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ABSTRACT

Determining the most appropriate search method or artificial intelligence technique to solve a problem is not always evident

and usually requires implementation of different approaches to ascertain this. In some instances a single approach may not

be sufficient and hybridization of methods may be needed to find a solution. This process can be time consuming. The

paper proposes the use of hyper-heuristics as a means of identifying which method or combination of approaches is needed

to solve a problem. The research presented forms part of a larger initiative aimed at using hyper-heuristics to develop

intelligent hybrid systems. As an initial step in this direction, this paper investigates this for classical artificial intelligence

uninformed and informed search methods, namely depth first search, breadth first search, best first search, hill-climbing

and the A* algorithm. The hyper-heuristic determines the search or combination of searches to use to solve the problem.

An evolutionary algorithm hyper-heuristic is implemented for this purpose and its performance is evaluated in solving the

8-Puzzle, Towers of Hanoi and Blocks World problems. The hyper-heuristic employs a generational evolutionary algorithm

which iteratively refines an initial population. On each iteration the evolutionary algorithm uses tournament selection

to select parents. The mutation and crossover operators are applied to the chosen parents to produce offspring for the

next generation. The hyper-heuristic was able to identify a search or combination of searches to produce solutions for the

twenty 8-Puzzle, five Towers of Hanoi and five Blocks World problems. Furthermore, admissible solutions were produced

for all problem instances. A different search or combination of searches was evolved for each problem instance. This study

has highlighted the potential of hyper-heuristics for the automated design of intelligent systems. Given this success, future

work will investigate the use of hyper-heuristics for the design of intelligent hybrid systems for high-level reasoning, which

will combine genetic algorithms, tabu search, variable neighbourhood search and simulated annealing. The automated

design of intelligent systems has long term benefits for the software industry as a means of reducing the man hours needed

for system design.
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1 INTRODUCTION

The process of identifying the most suitable artificial
intelligence technique to use to solve a problem can
be time consuming. This decision is usually based on
past applications and successes of the methods and
similarities of the problem to previous applications for
which the method was effective. This often involves
implementing the different approaches that are identi-
fied as having the potential to solve the problem and
comparing the performance to determine the method
that will produce the best results. In some instances a
single approach may not be sufficient and hybridiza-
tion of methods is needed to solve the problem. The
research presented in this paper forms part of a larger
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initiative aimed at using hyper-heuristics [1] to develop
intelligent hybrid systems.

The hyper-heuristic will select or combine differ-
ent artificial intelligence techniques to solve the prob-
lem at hand. The paper investigates the effectiveness
of this approach for traditional artificial intelligence
searches, namely depth first, breadth first, best first,
hill-climbing and the A* algorithm, as tested on the
8-Puzzle, Towers of Hanoi and Blocks World problems.

Hyper-heuristics aim to produce a more gener-
alized solution over a problem domain, rather than
producing the best results for some problem instances
as is typical of traditional optimization methods [1].
Hyper-heuristics have proven to be very effective in
solving combinatorial optimization problems such as
timetabling, cutting and packing problems, Boolean
satisfiability and vehicle routing problems, amongst
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others. More recently attempts have also been made
to employ hyper-heuristics to generalize over domains
[2].

Hyper-heuristics select or combine low-level heuris-
tics by exploring a heuristic space [1]. The low-level
heuristics can be constructive or perturbative. Con-
structive heuristics are used to create a solution to
a problem, while perturbative heuristics improve an
initial solution created randomly by using a construc-
tion heuristic. Examples of constructive heuristics
include heuristics to choose the next event to schedule
in timetabling and heuristics to select the bin to place
an item in for packing problems. A commonly used
low-level perturbative heuristic is the swap operator
which swaps rows or columns in a timetable or items
amongst bins for packing problems.

Hyper-heuristics are hence categorized as selec-
tion constructive, selection perturbative, generation
constructive and generation perturbative. Selection
hyper-heuristics select the heuristic to apply next
when constructing or improving a solution. Gener-
ation hyper-heuristics create new low-level heuristics
by combining low-level heuristics or components of
these heuristics. Genetic programming [3, 4] has been
primarily used by generative hyper-heuristics to cre-
ate new heuristics. Methods employed by selection
constructive hyper-heuristics include tabu-search, vari-
able neigbourhood search, simulated annealing and
evolutionary algorithms. Selection perturbative hyper-
heuristics perform single point or multi-point search.
Single point search hyper-heuristics are comprised of
a heuristic selection and move acceptance component
while multi-point hyper-heuristics employ a population
based method such as evolutionary algorithms or par-
ticle swarm optimization to select low-level heuristics.

