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ABSTRACT

Despite the advantages dynamic reconfiguration adds to a system, it only improves system performance if the execution

time exceeds the configuration time. As a result, dynamic reconfiguration is only capable of improving the performance of

quasi-static applications. In order to improve the performance of dynamic applications, researchers focus on improving the

reconfiguration throughput. These approaches are mostly limited by the bus commonly used to connect the configuration

controller to the memory, which contributes to the configuration time. A method proposed to ameliorate this overhead is

an architecture utilizing localised block RAM (BRAM) connected to the configuration controller to store the configuration

bitstream [1, 2]. The aim of this paper is to illustrate the advantages of the proposed architecture, especially for reconfiguring

real-time applications. This is done by validating the throughput of the architecture and comparing this to the maximum

theoretical throughput of the internal configuration access port (ICAP). It was found that the proposed architecture is

capable of reconfiguring an application within a time-frame suitable for real-time reconfiguration. The drawback of this

method is that the BRAM is extremely limited and only a discrete set of configurations can be stored. This paper also

proposes a method on how this can be mitigated without affecting the throughput.
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1 INTRODUCTION

Reconfigurable computing refers to the utilisation of
application specific hardware in conjunction with gen-
eral purpose software to improve system performance
[3]. Initially, this was done using a modular design
where a hardware module can be substituted with an-
other to perform a specialised function [4]. A feature
of XilinxR© field-programmable gate arrays (FPGAs),
called dynamic reconfiguration, allows the device to
change a section of its hardware while the rest re-
mains operational [5]. Most of XilinxR©’s FPGAs from
the Virtex-IIR© onward incorporate this feature, with
the addition of the internal configuration access port
(ICAP) that provides access to the configuration regis-
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ters of the FPGA. Reconfigurable computing improves
system performance by specializing the system towards
a specific application. Additional advantages include a
reduction in power consumption and component count
[5, 6, 7]. Despite the numerous advantages, dynamic
reconfiguration has one major disadvantage. Recon-
figuring an application will only improve the system
performance if the execution time exceeds the config-
uration time [8, 9]. This implies that dynamic recon-
figuration will only improve the system performance
of quasi-static applications. Typical reconfiguration
times achieved are in the order of milliseconds and
despite on-going research, this still holds true for most
applications.

The reason why most reconfigurable architectures
are unsuitable for real-time applications is due to their
long reconfiguration time or the delay induced by the
reconfiguration process. In order to mitigate these
shortcomings and migrate reconfigurable computing
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to dynamic applications, various attempts have been
made to improve the throughput of the system to rival
that of the ICAP controller. The maximum theoretical
throughput of the ICAP is 800 Mbps and 3.2 Gbps
for the Virtex-IIR© and 5 respectively. However, the
throughput of the systems are significantly lower than
that of the ICAP, due to the bus-based architectures
used. In fact, it is estimated that about 40% of the
overhead is contributed by the XilinxR© ICAP driver
function [10]. Attempts to improve the throughput of
the system include:

• reducing bitstream size,

• optimizing the way the bitstreams are written to
the memory, and

• optimizing the transfer of the bitstream to the
ICAP [11].

Improving the throughput of the system allows the
ICAP to process new data every clock cycle, which
optimizes reconfiguration throughput. This reduction
in reconfiguration time will allow dynamic applications
such as adaptive control or gain scheduling to uti-
lize dynamic reconfiguration to not only change their
parameters, but also to completely change their archi-
tectures. Reconfiguration could also improve the area
utilisation. Bruneel et al. [12] showed that implement-
ing an adaptive filter using reconfiguration requires
40% less lookup tables than its static counterpart.

The only architecture capable of maximizing
throughput without any delay is the block RAM
(BRAM)-based architecture proposed in [1, 2]. This
architecture bypasses the system bus and is capable of
reconfiguration at the maximum theoretical through-
put of the ICAP. The architecture also allows the ICAP
to be overclocked, further increasing the throughput.

