
22 Research Article – SACJ 56, July 2015

Block RAM-based architecture for real-time reconfiguration us-

ing Xilinx R© FPGAs

Rikus le Roux∗, George van Schoor†, Pieter van Vuuren∗

∗School of Electrical, Electronic and Computer Engineering, North-West University, Potchefstroom, South-Africa
†Unit for Engineering Research, North-West University, Potchefstroom, South-Africa

ABSTRACT

Despite the advantages dynamic reconfiguration adds to a system, it only improves system performance if the execution

time exceeds the configuration time. As a result, dynamic reconfiguration is only capable of improving the performance of

quasi-static applications. In order to improve the performance of dynamic applications, researchers focus on improving the

reconfiguration throughput. These approaches are mostly limited by the bus commonly used to connect the configuration

controller to the memory, which contributes to the configuration time. A method proposed to ameliorate this overhead is

an architecture utilizing localised block RAM (BRAM) connected to the configuration controller to store the configuration

bitstream [1, 2]. The aim of this paper is to illustrate the advantages of the proposed architecture, especially for reconfiguring

real-time applications. This is done by validating the throughput of the architecture and comparing this to the maximum

theoretical throughput of the internal configuration access port (ICAP). It was found that the proposed architecture is

capable of reconfiguring an application within a time-frame suitable for real-time reconfiguration. The drawback of this

method is that the BRAM is extremely limited and only a discrete set of configurations can be stored. This paper also

proposes a method on how this can be mitigated without affecting the throughput.

KEYWORDS: FPGA, reconfiguration, architecture, real-time, BRAM

CATEGORIES:
C.3 [Special-purpose and application-based systems]
C.1.3 [Processor architectures]: Other architecture styles
B.5.2 [Register-transfer-level implementation]: Design aids

ARTICLE HISTORY

Received 29 April 2014
Accepted 4 June 2015

1 INTRODUCTION

Reconfigurable computing refers to the utilisation of
application specific hardware in conjunction with gen-
eral purpose software to improve system performance
[3]. Initially, this was done using a modular design
where a hardware module can be substituted with an-
other to perform a specialised function [4]. A feature
of XilinxR© field-programmable gate arrays (FPGAs),
called dynamic reconfiguration, allows the device to
change a section of its hardware while the rest re-
mains operational [5]. Most of XilinxR©’s FPGAs from
the Virtex-IIR© onward incorporate this feature, with
the addition of the internal configuration access port
(ICAP) that provides access to the configuration regis-

Email: Rikus le Roux rikuslr@gmail.com, George van
Schoor george.vanschoor@nwu.ac.za, Pieter van Vuuren
pieter.vanvuuren@nwu.ac.za

ters of the FPGA. Reconfigurable computing improves
system performance by specializing the system towards
a specific application. Additional advantages include a
reduction in power consumption and component count
[5, 6, 7]. Despite the numerous advantages, dynamic
reconfiguration has one major disadvantage. Recon-
figuring an application will only improve the system
performance if the execution time exceeds the config-
uration time [8, 9]. This implies that dynamic recon-
figuration will only improve the system performance
of quasi-static applications. Typical reconfiguration
times achieved are in the order of milliseconds and
despite on-going research, this still holds true for most
applications.

The reason why most reconfigurable architectures
are unsuitable for real-time applications is due to their
long reconfiguration time or the delay induced by the
reconfiguration process. In order to mitigate these
shortcomings and migrate reconfigurable computing

Research Article – SACJ 56, July 2015 23

to dynamic applications, various attempts have been
made to improve the throughput of the system to rival
that of the ICAP controller. The maximum theoretical
throughput of the ICAP is 800 Mbps and 3.2 Gbps
for the Virtex-IIR© and 5 respectively. However, the
throughput of the systems are significantly lower than
that of the ICAP, due to the bus-based architectures
used. In fact, it is estimated that about 40% of the
overhead is contributed by the XilinxR© ICAP driver
function [10]. Attempts to improve the throughput of
the system include:

• reducing bitstream size,

• optimizing the way the bitstreams are written to
the memory, and

• optimizing the transfer of the bitstream to the
ICAP [11].

Improving the throughput of the system allows the
ICAP to process new data every clock cycle, which
optimizes reconfiguration throughput. This reduction
in reconfiguration time will allow dynamic applications
such as adaptive control or gain scheduling to uti-
lize dynamic reconfiguration to not only change their
parameters, but also to completely change their archi-
tectures. Reconfiguration could also improve the area
utilisation. Bruneel et al. [12] showed that implement-
ing an adaptive filter using reconfiguration requires
40% less lookup tables than its static counterpart.

The only architecture capable of maximizing
throughput without any delay is the block RAM
(BRAM)-based architecture proposed in [1, 2]. This
architecture bypasses the system bus and is capable of
reconfiguration at the maximum theoretical through-
put of the ICAP. The architecture also allows the ICAP
to be overclocked, further increasing the throughput.

The aim of this paper is to illustrate the advan-
tages of the proposed BRAM-based architecture for
reconfiguring real-time applications and to verify the
throughput claimed in the literature. It also proposes
a design methodology for the most important aspects
of the architecture and proposes a method to overcome
the size limitation imposed by the limited amount of
BRAM. The paper starts off with Section 2 by dis-
cussing dynamic reconfiguration for quasi-static appli-
cations and its limitations for reconfiguring dynamic
applications. The architectures proposed in the liter-
ature to improve the reconfiguration throughput are
also discussed. From these architectures, the BRAM-
based architecture was identified as the most promising
for real-time reconfiguration. Section 3 discusses the
design methodology for implementing this architecture
along with possible issues and how they can be resolved.
Section 4 discusses the experimental setup used to vali-
date the reconfiguration throughput of the architecture
and the results given in Section 5. Section 6 then con-
cludes by proposing a method to ameliorate the size
limitation imposed by the BRAM. The overall conclu-
sion is given in Section 7.