This study investigates the use of a multi-point
search selection perturbative hyper-heuristic to identify
the appropriate search or combination of searches to
use to solve the problem at hand. An evolutionary
algorithm is used to explore the heuristic space. The
low-level perturbative heuristics are the searches, i.e.,

• depth first,

• breadth first,

• best first,

• hill-climbing, and

• A* algorithm.

The performance of the hyper-heuristic is evaluated
on three classical artificial intelligence problems that
uninformed and informed searches are typically used
to solve, namely:

• the 8-Puzzle problem,

• the Towers of Hanoi problem, and

• the Blocks World problem.

The following section provides an overview of the tra-
ditional artificial intelligence searches. Section 3 de-
scribes the hyper-heuristic for artificial intelligence
(HHAI). The experimental setup used to evaluate the
hyper-heuristic is presented in Section 4, and Section
5 discusses the performance of HHAI in solving twenty
8-Puzzle, five Towers of Hanoi and five Blocks World

problem instances. The paper concludes with a sum-
mary of the findings and details of future work in
Section 6.

2 ARTIFICIAL INTELLIGENCE SEARCHES

Traditional artificial intelligence searches are catego-
rized as uninformed and informed searches [5]. Com-
monly used uninformed searches include depth first
and breadth first searches. The depth first search tra-
verses an entire branch and backtracks when the end
of the branch is reached. The algorithm for the depth
first search presented in [5] is depicted in Fig. 1.

de f d f s ( in Start , out State )
open = [ Star t ]
c l o s e d = [ ]
State = f a i l u r e
whi l e ( open <> [ ] ) AND ( State <> s u c c e s s )

begin
remove the l e f t m o s t s t a t e from open ,

c a l l i t X
i f X i s the goal , then

State = s u c c e s s
e l s e begin

generate c h i l d r e n o f X
put X on c l o s e d
e l i m i n a t e the c h i l d r e n o f X on open

or closed
put remaining c h i l d r e n on l e f t end

o f open
end e l s e

endwhi le
re turn State

end de f

Figure 1: Depth-first search [5]

de f b f s ( in Start , out State )
open = [ Star t ]
c l o s e d = [ ]
State = f a i l u r e
whi l e ( open <> [ ] ) AND ( State <> s u c c e s s )

begin
remove the l e f t m o s t s t a t e from open ,

c a l l i t X
i f X i s the goal , then

State = s u c c e s s
e l s e begin

generate c h i l d r e n o f X
put X on c l o s e d
e l i m i n a t e the c h i l d r e n o f X on open

or closed
put remaining c h i l d r e n on r i g h t end

o f open
end e l s e

endwhi le
re turn State

enddef

Figure 2: Breadth first search [5]

The depth first search is not an admissible search and
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de f b e s t f s ( in Start , out State )
open = [ Star t ]
c l o s e = [ ]
State = f a i l u r e
whi l e ( open <> [ ] ) AND ( State <> s u c c e s s )

begin
remove the l e f t m o s t s t a t e from open , c a l l i t X
i f X i s the goal , then

State = s u c c e s s
e l s e begin
generate c h i l d r e n o f X
f o r each c h i l d o f X do
case

the c h i l d i s not on open or c l o s e d :
begin

a s s i g n the c h i l d a h e u r i s t i c va lue
add the c h i l d to open ,

end
the c h i l d i s a l r eady on open :

i f the c h i l d was reached by a s h o r t e r path then
g ive the s t a t e on open the s h o r t e r path

the c h i l d i s a l r eady on c l o s e d :
i f the c h i l d i s reached by a s h o r t e r path then
begin

remove the s t a t e from c l o s e d
add the c h i l d to open

end
endcase
endfor
put X on c l o s e d
re−order s t a t e s on open by h e u r i s t i c mer it ( bes t l e f t m o s t )

endwhi le
re turn State

end

Figure 3: Best-first search [5]

is hence not guaranteed to find the minimum cost
solution path. Whereas the depth first search searches
vertically, the breadth first search explores the space
horizontally. All the nodes at a depth are expanded
before moving to the next depth, from top to bottom.