The aim of this paper is to illustrate the advan-
tages of the proposed BRAM-based architecture for
reconfiguring real-time applications and to verify the
throughput claimed in the literature. It also proposes
a design methodology for the most important aspects
of the architecture and proposes a method to overcome
the size limitation imposed by the limited amount of
BRAM. The paper starts off with Section 2 by dis-
cussing dynamic reconfiguration for quasi-static appli-
cations and its limitations for reconfiguring dynamic
applications. The architectures proposed in the liter-
ature to improve the reconfiguration throughput are
also discussed. From these architectures, the BRAM-
based architecture was identified as the most promising
for real-time reconfiguration. Section 3 discusses the
design methodology for implementing this architecture
along with possible issues and how they can be resolved.
Section 4 discusses the experimental setup used to vali-
date the reconfiguration throughput of the architecture
and the results given in Section 5. Section 6 then con-
cludes by proposing a method to ameliorate the size
limitation imposed by the BRAM. The overall conclu-
sion is given in Section 7.

2 RELATED WORK

Most research in reconfigurable computing is validated
using quasi-static applications such as key specific data
encryption standard (DES) [8], sub-graph isomorphism
[13], Boolean satisfiability (SAT) [14] and adaptive
filters [15].

Eldredge and Hutchings [16, 17] used run-time re-
configuration to enhance the functional density of an ar-
tificial neural network, dubbed the Run-Time Reconfig-
ured Artificial Neural Network (RRANN). Functional
density is a measure of the computational throughput
of the system and is a function of the area and execu-
tion time [18]. The RRANN architecture divides the
backpropagation algorithm into three sequential stages.
Dynamic reconfiguration is then used to adapt one of
the stages to suit the requirements. The reconfigura-
tion process is controlled using an external processor
of a host personal computer (PC) (which stores all the
configuration information for the neural network) and
adds between 14 and 21 ms to the execution time.

Economakos [19] presented an embedded run-time
reconfigurable proportional-integral-derivative (PID)
controller. A microcontroller was used to reconfigure
the PID parameters via the ICAP using configura-
tion data stored in the on-chip bus-connected block
RAM (BRAM). Only the gain parameters are recon-
figured, which are tuned using a fuzzy logic module
implemented on the embedded processor. The small-
est partial bitstream that can be transferred through
the ICAP is 41 32-bit words, which equals 1312 bits.
This implies that changes smaller than 41 words can be
performed at an extremely high speed. As already men-
tioned, the ICAP reconfigures at a rate of 400 MBps.
By placing a set of PID parameters inside a frame,
Economakos showed that, considering frame length
and reconfiguration rate, the reconfiguration time for
each parameter change is 0.41 µs. Even though this
methodology is capable of fast reconfiguration, a bus-
based architecture was again used, adding additional
overhead, and the results specified are assumed to be
per parameter.

The drawback of most reconfigurable architectures
is that buses are used to connect the various compo-
nents of the architecture. In fact, as illustrated by
Fig. 1 and 2, even the configuration controller intel-
lectual property (IP) cores provided by XilinxR© are
bus-based, which adds additional overhead to the con-
figuration process. Consequently, many researchers
have adapted their system architectures to mitigate
the overhead incurred. This is done by adding func-
tionality such as direct memory access (DMA) [11, 20],
burst modes [21, 22] and dedicated BRAM [1, 2].

Fig. 3 illustrates a reconfigurable architecture with
DMA capability. DMA functionality allows the con-
figuration controller’s hardware subsystem to access
the system memory directly. This improves efficiency
since the embedded processor is relieved from the con-
figuration process. However, since the processor bus
is still used to connect the DMA controller to the ex-
ternal memory, this type of architecture still induces
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reconfiguration overhead. The addition of a multi-port
memory controller (MPMC) can allow the DMA con-
troller to access the external memory directly without
the need for a system bus. The result is an average
reconfiguration speed almost three times faster than
that of the DMA-architecture [1].
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Figure 1: XilinxR© proprietary on-chip peripheral bus
(OPB) ICAP controller [23]
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Figure 2: XilinxR© proprietary processor local bus
(PLB) ICAP controller [24]

Streaming modes are also used in conjunction with
DMA to improve the throughput [22]. In these designs,
the bitstream can be loaded continuously as needed.