2 RELATED WORK

Most research in reconfigurable computing is validated
using quasi-static applications such as key specific data
encryption standard (DES) [8], sub-graph isomorphism
[13], Boolean satisfiability (SAT) [14] and adaptive
filters [15].

Eldredge and Hutchings [16, 17] used run-time re-
configuration to enhance the functional density of an ar-
tificial neural network, dubbed the Run-Time Reconfig-
ured Artificial Neural Network (RRANN). Functional
density is a measure of the computational throughput
of the system and is a function of the area and execu-
tion time [18]. The RRANN architecture divides the
backpropagation algorithm into three sequential stages.
Dynamic reconfiguration is then used to adapt one of
the stages to suit the requirements. The reconfigura-
tion process is controlled using an external processor
of a host personal computer (PC) (which stores all the
configuration information for the neural network) and
adds between 14 and 21 ms to the execution time.

Economakos [19] presented an embedded run-time
reconfigurable proportional-integral-derivative (PID)
controller. A microcontroller was used to reconfigure
the PID parameters via the ICAP using configura-
tion data stored in the on-chip bus-connected block
RAM (BRAM). Only the gain parameters are recon-
figured, which are tuned using a fuzzy logic module
implemented on the embedded processor. The small-
est partial bitstream that can be transferred through
the ICAP is 41 32-bit words, which equals 1312 bits.
This implies that changes smaller than 41 words can be
performed at an extremely high speed. As already men-
tioned, the ICAP reconfigures at a rate of 400 MBps.
By placing a set of PID parameters inside a frame,
Economakos showed that, considering frame length
and reconfiguration rate, the reconfiguration time for
each parameter change is 0.41 µs. Even though this
methodology is capable of fast reconfiguration, a bus-
based architecture was again used, adding additional
overhead, and the results specified are assumed to be
per parameter.

The drawback of most reconfigurable architectures
is that buses are used to connect the various compo-
nents of the architecture. In fact, as illustrated by
Fig. 1 and 2, even the configuration controller intel-
lectual property (IP) cores provided by XilinxR© are
bus-based, which adds additional overhead to the con-
figuration process. Consequently, many researchers
have adapted their system architectures to mitigate
the overhead incurred. This is done by adding func-
tionality such as direct memory access (DMA) [11, 20],
burst modes [21, 22] and dedicated BRAM [1, 2].

Fig. 3 illustrates a reconfigurable architecture with
DMA capability. DMA functionality allows the con-
figuration controller’s hardware subsystem to access
the system memory directly. This improves efficiency
since the embedded processor is relieved from the con-
figuration process. However, since the processor bus
is still used to connect the DMA controller to the ex-
ternal memory, this type of architecture still induces

24 Research Article – SACJ 56, July 2015

reconfiguration overhead. The addition of a multi-port
memory controller (MPMC) can allow the DMA con-
troller to access the external memory directly without
the need for a system bus. The result is an average
reconfiguration speed almost three times faster than
that of the DMA-architecture [1].

Command decoding state machine

Command
decoding state

machine

ICAP control state
machine

DPRAM ICAP

Configuration
memory

Host bus (OPB)

HWICAP

OPB_HWICAP

Figure 1: XilinxR© proprietary on-chip peripheral bus
(OPB) ICAP controller [23]

PLBv46 Slave burst interface

ICAP control state
machine

ICAP

Configuration
memory

HWICAP

XPS_HWICAP

Read/Write
asynchronous

FIFO

Registers

PLB interface)

Figure 2: XilinxR© proprietary processor local bus
(PLB) ICAP controller [24]

Streaming modes are also used in conjunction with
DMA to improve the throughput [22]. In these designs,
the bitstream can be loaded continuously as needed.

Figure 3: Reconfigurable architecture with DMA

Figure 4: Reconfigurable architecture with BRAM

This ensures that the local buffer, normally a first-in,
first-out (FIFO) that feeds the ICAP with configura-
tion data, is always full. The result is a continuous
source of configuration data to the ICAP, compared
to the fetch-and-configure model of the traditional
reconfiguration process.

Even though these improved bus-based systems are
capable of reconfiguration throughputs rivalling that of
the ICAP, they are limited by one major drawback. All
these architectures suffer from configuration latency.
Multiple clock cycles are required to transfer the ini-
tial configuration frames from external memory to the
localised memory from where it can be used by the
ICAP. Liu et al. [22] aimed to minimize the configura-
tion overhead by incorporating streaming, compression
and DMA into an intelligent ICAP controller. Despite
their experimental results showing their implementa-
tion nearly saturates the throughput of the ICAP, the
DMA and compression add configuration overheads of
17 and 6 clock cycles respectively.

The dedicated BRAM architectures shown in Fig. 4
aim to mitigate all configuration overhead by using a
dedicated BRAM directly connected to the FPGA fab-
ric to store the configuration data. The FIFO buffers
shown in Figures 1 to 4 are used to store sections of
the configuration data moved from external memory,
whereas the BRAM is used to store the entire bit-
stream. Evidently, the drawback is that the BRAM
should be significantly large. For bitstreams too large
to fit in the BRAM, partial bitstreams can be loaded
into the BRAM using the processor bus.

