any
classification performance better than random guessing.
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Figure 4: LSTM neural network with two memory blocks containing two cells each. The input layer is fully
connected to the hidden and the output layers. This network has peephole connections and shortcuts. For reasons
of clarity, not all connections are shown.

Figure 5: ROC curves of 10 well-performing networks
for the target neuron representing the traffic class
containing ‘normal’ traffic. The corresponding AUC
values are in the range between [0.9665–0.9716]. This
shows a very good classification performance in terms
of AUC.

Figures 8 and 9 show the corresponding ROC plots.

A derivation of the curves from a straight diagonal
between the coordinates [0,0] and [1,1] to a curve bow-
ing into the corner [1,0] of the graph is recognisable in
all graphs. This shows that the trained networks were
actually able to learn at least parts of all five traffic
classes.

Figure 6: ROC curves of 10 well-performing networks
for the target neuron representing the traffic class
containing network probes. The corresponding AUC
values are in the range [0.9679–0.9826]. In terms of
AUC, this shows a very good classification performance.
The bumpy curves are an indication that this class
contains distinguishable subclasses of traffic.

The partially bumpy ROC curves are expected,
since we present whole classes of traffic where every
class contains various subclasses of traffic. During the
learning process, distinguishable subclasses do appear
as bumps in the ROC graph. The curves for network
probes and ‘dos’ attacks show that the classifier sepa-
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Figure 7: ROC curves of 10 well-performing networks
for the target neuron representing the traffic class con-
taining ‘dos’ attacks. The corresponding AUC values
are in the range [0.9950–0.9971], which shows a close
to perfect discrimination between ‘dos’ attacks and
other traffic classes.

Figure 8: ROC curves of the 10 LSTM networks with
the highest AUC values for the target neuron repre-
senting the traffic class containing ‘r2l’ attacks. The
corresponding AUC values are in the range between
[0.5380–0.5627]. This shows a rather poor ROC per-
formance.

rates at least two subclasses.

In our second experiment series we focused on total
MSE, accuracy, AUC per traffic class as performance
measures. The investigated experimental configuration
for training LSTM networks with all features and all
attacks showed good results in terms of MSE and
accuracy. The 10 lowest MSEs achieved on the test
data in 30 trials are in the range [0.0259–0.0293]. The
average MSE, picking the result with the lowest MSE

Figure 9: ROC curves of 10 well-performing networks
for the target neuron representing the traffic class con-
taining ‘u2r’ attacks. The corresponding AUC values
are in the range between [0.8766–0.8909], which shows
an acceptable ROC performance.

of each trial, is 0.0308.

The average AUC values for the five traffic classes
are 0.961 (‘normal’), 0.991 (‘dos’), 0.969 (‘probe’),
0.321 (‘r2l’) and 0.842 (‘u2r’). This shows an excellent
performance of the trained LSTM networks, which
successfully classified ‘dos’ attacks.

The performance in detecting ‘normal’ traffic, net-
work probes and ‘u2r’ attacks is likewise very good.
The AUC performance in classifying ‘r2l’ attacks is
poor. Only a few networks learn to classify ‘r2l’ attacks
with a performance better than guessing.

Table 3 shows the top five best-performing values
in terms of MAUC. The table also includes the cor-
responding AUC and MSE values, and the minimum,
average and 95% confidence interval over 30 trials of
the test data.

Picking a network with a very low MSE of 0.0259,
the five AUC values are 0.959 (‘normal’), 0.997 (‘dos’),
0.955 (‘probe’), 0.241 (‘r2l’) and 0.821 (‘u2r’). Here, we
see an exceptional performance of the LSTM network
on ‘dos’ attacks and an above-average performance on
normal traffic. This is expected since most connection
records in training and test data are related to either
‘dos’ attacks or normal traffic. All other traffic classes
show an AUC performance below average. This also
reflects in a MAUC value of 0.949, which is slightly
below average.