Fig. 2 illustrates the breadth first search presented
in [5]. The breadth first search is an admissible search
that is guaranteed to find the minimum cost solution
path.

Informed searches use heuristics to guide the search,
thereby possibly reducing the space that needs to be
explored. The best first search and hill-climbing are
informed searches. The best first search searches glob-
ally and hill-climbing locally. The best first search
algorithm is listed in Fig. 3 and hill-climbing in Fig. 4.
Both searches use a heuristic h(n), which is problem
dependent, to choose which state to explore next. This
heuristic is an estimate of the cost from the node n to
the goal state. The best first search and hill-climbing
are not admissible algorithms. The A algorithm is es-
sentially the best first search which in addition to the
heuristic h(n) uses an estimate of the cost of getting
from the start state to the node n. This is defined
as f(n) = h(n) + g(n), where h(n) is the estimated
cost of getting from the state n to the goal state and
g(n) which estimates the cost of getting from the start

state to the state n. In this study g(n) is the depth
at which n is in the search tree. Section 4 defines
h(n) for each of the problem domains HHAI is tested
on. If h(n) is an admissible heuristic (i.e. if it always
underestimates the cost of getting from n to the goal
state), the A algorithm is admissible (i.e. it produces
the minimum cost solution path) and it is referred to
as the A* algorithm.

3 HYPER-HEURISTIC FOR INTELLIGENT
SYSTEM DESIGN

This section describes the evolutionary algorithm
hyper-heuristic used to design artificial intelligence
search algorithms. This study improves on the ini-
tial attempt at this reported in [6]. The mutation
operator used in [6] was not very effective and this
study redefines this operator and also introduces a
crossover operator for regeneration. In the study in [6]
the evolutionary algorithm terminated when a heuristic
combination producing a solution was found. However,
as a result of this, the hybridized search produced was
not admissible, i.e. the optimal solution path with a
minimum number of moves was not necessarily found.
In this study this is remedied by extending the ter-
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de f h i l l c l i m b i n g ( in Start , out State )
open = [ Star t ] , c l o s e = [ ]
State = f a i l u r e
whi l e ( open <> [ ] ) AND ( State <> s u c c e s s )

begin
remove the l e f t m o s t s t a t e from open , c a l l i t X
i f X i s the goal , then

State = s u c c e s s
e l s e begin

generate c h i l d r e n o f X
f o r each c h i l d o f X do
case

the c h i l d i s not on open or c l o s e d
begin

a s s i g n the c h i l d a h e u r i s t i c va lue
end

the c h i l d i s a l r eady on open
i f the c h i l d was reached by a s h o r t e r path then

g ive the s t a t e on open the s h o r t e r path
the c h i l d i s a l r eady on c l o s e d :

i f the c h i l d i s reached by a s h o r t e r path then
begin

remove the s t a t e from c l o s e d
end

endcase
endfor

put X on c l o s e d
re−order the c h i l d r e n s t a t e s by h e u r i s t i c merit ( bes t l e f t m o s t )
p lace the reordered l i s t on the l e f t m o s t s i d e o f open

endwhi le
re turn State

end

Figure 4: Hill-climbing search [5]

mination criteria to include producing an admissible
hybridized search. The fitness function has also been
defined to cater for two objectives, namely, producing
a solution and the minimum solution path.

The evolutionary algorithm implemented is the
generational algorithm depicted in Fig. 5. The al-
gorithm begins by creating an initial population of
heuristic combinations of low-level heuristics.

Create i n i t i a l populat ion
Repeat

Evaluate the populat ion
S e l e c t parents
Perform r e ge n e ra t i o n us ing mutation

and c r o s s o v e r
Unt i l the te rminat ion c r i t e r i o n i s met

Figure 5: Generational evolutionary algorithm

The low-level heuristics are the depth first, breadth
first, best first, hill-climbing and A/A* algorithm
searches and the number of iterations of each search to
be performed. Each combination is evaluated by using
it to solve the problem instance. Tournament selection
is used to select parents for regeneration during which
the mutation and crossover operators are used to cre-
ate the offspring of each generation. These processes
are described in the sections that follow.