Alternatively, the bitstreams can also be com-
pressed to fit into the BRAM. This could also have
the added benefit of reducing the reconfiguration time,
since a smaller amount of data need to be transferred
to the configuration memory. In general, the reconfig-
uration time can be calculated by dividing the size of

Research Article – SACJ 56, July 2015 25

the bitstream (in bits) by the throughput of the ICAP.
Reducing the size of the bitstream will thus also reduce
the reconfiguration time. Even though compression
techniques such as Lempel-Ziv-Welch (LZW), Lempel-
Ziv (LZ7) or custom algorithms [1, 25] are capable of
reducing the bitstream significantly [26], the bitstream
has to be decompressed before being sent to the con-
figuration memory. Depending on the decompression
algorithm used, this could contribute significantly to
the reconfiguration time. The more complex the algo-
rithms, the bigger the impact on reconfiguration time
will be.

The BRAM-based architecture is therefore re-
garded as the most suitable, if real-time reconfiguration
is required. To verify this, two simple applications were
implemented and reconfigured using the proposed ar-
chitecture. The next section discusses the design flow
used for designing and implementing these applications,
and highlights some of the pitfalls encountered.

3 DESIGN FLOW

The XilinxR© partial reconfiguration (PR) design flow
was used to design the application using the ISER©

Design Suite [27]. Even though a newer partial recon-
figuration design flow is available for XilinxR©’s newer
VirtexR©-7, KintexR©-7 and ArtixR©-7 FPGA families
using VivadoR©, this flow is not supported on older fam-
ilies. However, the PR flow implemented in XilinxR©’s
Integrated Synthesis Environment (ISER©) can also be
applied to newer families.

Fig. 5 shows the basic premise of the PR flow. In
the figure, the function implemented in Reconfigurable
block ‘A’ is modified by switching between several
configurations, A1.bit, A2.bit, A3.bit and A4.bit, while
keeping the rest of the logic intact.

FPGA

Reconfigurable
block ‘A’

A4.bit

A3.bit

A2.bit

A1.bit

Figure 5: Basic premise of partial reconfiguration illus-
trating configurations being swapped to and from the
device [27]

Using the PR design flow, certain issues were en-
countered while implementing the test applications.
The following sections are dedicated to addressing
these, along with important design aspects of the ar-
chitectures. The first issue encountered, and an im-
portant design aspect, was initialising the BRAM with
the configuration data.

Figure 6: Sectional view of the bitstream contents

3.1 BRAM initialisation

The BRAM should be initialised with the reconfigu-
ration data, also known as the bitstream. However,
this poses some issues since the bitstream cannot be
loaded directly into the BRAM using XilinxR©’s CORE
Generator

TM
, which only supports .coe-files. A .coe-file

is a text-based file containing a header and initialisation
data for the BRAM, whereas the bitstream contains
binary data representing the configuration bits of the
FPGA. An example of an unformatted bitstream is
shown in Fig. 6 in hexadecimal-format. As can be seen,
the data are not grouped which complicates the data
loading process.

Using BitGen
TM

the bitstream can be converted
into American standard code for information inter-
change (ASCII), shown in Fig. 7. As can be seen, the
data are grouped into 32-bit sets each representing a
configuration command, some of which are also listed
in the figure. This ASCII-file can easily be loaded into
the BRAM as a .coe-file. Alternatively, it can also be
loaded into BRAM on synthesis using the VHDL con-
struct shown in Listing 1. This construct is capable of
reading a text-based file containing the configuration
data and initializing the BRAM.

A central component in the proposed reconfigura-
tion architecture is the hardware required to facilitate
the reconfiguration process. This is discussed in the
next section.

3.2 Hardware controlled reconfiguration

Hardware controlled reconfiguration (HCR) refers to
the use of hardware implemented on the FPGA to
control the reconfiguration process, compared to con-
ventional methods that require a processor bus, such
as the processor local bus (PLB) or XilinxR© Platform
Studio (XPS) bus. Using hardware to control the re-
configuration process involves using a state machine.
This state machine is based on the state machine used
for MultiBoot, which is a feature included in XilinxR©

FPGAs. It allows an active application to fall back to
a previous good configuration (known as the ‘golden
image’) in the event of a configuration failure, opera-
tional failure or single event upset (SEU). It also allows
for warm boot reconfiguration, a sub-category of the
fall-back reconfiguration, which allows only a section
of the device to be reconfigured without affecting the
remainder of the device [28, 29].

26 Research Article – SACJ 56, July 2015

Listing 1: VHDL construct to load bitstream into BRAM

type <romtype> i s array (0 to <rom width>)
of b i t v e c t o r (< rom addr bits> downto 0) ;

impure function <rom function name> (< rom f i le name> : in s t r i n g)
return <romtype> i s
FILE <r o m f i l e> : t ex t i s in <rom f i le name >;
variable <l ine name> : l i n e ;
variable <rom name> : <romtype>;

begin
for I in <romtype>’range loop

r e a d l i n e (r o m f i l e >, <l ine name >);
read (< l ine name >, <rom name>(I)) ;

end loop ;
return <rom name>;

end function ;

signal <rom name> : <romtype> := <rom function name>(”<f i l e name>”) ;

Figure 7: Sectional view of the ASCII converted bit-
stream contents

The state machine controlling the reconfiguration
process directly drives the pins of the ICAP, as shown
in Fig. 8. For the MultiBoot implementation, the con-
figuration commands are simply supplied by the state
machine. However, the state machine controller for
the proposed architecture requires an interface to the
BRAM from where the configuration data are read.
The reconfiguration process is triggered by means of