Nevertheless, in terms of costs and accuracy, our
trained network still outperforms the high-scoring en-
tries of the KDD Cup ’99 challenge. With 93.82%
accuracy and 22.13 cost, our network is far ahead in
first place in comparison to the winning entries of the
KDD Cup ’99 challenge. LSTM correctly classified
291,811 out of 311,029 instances from the test set. Our
result outperforms the KDD Cup ’99 winning entry by
impressive 3,462 instances.
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Table 3: Summary of test results for training LSTM networks with all features for all traffic classes in one network.
The classification performance in terms of AUC for ‘normal’ traffic, network probes and ‘r2l’ attacks is very good.
The performance for classifying ‘dos’ attacks is exceptional. Only a few networks learn to classify ‘r2l’ traffic with
a performance beyond guessing.

# MSE AUC MAUC
normal dos probe r2l u2r

1 .030 .982 .994 .944 .617 .842 .971
2 .030 .954 .995 .990 .564 .796 .964
3 .031 .956 .989 .992 .604 .927 .962
4 .029 .976 .994 .965 .430 .833 .960
5 .031 .966 .990 .913 .473 .897 .957

min. .029 .937 .982 .908 .186 .584 .935
avg. .031 .961 .991 .969 .321 .842 .950

95% conf. .956 .989 .960 .276 .812 .946
interval .965 .992 .979 .366 .872 .953

Table 4: Confusion matrix of LSTM network trained with all features and all attacks having the lowest MSE on
test data. True positive rates and precision of ‘dos’ attacks and ‘normal’ traffic are exceptional. True positive rate
and precision for network probes and ‘u2r’ attacks are also acceptable. The result for ‘r2l’ attacks does not excel
in this network.

a
ct

u
al

prediction TPR AUC
normal probe dos u2r r2l (DR)

normal 60272 233 81 6 1 0.995 0.959
probe 898 3156 111 1 0 0.758 0.955
dos 1262 233 228358 0 0 0.993 0.997
u2r 58 0 0 12 0 0.171 0.821
r2l 15828 106 399 1 13 0.001 0.241

PRECISION 0.770 0.847 0.997 0.600 0.929 COST: 0.2213
FPR (FAR) 0.072 0.002 0.007 0.000 0.000 ACC: 93.82%

Observing the results in the confusion matrix
shown in Table 4, we note the very good true pos-
itive rates and precision of ‘dos’ attacks and ‘normal’
traffic. The true positive rate and precision for network
probes and ‘u2r’ attacks are also acceptable. Unfortu-
nately, the result for ‘r2l’ attacks does not excel at all
in this network.

6.5 Performance Analysis with Minimal
Feature Sets

For the detection of all attack classes using minimal
feature sets, we used extracted minimal sets presented
in [9] and [10]. The minimal sets used for training all
attacks in a single LSTM network consisting of 8 and 4
features. We ran 30 trials to train the LSTM networks
with the 8 and 4-feature sets for 1,000 epochs each.
There we applied a learning rate of 0.1 and a decay of
0.999.

Using the 8-feature set, all trials show good results
in terms of accuracy and MSE. With the 4-feature set,
we still get good results for approximately half of the
trials. The lowest MSE found for 8 and 4 features are
0.029, 0.025 and 0.024 respectively, with an average
MSE of 0.031, 0.029 and 0.070. Here, we see the
tendency of a performance improvement towards the
smaller feature sets. But with the 4-feature set, there
also comes the disadvantage of a decreasing yield of
well-performing networks. This shows that LSTM has
increasing difficulty learning to classify the data by

using only 4 features.

In terms of MAUC, the LSTM networks trained
with 8 features show the best results. In terms of
AUC, the results show that LSTM learns to classify
the traffic classes ‘normal’, ‘probe’ and ‘u2r’ very well.
Once again, the results for classifying ‘dos’ attacks are
exceptional. Few networks learn to classify few ‘r2l’
attacks. The top five networks are shown in Table 5.