3.1 Initial population generation

Each element of the population, i.e. chromosome, is a
string comprised of characters representing each of the
searches as listed below and the number of iterations
of each search to be performed:

• Depth first search (d)

• Breadth first search (b)

• Best first search (s)

• Hill-climbing (h)

• A/A* search (a)

Thus each gene is of the form iterations;search,
e.g. 10;s which represents ten iterations of the best
first search. The search for each gene is determined
by randomly selecting a character representing the
searches. In the study presented in [6] the number of
iterations was chosen to be in the range of 1 and a
specified maximum which is problem dependent. How-
ever, it was found in this study that adding the preset
maximum as an offset to the randomly chosen number
of iterations in the range 1 to the maximum is more
effective. An example of a chromosome is 19;a,12;b,8;s.
The algorithm represented by this chromosome per-
forms the A algorithm for 19 iterations, followed by
the breadth first search for 12 iterations and the best
first search for 8 iterations.
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Parent 1 : 72; b , 5 3 ; s Parent 2 : 13; h , 2 0 ; b , 2 2 ; d , 1 2 ; s
Crossover po int : 2 Crossover po int : 3
Of f sp r ing 1 : 72; b , 2 2 ; d ,12 , s
Of f sp r ing 2 : 13; h , 2 0 ; b , 53 ; s

Figure 6: Crossover example

3.2 Evaluation and selection

Each chromosome is evaluated by using it to create a
solution to the problem instance. Pareto fitness, which
assesses the chromosome for two objectives—namely,
correctness of solution and optimal cost solution path—
is used for fitness evaluation. The heuristic h(n), which
estimates the cost of the state n from the goal state, is
used as a measure of solution correctness. The length
of the solution path is used to measure the second
objective. Tournament selection is used to choose the
parents of each generation. In the case of mutation
the tournament selection method is evoked once to
obtain a parent while in the case of crossover it is
called twice as the operator is applied to two parents.
The tournament selection method returns the fittest
element of a tournament of t individuals as a parent.
Each element of the tournament is randomly selected
from the population and selection is with replacement,
i.e. an individual can be selected more than once as
a parent. In comparing the fitness of chromosomes,
solution correctness is given priority. The chromosome
with a lower value of h(n) is considered to be fitter. If
two chromosomes have the same value for correctness,
the chromosome with the lower path length is treated
as fitter.

A solution algorithm or an admissible solution
algorithm may not use all the genes. For example if
the chromosome is 20;a,12;b,8;s, an admissible solution
may be found after performing twenty iterations of the
A* algorithm and six iterations of the breadth first
search. In this case the chromosome is pruned and the
solution algorithm is 20;a,6;b.

3.3 Regeneration

The mutation and crossover operators are used to
create the offspring of each generation.

The mutation operator firstly randomly chooses a
mutation point in the parent. The mutation operator
used in [6] replaced the gene at the mutation point
with a new gene. This was not very effective and
the mutation operator was redesigned. This operator
performs one of the following five operations which is
randomly chosen:

Gene deletion. Delete the gene at the mutation
point if the size of the chromosome is greater than
one.

Search replacement. Replace the search in the
gene at the mutation point with a randomly se-
lected search. The number of iterations remains
unchanged.

Iteration replacement. Replace the number of
iterations in the gene, using the same approach

used to determine the number of iterations for
each gene for initial population generation. The
search in the gene remains unchanged.

Gene insertion. Insert a new gene before the mu-
tation point.

Gene replacement. Replace the gene at the muta-
tion point with a new gene, as in [6].

The crossover operator is applied to copies of two
parents chosen using tournament selection with Pareto
fitness. Crossover points are randomly selected in
both the parents and the chromosome substrings are
swapped at these points to produce two new offspring.
The process is illustrated in Fig. 6.

Previous research on evolutionary algorithm hyper-
heuristics shows that returning the fitter of both off-
spring instead of two offspring is more effective [7, 8].
Thus, the fitter offspring is produced as the result of
the crossover operator in this study.

4 EXPERIMENTAL SETUP

The hyper-heuristic was evaluated on three different
domains, namely, the 8-Puzzle problem, Towers of
Hanoi and the Blocks World problem. HHAI was im-
plemented in Java using JDK 1.7.0 and all simulations
were run on a Windows 7 machine with an Intel Core
i7 processor. The following sections describe each of
the problems, the problem sets used for each problem
and the HHAI parameter values for each problem.