Figure 8: Control state machine interface to the ICAP

Set
WRITE

low

Set CE
low

Configure

End

Read
config

Write
config

Increase
addr

Read
ICAP

DONE
pin not
set

DONE
pin set

Set
WRITE

high

Begin

Trigger
not set

Figure 9: Hardware reconfiguration state machine flow
diagram

an external trigger supplied by the user logic. This is
followed by pulling the CE and WRITE pins low to
enable the ICAP and write operations to the ICAP.
The configuration process can then commence by read-
ing the first configuration word from the BRAM, which
is sent to the ICAP via the input port, I , on each edge
of CLK . This process will continually monitor the
bitstream to detect the DESYNC command string,
which indicates a complete reconfiguration and releases
the configuration logic. Alternatively, the ICAP out-
put, O , can also be used to detect the DESYNC
command string. If the value on the output changes
from 0xDF to 0x9F, the DESYNC command was
received and the device is desynchronised [30]. If
the DESYNC command is not received, the address
pointer is increased to read the subsequent configu-

Research Article – SACJ 56, July 2015 27

Table 1: ICAP pin description

Pin
Name

Type Description

CLK Input ICAP interface clock

CE Input Active-low ICAP inter-
face select

WRITE Input Selects read or write op-
eration

I[31:0] Input ICAP write data bus

O[31:0] Output ICAP read data bus

BUSY Output Active-high busy status

(4)

INIT B a
_

r

CCLK
"

W
(1) (6)

CS B X
(13)

£L
(2) (5) (14)

RDWR B X
(8) (9) (10) (11)

DATA[0:7]

BUSY

DONE

_

(3)

High-Z

(7)
3.

()

/
UG191 c2 16 07240

IPROG

CLK

CE

WRITE

I[31:0]

BUSY

DONE

Figure 10: Timing diagram for ICAP data loading

ration word from the memory. This whole process is
illustrated by the flow diagram of the state machine
in Fig. 9, and the functionality of the ICAP pins is
summarised in Table 1.

3.3 Reconfiguration timing

The ICAP port is closely related to the SelectMAP
configuration interface. SelectMAP is an 8, 16 or 32-bit
bidirectional external data bus interface to the config-
uration logic and can be used for both configuration
and readback. The ICAP, as the name suggests, is
an internal port with similar ports and timing as the
SelectMAP interface. The timing for the ICAP is il-
lustrated in Fig. 10. The IPROG signal prepares the
device for configuration without resetting the configu-
ration logic. If the chip is enabled and set for writing
the configuration data, the data are written to the con-
figuration memory one byte at a time. The DONE
signal is not used during the configuration process and
is set to a high impedance. After the configuration is
done, the DONE flag is set. The hardware controlled
reconfiguration process should adhere to this timing
for proper reconfiguration.

4 EXPERIMENTAL SETUP

To evaluate the throughput of the BRAM-based ar-
chitecture, two simple applications were created on a
XilinxR© ML507 development board. The first appli-
cation switches between two configurations by means
of dynamic reconfiguration. Each configuration en-
capsulates a set of three parameters used to modify
the frequency of a pulse width modulator connected

PWM
Frequency
parameters

Reconfigurable module

Reconfiguration
controller

S
ta

te
 in

d
ica

to
rs

BRAM

Figure 11: Block diagram of the first experimental
design

Multiply-
accumulate

Reconfigurable module

Reconfiguration
controller

Output indicator

BRAM

C
o
n
fi
g

u
ra

tio
n

se
le

c
to

r

X1

X2

X3

� = �����

�

���

Figure 12: Block diagram of the second experimental
design

to an external blinking light emitting diode (LED).
The reconfiguration is triggered using an external push
button and since the reconfiguration process is handled
by a state machine, it is possible to verify each state
of the configuration process using external LEDs.

Fig. 11 shows a block diagram depicting the in-
terconnectivity between the components. The recon-
figuration controller contains the MultiBoot state
machine shown in Fig. 9 and is responsible for recon-
figuring the frequency parameters controlling the
pulse width modulation (PWM). The top level is
only used to instantiate the components. The reconfig-
uration time is measured from the moment the external
trigger goes high to when the active low LED, indi-
cating the “DONE”-state of the configuration process,
illuminates.

The second application further illustrates and eval-
uates the proposed architecture by storing nine dif-
ferent configurations of a multiply-accumulate (MAC)
in the BRAM. Since more configurations have to be
stored, it was decided to follow the difference-based
reconfiguration design flow [31], instead of PR as in the
first design. Difference-based reconfiguration compares
two designs and only the differences are encapsulated
in the configuration file. The benefit is significantly
smaller configurations that result in faster reconfigu-

28 Research Article – SACJ 56, July 2015

0 70

10000000

ST_BEGIN ST_CONFIG ST_DONE

FFFFFFFF 00000000 00000000 00000000 00000000 04000000 00000000

CLK_100MHz

CLK_200MHz

RESET

MAC_output 0 70

Trigger

LED_output1

LED_output2

LED_output3

LED_output4

LED_output5

LED_output6

LED_output7

LED_output8

ConfigSelect 10000000

StateMachine ST_BEGIN ST_CONFIG ST_DONE

ICAP_CE

ICAP_INPUT FFFFFFFF 00000000 00000000 00000000 00000000 04000000 00000000

ICAP_WRITE

Entity:top_main_tb Architecture:rtl Date: Fri Apr 04 06:29:55 PM South Africa Standard Time 2014 Row: 1 Page: 1

0 ps 500000 ps 1000000 ps 1500000 ps 2000000 ps

535000 ps

2265000 ps

1730000 ps

70224

Figure 13: Timing diagram of the second experimental design

ration. However, difference-based reconfiguration has
a couple of drawbacks and is not recommended for
making large circuit changes, which is why XilinxR©

recommends the PR design flow. Despite this, this is
an ideal design to illustrate and verify the hardware
controlled reconfiguration.

As seen in Fig. 12, the required configuration is
selected using a dual in-line package (DIP) switch
(configuration selector) before triggering the recon-
figuration with a push button. The output indi-
cator is connected to external LEDs and indicates
the selected configuration, based on the output of the
multiply-accumulate (MAC).