We note that the LSTM networks trained with the
4 and 8-feature sets for all attacks in one network are
superior to the results of other non-LSTM classifiers
and the winning entries of the KDD Cup ’99 chal-
lenge in terms of accuracy and costs. The results are
93.69% accuracy and 22.29 costs for the 8-feature set,
and 93.72% accuracy and 22.24 costs for the 4-feature
set. Compared to the LSTM network trained with all
features, we note that these values almost match its
performance.

The confusion matrices for the networks trained
with 4 and 8 features show that the outstanding total
performance is mainly due to an excellent detection of
‘dos’ attacks. The true positive rate for network probes
is acceptable, taken into account that some probes are
wrongly categorised as ‘dos’ attacks. The detection
of ‘r2l’ attacks is poor. The ‘u2r’ attacks are not
detected by LSTM using any of the reduced feature
sets for all attacks in one network.

The results of the best-performing LSTM networks
trained with the 8 and 4-feature sets for all attacks
in one network are presented in the form of confusion
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Table 5: Summary of test results for LSTM training with 8 features for all traffic classes in one network. In terms
of AUC LSTM learns very well to classify the traffic classes ‘normal’, ‘probe’ and ‘u2r’. The results for classifying
‘dos’ attacks are exceptional. Only some networks learn to classify few ‘r2l’ attacks.

Rank MSE AUC MAUC
normal dos probe r2l u2r

1 .025 .985 .999 .875 .811 .939 .985
2 .030 .981 .998 .928 .788 .772 .983
3 .029 .973 .995 .952 .720 .804 .976
4 .026 .969 .995 .947 .517 .954 .964
5 .031 .984 .991 .949 .423 .809 .959

min. .025 .962 .970 .714 .128 .678 .932
avg. .029 .977 .990 .920 .338 .819 .952

95% conf. .974 .986 .902 .268 .790 .947
interval .979 .993 .939 .408 .849 .957

Table 6: Confusion matrix of LSTM network trained with 8 features and all attacks with the lowest MSE on test
data. This network shows an outstanding overall performance due to an excellent detection of ‘dos’ attacks and
an acceptable classification performance of network probes. The performance of detecting ‘r2l’ and ‘u2r’ attacks is
poor; but the high AUC values suggest there is still potential to learn them.

a
ct

u
al

prediction TPR AUC
normal probe dos u2r r2l (DR)

normal 60161 223 181 0 28 0.993 0.985
probe 1001 2546 619 0 0 0.611 0.875
dos 1217 226 228408 2 0 0.994 0.999
u2r 70 0 0 0 0 0.000 0.939
r2l 15687 169 199 4 288 0.018 0.811

PRECISION 0.770 0.805 0.996 0.000 0.911 COST: 0.2229
FPR (FAR) 0.072 0.002 0.012 0.000 0.000 ACC: 93.69%

Table 7: Confusion matrix of LSTM network trained with 4 features and all attacks with the lowest MSE on test
data. This network shows an outstanding overall performance due to an excellent detection of ‘dos’ attacks and a
still acceptable performance for classifying network probes.

a
ct

u
al

prediction TPR AUC
normal probe dos u2r r2l (DR)

normal 60182 154 221 0 36 0.993 0.967
probe 889 2348 928 0 1 0.564 0.870
dos 723 195 228935 0 0 0.996 0.993
u2r 68 0 2 0 0 0.000 0.751
r2l 16229 9 81 0 28 0.002 0.304

PRECISION 0.771 0.868 0.995 - 0.431 COST: 0.2264
FPR (FAR) 0.072 0.001 0.015 0.000 0.000 ACC: 93.72%
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matrices in Tables 6 and 7.