Figure 3: Reconfigurable architecture with DMA

Figure 4: Reconfigurable architecture with BRAM

This ensures that the local buffer, normally a first-in,
first-out (FIFO) that feeds the ICAP with configura-
tion data, is always full. The result is a continuous
source of configuration data to the ICAP, compared
to the fetch-and-configure model of the traditional
reconfiguration process.

Even though these improved bus-based systems are
capable of reconfiguration throughputs rivalling that of
the ICAP, they are limited by one major drawback. All
these architectures suffer from configuration latency.
Multiple clock cycles are required to transfer the ini-
tial configuration frames from external memory to the
localised memory from where it can be used by the
ICAP. Liu et al. [22] aimed to minimize the configura-
tion overhead by incorporating streaming, compression
and DMA into an intelligent ICAP controller. Despite
their experimental results showing their implementa-
tion nearly saturates the throughput of the ICAP, the
DMA and compression add configuration overheads of
17 and 6 clock cycles respectively.

The dedicated BRAM architectures shown in Fig. 4
aim to mitigate all configuration overhead by using a
dedicated BRAM directly connected to the FPGA fab-
ric to store the configuration data. The FIFO buffers
shown in Figures 1 to 4 are used to store sections of
the configuration data moved from external memory,
whereas the BRAM is used to store the entire bit-
stream. Evidently, the drawback is that the BRAM
should be significantly large. For bitstreams too large
to fit in the BRAM, partial bitstreams can be loaded
into the BRAM using the processor bus.

Alternatively, the bitstreams can also be com-
pressed to fit into the BRAM. This could also have
the added benefit of reducing the reconfiguration time,
since a smaller amount of data need to be transferred
to the configuration memory. In general, the reconfig-
uration time can be calculated by dividing the size of
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the bitstream (in bits) by the throughput of the ICAP.
Reducing the size of the bitstream will thus also reduce
the reconfiguration time. Even though compression
techniques such as Lempel-Ziv-Welch (LZW), Lempel-
Ziv (LZ7) or custom algorithms [1, 25] are capable of
reducing the bitstream significantly [26], the bitstream
has to be decompressed before being sent to the con-
figuration memory. Depending on the decompression
algorithm used, this could contribute significantly to
the reconfiguration time. The more complex the algo-
rithms, the bigger the impact on reconfiguration time
will be.

The BRAM-based architecture is therefore re-
garded as the most suitable, if real-time reconfiguration
is required. To verify this, two simple applications were
implemented and reconfigured using the proposed ar-
chitecture. The next section discusses the design flow
used for designing and implementing these applications,
and highlights some of the pitfalls encountered.

3 DESIGN FLOW

The XilinxR© partial reconfiguration (PR) design flow
was used to design the application using the ISER©

Design Suite [27]. Even though a newer partial recon-
figuration design flow is available for XilinxR©’s newer
VirtexR©-7, KintexR©-7 and ArtixR©-7 FPGA families
using VivadoR©, this flow is not supported on older fam-
ilies. However, the PR flow implemented in XilinxR©’s
Integrated Synthesis Environment (ISER©) can also be
applied to newer families.

Fig. 5 shows the basic premise of the PR flow. In
the figure, the function implemented in Reconfigurable
block ‘A’ is modified by switching between several
configurations, A1.bit, A2.bit, A3.bit and A4.bit, while
keeping the rest of the logic intact.

FPGA

Reconfigurable 
block ‘A’

A4.bit

A3.bit

A2.bit

A1.bit

Figure 5: Basic premise of partial reconfiguration illus-
trating configurations being swapped to and from the
device [27]

Using the PR design flow, certain issues were en-
countered while implementing the test applications.
The following sections are dedicated to addressing
these, along with important design aspects of the ar-
chitectures. The first issue encountered, and an im-
portant design aspect, was initialising the BRAM with
the configuration data.

Figure 6: Sectional view of the bitstream contents

3.1 BRAM initialisation

The BRAM should be initialised with the reconfigu-
ration data, also known as the bitstream. However,
this poses some issues since the bitstream cannot be
loaded directly into the BRAM using XilinxR©’s CORE
Generator

TM
, which only supports .coe-files. A .coe-file

is a text-based file containing a header and initialisation
data for the BRAM, whereas the bitstream contains
binary data representing the configuration bits of the
FPGA. An example of an unformatted bitstream is
shown in Fig. 6 in hexadecimal-format. As can be seen,
the data are not grouped which complicates the data
loading process.