5 EXPERIMENTAL RESULTS

For the first application, the partial configuration data
consists of 1658 32-bit words. Considering that the
VirtexR©-5 ICAP has a maximum theoretical through-
put of 400 MBps, it is possible to transfer the entire
bitstream through the ICAP within 16.58 µs.

It was shown in the literature that it is possible to
overclock the ICAP above the XilinxR©-recommended
100 MHz [32, 33]. To investigate the maximum clock
frequency of the ICAP without specifically designing
for optimal clock propagation, the frequency of the
ICAP was gradually increased. At twice the recom-
mended clock frequency, the reconfiguration time of
the first application can be reduced to 8.29 µs as shown
in Fig. 14. At three times the recommended ICAP
frequency the reconfiguration process failed.

Further investigation showed that the cause of
this failure was not due to a limitation in the maxi-
mum clock frequency of the BRAM. As specified in
the XilinxR© documentation [34], the maximum clock
frequency of BRAM (v6.2) is 450 MHz. Hansen [32]
further confirmed that it is theoretically possible to
clock the ICAP at a maximum frequency of 580 MHz
if a set-up time of 0.49 ns is assumed for configurable
logic blocks’ (CLB) flip-flops. In fact, numerous re-

searchers have shown it is possible to overclock the
ICAP above 300 MHz [32, 33]. It is thus evident that
the 300 MHz limitation was due to sub-optimal design.

The bitstream of the second application contains
346 32-bit words. Keeping the ICAP clock at the
maximum frequency for this design—200 MHz— it is
possible to transfer the entire bitstream to the config-
uration memory in 1.730 µs. Fig. 13 shows the results
of this application. Marker 1 is placed when the recon-
figuration state starts and marker 2 is placed when the
Done-state is entered. The time-lapse between these
two markers is measured to be 1.730 µs, which matches
the calculated reconfiguration time. Also seen in the
figure are the ICAP control signals, the configuration
data sent to the ICAP, clock signals, configuration
selected, MAC output and the LEDs indicating the
current configuration. It is easy to see that the MAC
output changes when the reconfiguration completes
and the LED changes correspondingly.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
-5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time [s]

V
o
lta

g
e

 [
V

]

Button response

LED response

8.29 s

Figure 14: Reconfiguration response of the hardware
controlled experimental set-up

Using difference-based reconfiguration yields a sig-

Research Article – SACJ 56, July 2015 29

nificantly smaller configuration. For this particular
application, the resulting configuration only contains
346 32-bit words. Since the reconfiguration time is
directly related to the number of words in the con-
figuration, a reconfiguration time of 1.730 µs can be
measured using the experimental setup.

For the purpose of this discussion, consider an
application with a control cycle of 50 µs. If a real-
time system can be defined as one which “controls
an environment by receiving data, processing them,
and returning the results sufficiently quickly to affect
the environment at that time” [35], this implies that
the reconfiguration process needs to fit within the
remaining control cycle time after all other processing
completes. Considering the worst reconfiguration time
of the experimental setup, 16.58 µs, this leaves 33.42
µs for all other processing. Should this be insufficient,
the buffer in the control cycle can be increased by
overclocking the ICAP—reducing the reconfiguration
time even further. If only small changes need to be
made to the design, difference-based reconfiguration
can be used to reduce the configuration size and obtain
the best possible reconfiguration time.

6 OVERCOMING THE LIMITATION OF THE
BRAM

As already mentioned, the primary drawback of the
BRAM-based architecture is the size limitation. For
example, the VirtexR©-5 family of FPGAs from XilinxR©

has between 936 and 16,416 Kb if all the BRAM blocks
are used. This implies that only a subset of configura-
tions can be stored.

Dynamic circuit specialisation (DCS) is a technique
used to dynamically specialize a circuit implemented
on an FPGA according to certain parameters. The idea
is that each time a parameter changes, the device is
reconfigured to fit this parameter [10]. The most com-
monly known DCS method is configuration swapping,
which allows a section of an FPGA to be reconfigured
by swapping the current configuration on the device
with a new configuration. The individual configura-
tions are generated by running the toolflow for each
possible parameter value and storing the result off-line.
This approach works fine for a small number of config-
urations, but the storage required grows exponentially
with the number of parameters and the number of
bits needed to represent each parameter. Representing
three PID parameters using 16 bits each results in 48
configuration bits, giving a possible 248 configurations -
each requiring off-line storage space. Hence, generating
configurations for each possible parameter and storing
them off-line quickly becomes infeasible for real-time
applications.

It is worth noting that the assumption is made that
every single configuration is required by the application,
whereas in practice this might not be the case. Only
a subset of the configurations might be sufficient for
nominal operation. In this case, it is possible to retain
only the needed subset thus mitigating the storage-
space limitation.

The solution would seem to generate all the config-
urations on-line and in real-time. This would result in
a highly specialised configuration, because the config-
uration can be specialised for all possible parameters.
However, running a conventional FPGA toolflow in
real-time is computationally very expensive. A tra-
ditional toolflow typically takes minutes to hours to
complete. This makes this approach only feasible for
applications with slowly changing parameters.

As a result, Bruneel [10] proposed a method called
parameterisable configuration that allows a bitstream
to be specialised on-line according to a set of criteria.
The fundamental concepts underlying this method-
ology are constant propagation and parameterisable
configurations. The bits representing the FPGA con-
figuration can be expressed as a Boolean function of
a set of parameters (called ‘tuning functions’). The
result is a parameterised bitstream (PBS). Using a
PBS specializer, any specific set of parameters can be
evaluated to transform the PBS into a regular con-
figuration, which can be evaluated at run-time. This
process is illustrated in Fig. 15.