6.6 Classifier Performance Comparison

The per-class performance results of LSTM networks
trained with all features and minimal feature sets,
in comparison with other trained classifiers, are sum-
marised in Table 8. The results confirm that in terms
of true positive rate, false positive rate, precision, accu-
racy and cost, the performance of the LSTM classifier
is superior at detecting DoS and network probes. The
results for detecting exploit-based attacks (‘r2l’ and
‘u2r’) are indeed very competitive, but do not match
the very well-performing decision tree classifier.

For network probes, DoS and ‘r2l’ attacks, LSTM
sacrifices precision for an improved true positive rate,
when training with the minimal sets. Only for ‘u2r’
attacks does LSTM improve noticeably with a reduced
feature set. Compared to the performance of other
trained classifiers on the minimal set, we note that for
‘dos’ attacks and network probes, LSTM is superior in
terms of true positive rate, false positive rate, precision,
accuracy and cost. For ‘r2l’ attacks trained with 6 and
14 features, LSTM clearly outperforms the two other
neural network-based classifiers (SVM, MLP).

7 CONCLUSIONS

We applied our own implementation of the LSTM re-
current neural network classifier to intrusion detection
data. The results show that the LSTM classifier pro-
vides a superior performance in comparison to the
results of the KDD Cup ’99 challenge and as well other
tested strong static classifiers. The strengths are in the
detection of ‘dos’ attacks and network probes, which
both produce a distinctive time series of events. The
performance on the attack classes that produce only
a few events is comparable to the results of the other
tested classifiers.

Performance is measured in terms of mean-squared
error, confusion matrix, accuracy, ROC-curve and the
corresponding AUC value. Our results show that ROC-
curves are well suited for selecting well performing net-
works, although not common in related publications.
The derivation of the ROC-curves from a straight diag-
onal between the coordinates [0,0] and [1,0] to a curve
bowing into the corner [1,0] is clearly recognisable in all
graphs. Successfully trained LSTM-networks learned
the five traffic classes at least partially.

We reasoned the selected experimental parameters
on a number of chosen LSTM-RNN network topolo-
gies in detail. Furthermore, we make suggestions on
improving LSTM performance. We used both the full
feature and minimal feature sets.

The LSTM classifier shows its strength when train-
ing ‘dos’ attacks and network probes. The target neu-
ron representing DoS attacks even achieves close to
perfect discrimination between attacks and other traf-
fic. These traffic classes tend to generate a high volume
of consecutive connection records. Here, LSTM can

strongly benefit from the fact that it can look back in
time and learn to correlate these connections.

Even the ROC-Curves of the remaining two most
difficult to learn attack classes ’r2l’ and ’u2r’ show
that LSTM is in fact able to learn these, although it
might require further training or different features to
be added to the data. These two exploit-based attack
classes generate in most cases only one connection
record. If there is any time series information related
to theses attacks hidden between other connection
records, it seems to be very difficult to extract.

It is of lesser importance for our experiments that
the attacks contained in the DARPA datasets are not
recent. Reason is that the attacks are grouped into
traffic-classes which are still valid. Therefore we expect
that our results are applicable to more recent attacks;
although this needs to be proven in future research.
Admittedly on novel attacks unrelated to these four
trained attack classes, the learned classifiers will likely
fail.

We finally conclude that LSTM is very suitable for
classifying high-frequency attacks. For low-frequency
attacks, the benefit of using LSTM vanishes. Although
we stress that the results achieved by LSTM are very
competitive. This is the first reported demonstration
of the successful application of LSTM recurrent neural
networks to intrusion detection.

8 FUTURE RESEARCH

The nature of computer attacks is that they are very
dynamic. Most of the attacks generated during the
DARPA IDS evaluation were already well-known and
outdated in the year 1998 when the evaluation was
conducted. Until today, approaches taken for detecting
and addressing attacks have changed several times. To-
day’s novel attacks are very different from the attacks
of five years ago; and in five years time, they will be
very different from today. And it is safe to assume that
they will benefit from different features to be learned
successfully.