Using BitGen
TM

the bitstream can be converted
into American standard code for information inter-
change (ASCII), shown in Fig. 7. As can be seen, the
data are grouped into 32-bit sets each representing a
configuration command, some of which are also listed
in the figure. This ASCII-file can easily be loaded into
the BRAM as a .coe-file. Alternatively, it can also be
loaded into BRAM on synthesis using the VHDL con-
struct shown in Listing 1. This construct is capable of
reading a text-based file containing the configuration
data and initializing the BRAM.

A central component in the proposed reconfigura-
tion architecture is the hardware required to facilitate
the reconfiguration process. This is discussed in the
next section.

3.2 Hardware controlled reconfiguration

Hardware controlled reconfiguration (HCR) refers to
the use of hardware implemented on the FPGA to
control the reconfiguration process, compared to con-
ventional methods that require a processor bus, such
as the processor local bus (PLB) or XilinxR© Platform
Studio (XPS) bus. Using hardware to control the re-
configuration process involves using a state machine.
This state machine is based on the state machine used
for MultiBoot, which is a feature included in XilinxR©

FPGAs. It allows an active application to fall back to
a previous good configuration (known as the ‘golden
image’) in the event of a configuration failure, opera-
tional failure or single event upset (SEU). It also allows
for warm boot reconfiguration, a sub-category of the
fall-back reconfiguration, which allows only a section
of the device to be reconfigured without affecting the
remainder of the device [28, 29].
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Listing 1: VHDL construct to load bitstream into BRAM

type <romtype> i s array (0 to <rom width>)
of b i t v e c t o r (< rom addr bits> downto 0 ) ;

impure function <rom function name> (< rom f i le name> : in s t r i n g )
return <romtype> i s
FILE <r o m f i l e> : t ex t i s in <rom f i le name >;
variable <l ine name> : l i n e ;
variable <rom name> : <romtype>;

begin
for I in <romtype>’range loop

r e a d l i n e ( r o m f i l e >, <l ine name >);
read (< l ine name >, <rom name>( I ) ) ;

end loop ;
return <rom name>;

end function ;

signal <rom name> : <romtype> := <rom function name>(”<f i l e name>” ) ;

Figure 7: Sectional view of the ASCII converted bit-
stream contents

The state machine controlling the reconfiguration
process directly drives the pins of the ICAP, as shown
in Fig. 8. For the MultiBoot implementation, the con-
figuration commands are simply supplied by the state
machine. However, the state machine controller for
the proposed architecture requires an interface to the
BRAM from where the configuration data are read.
The reconfiguration process is triggered by means of

Figure 8: Control state machine interface to the ICAP
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Figure 9: Hardware reconfiguration state machine flow
diagram

an external trigger supplied by the user logic. This is
followed by pulling the CE and WRITE pins low to
enable the ICAP and write operations to the ICAP.
The configuration process can then commence by read-
ing the first configuration word from the BRAM, which
is sent to the ICAP via the input port, I , on each edge
of CLK . This process will continually monitor the
bitstream to detect the DESYNC command string,
which indicates a complete reconfiguration and releases
the configuration logic. Alternatively, the ICAP out-
put, O , can also be used to detect the DESYNC
command string. If the value on the output changes
from 0xDF to 0x9F, the DESYNC command was
received and the device is desynchronised [30]. If
the DESYNC command is not received, the address
pointer is increased to read the subsequent configu-



Research Article – SACJ 56, July 2015 27

Table 1: ICAP pin description

Pin
Name

Type Description

CLK Input ICAP interface clock

CE Input Active-low ICAP inter-
face select

WRITE Input Selects read or write op-
eration

I[31:0] Input ICAP write data bus

O[31:0] Output ICAP read data bus

BUSY Output Active-high busy status
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Figure 10: Timing diagram for ICAP data loading

ration word from the memory. This whole process is
illustrated by the flow diagram of the state machine
in Fig. 9, and the functionality of the ICAP pins is
summarised in Table 1.