The toolset used by Bruneel enables automatic
implementation of DCS by means of two methods
[36]. The first expresses only the bits of the lookup
tables in the configuration file as Boolean functions.
These lookup tables are dubbed tunable lookup tables
(TLUTs). All other configuration bits are static. The
second method expands on this methodology and adds
tunable routing bits. This new method is dubbed the
tunable connections, or TCON, method. Even though
TCON will lead to more compact solutions, TLUT
will result in faster reconfiguration. Using these meth-
ods, Bruneel built several parameterisable systems.
These include FIR filters, ternary content-addressable
memory (TCAM), key-based encryption and DNA
alignment systems that run on commercial FPGAs
[15, 10, 37]. The specialisation was done using the em-
bedded PowerPC and ICAP of the Virtex-II ProR©. It
was determined that a coefficient change of the FIR fil-
ter can be reconfigured in 1.74 ms, whereas the content
of the TCAM can be rewritten in 1.72 ms.

Unfortunately, Bruneel’s toolset has an important
limitation to consider when designing a real-time sys-
tem. It was found that the specialisation process can
take a significant amount of time and since this has to
be done for each parameter change, this process will
add significant overhead to the configuration process.

Figure 15: Parameterisable configuration specialisation
architecture

30 Research Article – SACJ 56, July 2015

The result is that parameterizing a module might not
yield the expected benefits of reconfiguration. Despite
these limitations for real-time applications, this con-
cept of specializing a bitstream can be incorporated
into the BRAM-based hardware-controlled reconfigura-
tion architecture. This will allow the bitstream stored
in the BRAM to be adapted according to specific con-
ditions, overcoming the size limitation. The proposed
architecture is shown in Fig. 16.

Even though parameterisation is currently unsuit-
able for real-time reconfiguration, methods that can
be used in real-time are being investigated.

7 CONCLUSION

Despite the extensive research on improving the
throughput of reconfigurable applications, the recon-
figuration speed is limited by the processor bus con-
necting the individual components in the system. This
severely limits the usage of reconfigurable computing
in dynamic applications.

This paper focussed on the BRAM-based architec-
ture proposed in the literature as a means to improve
the throughput of reconfigurable applications, thus
reducing reconfiguration time. Verifying the through-
put was done by implementing and reconfiguring two
simple designs using the proposed architecture. In
the first application, three parameters similar to gains
in PID control are reconfigured. These three param-
eters control the duty cycle of a blinking LED. In
the second design, a multiply-accumulate (MAC) was
implemented and the constants reconfigured. It was
shown that a bitstream consisting of 1658 32-bit words
can be transferred to the configuration memory within
8.29 µs, which is sufficient for real-time reconfigura-
tion. This time can be reduced even further by proper
constraints or by adding custom hardware, allowing
the ICAP to be clocked above the recommended 100
MHz. Another alternative for reducing the reconfigu-
ration time even further is to use the difference-based
reconfiguration design flow, which reduces the size of
the bitstream. However, this method can only be used
when making small changes to a design.

The primary drawback of the proposed reconfig-
uration architecture is the limited amount of BRAM
available to store configuration data. By proposing the
use of a concept called parameterisable configuration,
the hypothesis is that only a single parameterisable

Figure 16: Block diagram of the proposed architecture

bitstream has to be stored in the BRAM, whereafter it
is specialised for any required hardware set. Unfortu-
nately, the current methods for specializing a bitstream
could not yield any benefits due to the overhead from
the specialisation process. Consequently it is unsuit-
able for real-time reconfiguration. Further research is
under way to determine a suitable real-time specialisa-
tion method.

Due to the complexity of the FPGA routing, it is
estimated that only lookup table (LUT) contents will
be specialisable. Since LUTs are the primary compo-
nents of an FPGA, this implies that most applications
implemented on an FPGA would be able to benefit
from this specialisation. Additionally, by using dis-
tributed arithmetic most multiply-accumulate (MAC)
instructions can also be reconfigured, which will be
greatly beneficial for real-time applications. This is
due to MACs being the foundation of many digital
implementations, including filters and PID control.

ACKNOWLEDGEMENTS

This research was done under the Technology and Hu-
man Resources for Industry Programme (THRIP) and
Oppenheimer Memorial Trust Grant (Ref. 19328/01).

REFERENCES

[1] M. Liu, W. Kuehn, Z. Lu and A. Jantsch. “Run-time
partial reconfiguration speed investigation and archi-
tectural design space exploration”. In International
conference on field programmable logic and applica-
tions, 2009., 2, pp. 498 –502. Sept 2009. ISSN 1946-
1488. DOI http://dx.doi.org/10.1109/FPL.2009.

5272463.

[2] K. Van der Bok, R. Chaves, G. Kuzmanov, L. Sousa
and A. V. Genderen. “Dynamic FPGA reconfigura-
tions with run-time region delimitation”. In Proceed-
ings of the 18th annual workshop on circuits, systems
and signal processing (ProRISC), pp. 201–207. 2007.

[3] K. Compton and S. Hauck. “Reconfigurable comput-
ing: A survey of systems and software”. ACM com-
puting surveys, vol. 34, no. 2, pp. 171–210, June 2002.
DOI http://dx.doi.org/10.1145/508352.508353.

[4] G. Estrin. “Parallel processing in a restructurable
computer system”. IEEE transactions on electronic
computers, vol. 12(5), pp. 747–755, 1963. DOI http:

//dx.doi.org/10.1109/PGEC.1963.263558.