Future intrusion detection systems supported by
machine learning algorithms will need to deal with
recent data and process it efficiently into connection
records. We need to develop a framework that sup-
ports an expert to easily enrich the generated connec-
tion records with additional information. This is for
the intuitive building of new features considered to
be relevant for the detection of novel attacks. This
could be supported by log information, network flows
and alarms provided by hosts, syslog servers, switches,
routers, firewalls, intrusion detection systems, and pen-
etration testing tools.

Finally the expert will need to label connection
records in an efficient way. Using current tools, this
task is so time consuming that once all traffic necessary
to train a supervised machine learner has been labelled,
the traffic is already far outdated. We challenge that
LSTM-RNN will perform well on more recent data.
Creation of such a test set and comparison will be a
future project.
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Table 8: The table shows the winning results of the KDD Cup ‘99 challenge presented in [16] namely decision trees
(commercial C5-variant), desision forest (DF), and the PNrule framework and the 1-nearest neighbour classifier.
Additionally we trained Decision Trees (free C4.5-variant) and standard Neural Networks (MLP) classifier on the
original KDD Cup ‘99 dataset. Then we present the full results of Decision Trees (C4.5) and standard Neural
Networks (MLP) on the in comparison with the dynamic Long Short-Term Memory (LSTM) classifier trained
with the preprocessed full-feature set (39p), 8-feature set, and 4-feature set.

normal probe dos u2r r2l
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR ACC COST

KDD Cup ’99 competition results (first three places + 1-nearest neighbour)
all C5 .995 .082 .833 .006 .971 .003 .132 .000 .084 .000 92.71% .2336

DF .994 .085 .845 .002 .975 .003 .118 .000 .073 .000 92.92% .2362
PNr .995 .089 .730 .001 .970 .001 .066 .000 .107 .001 92.59% .2387
1-NN .996 .091 .750 .002 .973 .005 .035 .000 .006 .000 92.33% .2530

Results of strong static classifiers as published in [23]
all MLP n/a n/a .887 .004 .972 .003 .132 5E-4 .056 1E-4 n/a n/a

GAU n/a n/a .902 .113 .824 .009 .228 .005 .096 .001 n/a n/a
K-M n/a n/a .876 .026 .973 .004 .298 .004 .064 .001 n/a n/a
NEA n/a n/a .888 .005 .971 .003 .022 6E-6 .034 1E-4 n/a n/a
RBF n/a n/a .932 .188 .730 .002 .061 4E-4 .058 .003 n/a n/a
LEA n/a n/a .838 .003 .972 .003 .066 3E-4 .001 3E-5 n/a n/a
HYP n/a n/a .848 .004 .972 .003 .083 9E-5 .010 5E-5 n/a n/a
ART n/a n/a .772 .002 .970 .003 .061 1E-5 .037 4E-5 n/a n/a
C4.5 n/a n/a .808 .007 .970 .003 .018 2E-5 .046 5E-5 n/a n/a

Results of LSTM-RNN in comparison to two strong static classifiers
all C4.5 .995 .089 .747 .002 .973 .003 .086 .000 .058 .000 92.58% .2421

MLP .984 .090 .725 .001 .973 .011 .086 .000 .056 .000 92.37% .2484
LSTM .995 .072 .758 .002 .993 .007 .171 .000 .001 .000 93.82% .2213

8p C4.5 .995 .088 .776 .002 .971 .007 .257 .000 .055 .000 92.50% .2450
MLP .995 .092 .648 .001 .973 .012 .000 .000 .000 .000 92.18% .2541
LSTM .993 .072 .611 .002 .994 .012 .000 .000 .018 .000 93.69% .2229

4p C4.5 .993 .088 .766 .002 .973 .006 .043 .000 .037 .001 92.46% .2488
MLP .987 .090 .654 .005 .970 .019 .000 .000 .000 .000 91.76% .2625
LSTM .993 .072 .564 .001 .996 .015 .000 .000 .002 .000 93.72% .2264
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