3.3 Reconfiguration timing

The ICAP port is closely related to the SelectMAP
configuration interface. SelectMAP is an 8, 16 or 32-bit
bidirectional external data bus interface to the config-
uration logic and can be used for both configuration
and readback. The ICAP, as the name suggests, is
an internal port with similar ports and timing as the
SelectMAP interface. The timing for the ICAP is il-
lustrated in Fig. 10. The IPROG signal prepares the
device for configuration without resetting the configu-
ration logic. If the chip is enabled and set for writing
the configuration data, the data are written to the con-
figuration memory one byte at a time. The DONE
signal is not used during the configuration process and
is set to a high impedance. After the configuration is
done, the DONE flag is set. The hardware controlled
reconfiguration process should adhere to this timing
for proper reconfiguration.

4 EXPERIMENTAL SETUP

To evaluate the throughput of the BRAM-based ar-
chitecture, two simple applications were created on a
XilinxR© ML507 development board. The first appli-
cation switches between two configurations by means
of dynamic reconfiguration. Each configuration en-
capsulates a set of three parameters used to modify
the frequency of a pulse width modulator connected
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Figure 11: Block diagram of the first experimental
design
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Figure 12: Block diagram of the second experimental
design

to an external blinking light emitting diode (LED).
The reconfiguration is triggered using an external push
button and since the reconfiguration process is handled
by a state machine, it is possible to verify each state
of the configuration process using external LEDs.

Fig. 11 shows a block diagram depicting the in-
terconnectivity between the components. The recon-
figuration controller contains the MultiBoot state
machine shown in Fig. 9 and is responsible for recon-
figuring the frequency parameters controlling the
pulse width modulation (PWM). The top level is
only used to instantiate the components. The reconfig-
uration time is measured from the moment the external
trigger goes high to when the active low LED, indi-
cating the “DONE”-state of the configuration process,
illuminates.

The second application further illustrates and eval-
uates the proposed architecture by storing nine dif-
ferent configurations of a multiply-accumulate (MAC)
in the BRAM. Since more configurations have to be
stored, it was decided to follow the difference-based
reconfiguration design flow [31], instead of PR as in the
first design. Difference-based reconfiguration compares
two designs and only the differences are encapsulated
in the configuration file. The benefit is significantly
smaller configurations that result in faster reconfigu-
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Figure 13: Timing diagram of the second experimental design

ration. However, difference-based reconfiguration has
a couple of drawbacks and is not recommended for
making large circuit changes, which is why XilinxR©

recommends the PR design flow. Despite this, this is
an ideal design to illustrate and verify the hardware
controlled reconfiguration.

As seen in Fig. 12, the required configuration is
selected using a dual in-line package (DIP) switch
(configuration selector) before triggering the recon-
figuration with a push button. The output indi-
cator is connected to external LEDs and indicates
the selected configuration, based on the output of the
multiply-accumulate (MAC).

5 EXPERIMENTAL RESULTS

For the first application, the partial configuration data
consists of 1658 32-bit words. Considering that the
VirtexR©-5 ICAP has a maximum theoretical through-
put of 400 MBps, it is possible to transfer the entire
bitstream through the ICAP within 16.58 µs.

It was shown in the literature that it is possible to
overclock the ICAP above the XilinxR©-recommended
100 MHz [32, 33]. To investigate the maximum clock
frequency of the ICAP without specifically designing
for optimal clock propagation, the frequency of the
ICAP was gradually increased. At twice the recom-
mended clock frequency, the reconfiguration time of
the first application can be reduced to 8.29 µs as shown
in Fig. 14. At three times the recommended ICAP
frequency the reconfiguration process failed.

Further investigation showed that the cause of
this failure was not due to a limitation in the maxi-
mum clock frequency of the BRAM. As specified in
the XilinxR© documentation [34], the maximum clock
frequency of BRAM (v6.2) is 450 MHz. Hansen [32]
further confirmed that it is theoretically possible to
clock the ICAP at a maximum frequency of 580 MHz
if a set-up time of 0.49 ns is assumed for configurable
logic blocks’ (CLB) flip-flops. In fact, numerous re-

searchers have shown it is possible to overclock the
ICAP above 300 MHz [32, 33]. It is thus evident that
the 300 MHz limitation was due to sub-optimal design.