[5] T. J. Todman, G. A. Constantinides, S. J. E. Wilton,
O. Mencer and W. Luk. “Reconfigurable comput-
ing: Architectures and design methods”. In IEE
proceedings–Computers and digital techniques, vol.
152, pp. 193–207. 2005. DOI http://dx.doi.org/

10.1049/ip-cdt:20045086.

[6] E. Kusse and J. M. Rabaey. “Low-energy embedded
FPGA structures”. In Proceedings of the 1998 in-
ternational symposium on low power electronics and
design (ISLPED’98), pp. 155–160. 1998. DOI http:

//dx.doi.org/10.1145/280756.280873.

[7] G. Stitt, F. Vahid and S. Nematbakhsh. “Energy
savings and speedups from partitioning critical soft-
ware loops to hardware in embedded systems”. ACM

http://dx.doi.org/10.1109/FPL.2009.5272463
http://dx.doi.org/10.1109/FPL.2009.5272463
http://dx.doi.org/10.1145/508352.508353
http://dx.doi.org/10.1109/PGEC.1963.263558
http://dx.doi.org/10.1109/PGEC.1963.263558
http://dx.doi.org/10.1049/ip-cdt:20045086
http://dx.doi.org/10.1049/ip-cdt:20045086
http://dx.doi.org/10.1145/280756.280873
http://dx.doi.org/10.1145/280756.280873

Research Article – SACJ 56, July 2015 31

transactions on embedded computer systems, vol. 3,
no. 1, pp. 218–232, February 2004. DOI http://dx.

doi.org/10.1145/972627.972637.

[8] J. Leonard and W. Mangione-Smith. “A case study
of partially evaluated hardware circuits: Key specific
DES”. Proceedings of the international workshop on
field programmable logic and applications (FPL), pp.
151–160, 1997. DOI http://dx.doi.org/10.1007/3-

540-63465-7_220.

[9] S. Singh, J. Hogg and D. McAuley. “Expressing dy-
namic reconfiguration by partial evaluation”. Proceed-
ings of the IEEE symposium on FPGAs for custom
computing machines (FCCM), 1996.

[10] K. Bruneel. Efficient circuit specialization for dynamic
reconfiguration of FPGAs. Ph.D. thesis, Faculty of
Engineering Sciences and Architectures, Ghent Uni-
versity, Belgium, 2011.

[11] C. Claus, F. Muller, J. Zeppenfeld and W. Stechele.
“A new framework to accelerate Virtex-II Pro dy-
namic partial self-reconfiguration”. In Parallel and
distributed processing symposium, 2007. IPDPS 2007.,
pp. 1–7. March 2007. DOI http://dx.doi.org/10.

1109/IPDPS.2007.370362.

[12] K. Bruneel, F. M. A. Abouelella and D. Stroobandt.
“Automatically mapping applications to a self-
reconfiguring platform”. Proceedings of design, au-
tomation, and test Europe, pp. 964–969, 2009.

[13] S. Ichikawa and S. Yamamoto. “Data dependent
circuit for subgraph isomorphism problem”. Pro-
ceedings of the international conference on field pro-
grammable logic and applications (FPL), pp. 1068–
1071, 2002. DOI http://dx.doi.org/10.1007/3-

540-46117-5_109.

[14] P. Zhong, M. Martonosi, P. Ashar and S. Malik. “Ac-
celerating Boolean satisfiability with configurable hard-
ware”. Proceedings of the IEEE symposium on FPGAs
for custom computing machines (FCCM), pp. 186–195,
1998. DOI http://dx.doi.org/10.1109/FPGA.1998.

707896.

[15] K. Bruneel, P. Bertels and D. Stroobandt. “A method
for fast hardware specialization at run-time”. In In-
ternational conference on field programmable logic
and applications, 2007. FPL 2007, pp. 35–40. Aug
2007. DOI http://dx.doi.org/10.1109/fpl.2007.

4380622.

[16] J. Eldredge and B. Hutchings. “RRANN: The run-
time reconfiguration artificial neural network”. In
Proceedings of the IEEE 1994 custom integrated cir-
cuits conference, pp. 77 –80. May 1994. DOI http:

//dx.doi.org/10.1109/CICC.1994.379763.

[17] J. Eldredge and B. Hutchings. “Run-time recon-
figuration: A method for enhancing the functional
density of SRAM-based FPGAs”. In Journal of
VLSI signal processing, pp. 67–86. 1996. DOI http:

//dx.doi.org/10.1007/bf00936947.

[18] M. Wirthlin and B. Hutchings. “Improving func-
tional density using run-time circuit reconfiguration
[FPGAs]”. IEEE transactions on VLSI systems, vol. 6,
pp. 247–256, 1998.

[19] G. Economakos and C. Economakos. “A run-time
reconfigurable fuzzy PID controller based on modern
FPGA devices”. In Proceedings of the 2007 Mediter-
ranean conference on control and automation, pp. 1–
6. Jun 2007. DOI http://dx.doi.org/10.1109/MED.

2007.4433812.

[20] C. Claus, B. Zhang, W. Stechele, L. Braun, M. Hub-
ner and J. Becker. “A multi-platform controller al-
lowing for maximum dynamic partial reconfiguration
throughput”. In International conference on field pro-
grammable logic and applications, 2008, pp. 535–538.
Sept. 2008. DOI http://dx.doi.org/10.1109/FPL.

2008.4630002.

[21] C. Claus, F. Altenried and W. Stechele. “Dynamic
partial reconfiguration of Xilinx FPGAs lets systems
adapt on the fly: A video-based driver assistance
application demonstrates effective use of situation-
adaptive hardware”. Xcell journal, vol. 70, pp. 18–23,
First Quarter 2010.