4.1 8-Puzzle problem

The 8-Puzzle problem involves moving tiles on a 3 × 3
board to get from an initial state to a goal state. The
board contains 8 numbered tiles and a space. An
example is illustrated in Fig. 7.

	
  

1 2 3
4
567

8
12
34
567

8
Initial State Goal State

Figure 7: 8-Puzzle problem example

A search method takes the initial and goal states
as input and outputs a list of moves to get from the
initial to the goal state. The moves are defined in
terms of moving the space rather than moving the
tiles. The space can be moved up, down, left and
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right. The twenty 8-Puzzle problem instances in Table
1, of differing difficulty, from past studies and online
assignments were used to evaluate the HHAI.

Trial runs were conducted to empirically determine
the parameter values of HHAI to be used in solving
the 8-puzzle problem. These values are listed in Table
2.

Table 1: 8-Puzzle problem instances

Initial state Goal state Known
optimum
(minimum
moves)

1 123804765 134862705 5
2 123804765 281043765 9
3 123804765 281463075 12
4 134805726 123804765 6
5 231708654 123804765 14
6 231804765 123804765 16
7 123804765 231804765 16
8 283104765 123804765 4
9 876105234 123804765 28

10 867254301 123456780 31
11 647850321 123456780 31
12 123804765 567408321 30
13 806547231 012345678 30
14 641302758 012345678 14
15 158327064 012345678 12
16 328451670 012345678 12
17 035428617 012345678 10
18 725310648 012345678 15
19 412087635 123456780 17
20 162573048 123456780 10

Table 2: Parameter values for the 8-puzzle problem

Parameter Value
Population size 500
Max. no. of generations 50
Max. length 10
Tournament size 4
Max. no. of iterations 10
Crossover rate 50%
Mutation rate 50%

Heuristics that have generally been used by in-
formed searches for the 8-Puzzle problem include the
number of tiles out of place, tile reversal and the Man-
hattan distance or a combination as these [5]. The
Manhattan distance has proven to be the most effective
[9] and hence is used in this study. This heuristic is
essentially the sum of the distances of each tile from
its position in the goal state. This heuristic is also
used by HHAI as a fitness measure (see Section 3.2).

4.2 Towers of Hanoi

An instance of the Towers of Hanoi problem with three
discs is illustrated in Fig. 8. Solving the problem
requires moving the discs from the leftmost pole to the

rightmost pole, without at any time placing a larger
ring on a smaller ring. Only one ring can be moved at
a time.

!Figure 8: An example of the Towers of Hanoi problem

Table 3: Towers of Hanoi problem instances

Problem Known optimum
(minimum moves)

3 discs 7
4 discs 15
5 discs 31
6 discs 63
7 discs 127

Table 4: Parameter values for the Towers of Hanoi
problem

Parameter Value
Population size 500
Max. no. of generations 50
Max. length 10
Tournament size 4
Max. no. of iterations 20 (3, 4 and 5 discs),

100 (6 discs), 200 (7
discs)

Crossover rate 50%
Mutation rate 50%

The HHAI was tested on five instances of the prob-
lem with 3, 4, 5, 6 and 7 discs. The details are listed
in Table 3.

As with the 8-Puzzle problem, the parameter val-
ues for HHAI were determined empirically by perform-
ing trial runs. These are listed in Table 4.

The following heuristic is used by the informed searches
and as the fitness measure by HHAI:

heuristic = 2 × number of discs on Pole 1

+ 2 × number of discs on Pole 2

+ sum of the distance of each disc on Pole 3

from its position in the goal state
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4.3 Blocks World

The Blocks World problem is illustrated in Fig. 9. The
initial state contains blocks on a table, some of which
form a stack. Solving the problem involves identify-
ing the moves needed for the blocks to be stacked as
indicated in the goal state. The legal moves include
moving a block from the table to the top of the stack
and moving the topmost block on the stack to the
table.

!

C
O

PUT E

Initial State GoalState

RC
O

C
OO

P
U
T
E
R

M
M

Figure 9: An example of the Blocks World problem

Instances of the Blocks World problem were cre-
ated by choosing five words of different lengths. The
initial state for each word was created by randomly
determining whether the block corresponding to each
letter is on the stack or table. The goal state in each
case is the blocks correctly stacked to spell out the
word. The instances are listed in Table 5.