The bitstream of the second application contains
346 32-bit words. Keeping the ICAP clock at the
maximum frequency for this design—200 MHz— it is
possible to transfer the entire bitstream to the config-
uration memory in 1.730 µs. Fig. 13 shows the results
of this application. Marker 1 is placed when the recon-
figuration state starts and marker 2 is placed when the
Done-state is entered. The time-lapse between these
two markers is measured to be 1.730 µs, which matches
the calculated reconfiguration time. Also seen in the
figure are the ICAP control signals, the configuration
data sent to the ICAP, clock signals, configuration
selected, MAC output and the LEDs indicating the
current configuration. It is easy to see that the MAC
output changes when the reconfiguration completes
and the LED changes correspondingly.
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Figure 14: Reconfiguration response of the hardware
controlled experimental set-up

Using difference-based reconfiguration yields a sig-
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nificantly smaller configuration. For this particular
application, the resulting configuration only contains
346 32-bit words. Since the reconfiguration time is
directly related to the number of words in the con-
figuration, a reconfiguration time of 1.730 µs can be
measured using the experimental setup.

For the purpose of this discussion, consider an
application with a control cycle of 50 µs. If a real-
time system can be defined as one which “controls
an environment by receiving data, processing them,
and returning the results sufficiently quickly to affect
the environment at that time” [35], this implies that
the reconfiguration process needs to fit within the
remaining control cycle time after all other processing
completes. Considering the worst reconfiguration time
of the experimental setup, 16.58 µs, this leaves 33.42
µs for all other processing. Should this be insufficient,
the buffer in the control cycle can be increased by
overclocking the ICAP—reducing the reconfiguration
time even further. If only small changes need to be
made to the design, difference-based reconfiguration
can be used to reduce the configuration size and obtain
the best possible reconfiguration time.

6 OVERCOMING THE LIMITATION OF THE
BRAM

As already mentioned, the primary drawback of the
BRAM-based architecture is the size limitation. For
example, the VirtexR©-5 family of FPGAs from XilinxR©

has between 936 and 16,416 Kb if all the BRAM blocks
are used. This implies that only a subset of configura-
tions can be stored.

Dynamic circuit specialisation (DCS) is a technique
used to dynamically specialize a circuit implemented
on an FPGA according to certain parameters. The idea
is that each time a parameter changes, the device is
reconfigured to fit this parameter [10]. The most com-
monly known DCS method is configuration swapping,
which allows a section of an FPGA to be reconfigured
by swapping the current configuration on the device
with a new configuration. The individual configura-
tions are generated by running the toolflow for each
possible parameter value and storing the result off-line.
This approach works fine for a small number of config-
urations, but the storage required grows exponentially
with the number of parameters and the number of
bits needed to represent each parameter. Representing
three PID parameters using 16 bits each results in 48
configuration bits, giving a possible 248 configurations -
each requiring off-line storage space. Hence, generating
configurations for each possible parameter and storing
them off-line quickly becomes infeasible for real-time
applications.

It is worth noting that the assumption is made that
every single configuration is required by the application,
whereas in practice this might not be the case. Only
a subset of the configurations might be sufficient for
nominal operation. In this case, it is possible to retain
only the needed subset thus mitigating the storage-
space limitation.

The solution would seem to generate all the config-
urations on-line and in real-time. This would result in
a highly specialised configuration, because the config-
uration can be specialised for all possible parameters.
However, running a conventional FPGA toolflow in
real-time is computationally very expensive. A tra-
ditional toolflow typically takes minutes to hours to
complete. This makes this approach only feasible for
applications with slowly changing parameters.

As a result, Bruneel [10] proposed a method called
parameterisable configuration that allows a bitstream
to be specialised on-line according to a set of criteria.
The fundamental concepts underlying this method-
ology are constant propagation and parameterisable
configurations. The bits representing the FPGA con-
figuration can be expressed as a Boolean function of
a set of parameters (called ‘tuning functions’). The
result is a parameterised bitstream (PBS). Using a
PBS specializer, any specific set of parameters can be
evaluated to transform the PBS into a regular con-
figuration, which can be evaluated at run-time. This
process is illustrated in Fig. 15.