[22] S. Liu, R. N. Pittman and A. Forin. “Minimizing
partial reconfiguration overhead with fully stream-
ing DMA engines and intelligent ICAP controller”.
In Proceedings of the 18th annual ACM/SIGDA in-
ternational symposium on field programmable gate
arrays, FPGA ’10, pp. 292–292. ACM, New York,
NY, USA, 2010. ISBN 978-1-60558-911-4. DOI http:

//dx.doi.org/10.1145/1723112.1723190.

[23] Xilinx, Inc. “OPB HWICAP (v1.00.b) Product Speci-
fication”. Tech. Rep. DS280, Xilinx, Inc., July 2006.

[24] Xilinx, Inc. “LogiCORE IP XPS HWICAP (v5.00.a)
product specification”. Tech. Rep. DS586, Xilinx, Inc.,
July 2010.

[25] S. Bayar and A. Yurdakul. “Dynamic partial self-
reconfiguration on Spartan-III FPGAs via a parallel
configuration access port (PCAP)”. In 2nd HiPEAC
workshop on reconfigurable computing, vol. 8, pp. 10–
20. 2008.

[26] C. Claus, F. Muller and W. Stechele. “Combitgen: A
new approach for creating partial bitstreams in Virtex-
II Pro devices”. In Workshop on reconfigurable com-
puting proceedings (ARCS 06), pp. 122 – 131. March
2006.

[27] Xilinx Inc. “Partial reconfiguration user guide”. User
Guide 702, Xilinx Inc., Apr 2013. UG702.

[28] Xilinx. “Multiboot with Virtex-5 FPGAs and Plat-
form Flash XL”. Application note, November 2008.
XAPP1100.

[29] Xilinx. “Virtex-5 FPGA configuration user guide ”,
Aug 2010. UG191 (v3.9.1).

[30] S. Lamonnier, M. Thoris and M. Ambielle. “Accel-
erate partial reconfiguration with a 100% hardware
solution”. Xcell journal, vol. 79, pp. 44–49, 2012.

[31] E. Eto. “Difference-based partial reconfiguration”.
Application note XAPP290, Xilinx, December 2007.

[32] S. Hansen, D. Koch and J. Torresen. “High speed
partial run-rime reconfiguration using enhanced ICAP
hard macro”. In 2011 IEEE international sympo-
sium on parallel and distributed processing workshops
and PhD forum (IPDPSW), pp. 174 –180. may 2011.
ISSN 1530-2075. DOI http://dx.doi.org/10.1109/

IPDPS.2011.139.

[33] J. C. Hoffman and M. S. Pattichis. “A high-speed
dynamic partial reconfiguration controller using di-
rect memory access through a multiport memory con-
troller and overclocking with active feedback”. In-
ternational journal of reconfigurable computing, vol.
2011, p. 10, 2011. DOI http://dx.doi.org/10.1155/

2011/439072.

http://dx.doi.org/10.1145/972627.972637
http://dx.doi.org/10.1145/972627.972637
http://dx.doi.org/10.1007/3-540-63465-7_220
http://dx.doi.org/10.1007/3-540-63465-7_220
http://dx.doi.org/10.1109/IPDPS.2007.370362
http://dx.doi.org/10.1109/IPDPS.2007.370362
http://dx.doi.org/10.1007/3-540-46117-5_109
http://dx.doi.org/10.1007/3-540-46117-5_109
http://dx.doi.org/10.1109/FPGA.1998.707896
http://dx.doi.org/10.1109/FPGA.1998.707896
http://dx.doi.org/10.1109/fpl.2007.4380622
http://dx.doi.org/10.1109/fpl.2007.4380622
http://dx.doi.org/10.1109/CICC.1994.379763
http://dx.doi.org/10.1109/CICC.1994.379763
http://dx.doi.org/10.1007/bf00936947
http://dx.doi.org/10.1007/bf00936947
http://dx.doi.org/10.1109/MED.2007.4433812
http://dx.doi.org/10.1109/MED.2007.4433812
http://dx.doi.org/10.1109/FPL.2008.4630002
http://dx.doi.org/10.1109/FPL.2008.4630002
http://dx.doi.org/10.1145/1723112.1723190
http://dx.doi.org/10.1145/1723112.1723190
http://dx.doi.org/10.1109/IPDPS.2011.139
http://dx.doi.org/10.1109/IPDPS.2011.139
http://dx.doi.org/10.1155/2011/439072
http://dx.doi.org/10.1155/2011/439072

32 Research Article – SACJ 56, July 2015

[34] Xilinx, Inc. “LogiCORE IP block memory generator
v6.2”. Data Sheet DS512, Xilinx, Inc., June 2011.

[35] J. Martin. Programming real-time computer systems.
Prentice-Hall, 1965.

[36] K. Bruneel and D. Stroobandt. “TROUTE: A
reconfigurability-aware FPGA router”. Lecture
notes in computer science, vol. 5992, pp. 207–

218, 2010. DOI http://dx.doi.org/10.1007/978-

3-642-12133-3_20.

[37] T. Davidson, F. Abouelella, K. Bruneel and
D. Stroobandt. “Dynamic circuit specialisation for
key-based encryption algorithms and DNA alignment”.
International journal of reconfigurable computing, vol.

2012, Article ID 716984, p. 13, 2012.

http://dx.doi.org/10.1007/978-3-642-12133-3_20
http://dx.doi.org/10.1007/978-3-642-12133-3_20

	 Block RAM-based architecture for real-time reconfiguration using Xilinx® FPGAsto 3em Rikus le Roux, George van Schoor, Pieter van Vuuren to.44em.
	Introduction
	Related work
	Design flow
	BRAM initialisation
	Hardware controlled reconfiguration
	Reconfiguration timing

	Experimental setup
	Experimental results
	Overcoming the limitation of the BRAM
	Conclusion