Table 5: Informed searches for Blocks World

Value Initial state Known
optimum

Stack Table (minimum
moves)

BW1 computer ope cmutr 11
BW2 artificial aiic rtfial 14
BW3 intelligence nelige itlnce 16
BW4 translators anlators Trs 7
BW5 program-

ming
prgmng orami 13

The parameter values used by HHAI for this prob-
lem domain, which were determined by performing
trial runs, are listed in Table 6.

Table 6: Parameter values for Blocks World problem

Parameter Value
Population size 500
Max. no. of generations 50
Max. length 10
Tournament size 4
Max. no. of iterations 50
Crossover rate 50%
Mutation rate 50%

The following is used as a heuristic for the informed
searches and the fitness measure by HHAI:

heuristic = number of blocks missing from the stack

+ number of incorrectly-placed blocks

on the stack

5 RESULTS AND DISCUSSION

This section discusses the performance of the HHAI
in designing hybridized search algorithms to solve the
three classical artificial intelligence problems. The first
subsection applies the traditional searches to these
problems to evaluate how these searches work inde-
pendently, providing a benchmark against which the
performance of the hybridized searches produced by
HHAI can be compared. This also provides a means
of determining the level of difficulty of each of the
problem instances for the three domains. The sections
that follow report on the performance of the HHAI
for the 8-Puzzle, Towers of Hanoi and Blocks World
problems respectively. Section 5.5 compares the results
for the 8-Puzzle and Towers of Hanoi problems to that
of the initial attempt in [6]. A summary of the results
is presented in Section 5.6. The searches and HHAI are
evaluated in terms of whether they are able to induce
a set of moves to produce a solution and whether the
number of moves is the optimal, i.e. the minimum num-
ber of moves1. Thus a smaller value for the solution
path length (number of moves) is indicative of a better
solution.

5.1 Performance of traditional searches

This section reports on the performance of the depth
first search (DFS), breadth first search (BFS), best
first search, hill-climbing and A* algorithm, in solving
problem instances of the 8-Puzzle, Towers of Hanoi and
Blocks World problems. Each search was given a max-
imum of thirty minutes within which to find a solution.
This maximum was chosen based on trial runs per-
formed with uninformed and informed searches. The
maximum runtimes of these trials were approximately
thirty seconds. It was decided to use thirty minutes
to give the searches a fair chance of finding a solution
without the overhead of high runtimes. The perfor-
mance of the searches are depicted in Table 7 to Table
12. For each search the number of moves, i.e. length
of the solution path, and the runtime is displayed. A
hyphen “—” indicates that the search was not able to
find a solution within the time limit. The heuristics
used by the informed searches for each of the problem
domains are discussed in section 4. From Table 7 and
Table 8 it is evident that puzzles 9 to 13 are the most
difficult and could only be solved by heuristic searches.
All three heuristic searches were able to find solutions
for all problem instances. The A* algorithm has pro-
duced optimal results, with slightly higher runtimes
for the more difficult problem instances.

1The known minimum number of moves for each problem
instance is provided in Section 4.
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Table 7: Performance of uninformed searches in solving
the 8-Puzzle problem (A = number of moves, B = run-
time in seconds)

Problem DFS BFS
A B A B

1 5 < 1 5 < 1
2 9 < 1 9 1
3 12 < 1 12 1
4 6 < 1 6 < 1
5 14 2 14 2
6 16 6 16 6
7 16 6 16 6
8 4 < 1 4 < 1
9 — < 1 — < 1

10 — < 1 — < 1
11 — < 1 — < 1
12 — < 1 — < 1
13 — < 1 — < 1
14 14 2 14 2
15 12 1 12 1
16 12 1 12 1
17 10 < 1 10 1
18 15 4 15 4
19 17 12 17 11
20 10 1 10 < 1

Table 8: Performance of informed searches in solving
the 8-Puzzle problem (A = number of moves, B = run-
time in seconds)

Problem Best first Hill climbing A* algorithm
A B A B A B

1 5 < 1 5 < 1 5 < 1
2 31 < 1 13 < 1 9 < 1
3 34 < 1 16 < 1 12 1
4 6 < 1 6 < 1 6 < 1
5 22 < 1 22 < 1 14 < 1
6 16 1 20 < 1 16 < 1
7 16 < 1 16 < 1 16 < 1
8 4 < 1 4 < 1 4 < 1
9 58 < 1 48 < 1 28 9