The toolset used by Bruneel enables automatic
implementation of DCS by means of two methods
[36]. The first expresses only the bits of the lookup
tables in the configuration file as Boolean functions.
These lookup tables are dubbed tunable lookup tables
(TLUTs). All other configuration bits are static. The
second method expands on this methodology and adds
tunable routing bits. This new method is dubbed the
tunable connections, or TCON, method. Even though
TCON will lead to more compact solutions, TLUT
will result in faster reconfiguration. Using these meth-
ods, Bruneel built several parameterisable systems.
These include FIR filters, ternary content-addressable
memory (TCAM), key-based encryption and DNA
alignment systems that run on commercial FPGAs
[15, 10, 37]. The specialisation was done using the em-
bedded PowerPC and ICAP of the Virtex-II ProR©. It
was determined that a coefficient change of the FIR fil-
ter can be reconfigured in 1.74 ms, whereas the content
of the TCAM can be rewritten in 1.72 ms.

Unfortunately, Bruneel’s toolset has an important
limitation to consider when designing a real-time sys-
tem. It was found that the specialisation process can
take a significant amount of time and since this has to
be done for each parameter change, this process will
add significant overhead to the configuration process.

Figure 15: Parameterisable configuration specialisation
architecture
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The result is that parameterizing a module might not
yield the expected benefits of reconfiguration. Despite
these limitations for real-time applications, this con-
cept of specializing a bitstream can be incorporated
into the BRAM-based hardware-controlled reconfigura-
tion architecture. This will allow the bitstream stored
in the BRAM to be adapted according to specific con-
ditions, overcoming the size limitation. The proposed
architecture is shown in Fig. 16.

Even though parameterisation is currently unsuit-
able for real-time reconfiguration, methods that can
be used in real-time are being investigated.

7 CONCLUSION

Despite the extensive research on improving the
throughput of reconfigurable applications, the recon-
figuration speed is limited by the processor bus con-
necting the individual components in the system. This
severely limits the usage of reconfigurable computing
in dynamic applications.

This paper focussed on the BRAM-based architec-
ture proposed in the literature as a means to improve
the throughput of reconfigurable applications, thus
reducing reconfiguration time. Verifying the through-
put was done by implementing and reconfiguring two
simple designs using the proposed architecture. In
the first application, three parameters similar to gains
in PID control are reconfigured. These three param-
eters control the duty cycle of a blinking LED. In
the second design, a multiply-accumulate (MAC) was
implemented and the constants reconfigured. It was
shown that a bitstream consisting of 1658 32-bit words
can be transferred to the configuration memory within
8.29 µs, which is sufficient for real-time reconfigura-
tion. This time can be reduced even further by proper
constraints or by adding custom hardware, allowing
the ICAP to be clocked above the recommended 100
MHz. Another alternative for reducing the reconfigu-
ration time even further is to use the difference-based
reconfiguration design flow, which reduces the size of
the bitstream. However, this method can only be used
when making small changes to a design.

The primary drawback of the proposed reconfig-
uration architecture is the limited amount of BRAM
available to store configuration data. By proposing the
use of a concept called parameterisable configuration,
the hypothesis is that only a single parameterisable

Figure 16: Block diagram of the proposed architecture

bitstream has to be stored in the BRAM, whereafter it
is specialised for any required hardware set. Unfortu-
nately, the current methods for specializing a bitstream
could not yield any benefits due to the overhead from
the specialisation process. Consequently it is unsuit-
able for real-time reconfiguration. Further research is
under way to determine a suitable real-time specialisa-
tion method.

Due to the complexity of the FPGA routing, it is
estimated that only lookup table (LUT) contents will
be specialisable. Since LUTs are the primary compo-
nents of an FPGA, this implies that most applications
implemented on an FPGA would be able to benefit
from this specialisation. Additionally, by using dis-
tributed arithmetic most multiply-accumulate (MAC)
instructions can also be reconfigured, which will be
greatly beneficial for real-time applications. This is
due to MACs being the foundation of many digital
implementations, including filters and PID control.
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