10 47 < 1 433 < 1 31 29
11 47 < 1 109 < 1 31 28
12 64 < 1 126 < 1 30 1
13 47 < 1 103 < 1 31 28
14 24 < 1 72 < 1 14 < 1
15 36 < 1 42 < 1 12 < 1
16 38 < 1 120 < 1 12 < 1
17 10 1 48 < 1 10 < 1
18 15 < 1 53 < 1 15 1
19 47 < 1 221 < 1 17 < 1
20 12 < 1 306 < 1 10 < 1

Table 9: Performance of uninformed searches in solving
the Towers of Hanoi problem (A = number of moves,
B = runtime in seconds)

Problem DFS BFS
A B A B

3 discs 9 1 7 1
4 discs 29 < 1 15 < 1
5 discs 81 < 1 31 < 1
6 discs 245 < 1 63 1
7 discs 729 < 1 127 1

Table 10: Performance of informed searches in solving
the Towers of Hanoi problem (A = number of moves,
B = runtime in seconds)

Problem Best first Hill-climbing A* algorithm
A B A B A B

3 discs 11 1 15 < 1 7 < 1
4 discs 19 < 1 35 < 1 15 < 1
5 discs 39 < 1 93 < 1 31 < 1
6 discs 95 < 1 257 1 63 1
7 discs 243 < 1 747 1 127 1

Table 11: Performance of uninformed searches in solv-
ing the Blocks World problem (A = number of moves,
B = runtime in seconds)

Problem DFS BFS
A B A B

BW1 — —
BW2 — —
BW3 — —
BW4 191 1 7 2
BW5 — —

Table 12: Performance of informed searches in solving
the Blocks World problem (A = number of moves,
B = runtime in seconds)

Problem Best first Hill-climbing A* algorithm
A B A B A B

BW1 11 < 1 11 < 1 11 1
BW2 14 < 1 14 < 1 14 1
BW3 16 < 1 16 < 1 16 7
BW4 7 < 1 7 < 1 7 < 1
BW5 13 < 1 13 < 1 13 1
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Table 9 and Table 10 display the results of the un-
informed and informed searches respectively in solving
the Towers of Hanoi problem. All the searches were
able to produce solutions for all problem instances,
with the breadth first search and A* algorithms pro-
ducing optimal solutions.

It can be seen from the results in Table 11 that the
uninformed searches were only able to solve one prob-
lem instance of the Blocks World problem within the
time limit of thirty minutes. Heuristic search is needed
to find a solution for the four problem instances. All
three searches were able to produce optimal solutions.

5.2 Performance of HHAI in solving the
8-Puzzle problem

The HHAI was able to find solutions for all twenty
problem instances. Due to the stochastic nature of evo-
lutionary algorithms, thirty runs were performed for
each problem. Table 13 lists the success rate, i.e. per-
centage of runs producing a solution, admissibility rate,
i.e. percentage of runs producing a solution with the
minimum number of moves, the minimum and max-
imum path length of the solutions produced in the
thirty runs.

Table 13: Performance of HHAI in solving the 8-Puzzle
problem (A = success rate, B = admissibility rate,
C = known minimum, D = minimum solution path
length, E = maximum solution path length)

A B C D E
1 100% 100% 5 5 5
2 100% 100% 9 9 9
3 100% 100% 12 12 12
4 100% 100% 6 6 6
5 100% 100% 14 14 14
6 100% 100% 16 16 16
7 100% 100% 16 16 16
8 100% 100% 4 4 4
9 100% 3% 28 28 40

10 100% 37% 31 31 39
11 100% 37% 31 31 37
12 100% 100% 30 30 30
13 100% 53% 31 31 39
14 100% 100% 14 14 14
15 100% 100% 12 12 12
16 100% 100% 12 12 12
17 100% 100% 10 10 10
18 100% 100% 15 15 15
19 100% 100% 17 17 17
20 100% 100% 10 10 10

The search algorithms evolved by HHAI for Puzzle
1 produced admissible solutions for all thirty runs with
a runtime of less than a second for each run. For
five of the runs the algorithm induced was 59;b. This
algorithm performed 59 iterations of the breadth first
search to solve the problem. For the remaining twenty
five runs, the algorithm evolved was 5;s. This algorithm
performs five iterations of the best first search using
the Manhattan distance heuristic.

Similarly, for Puzzle 2 HHAI induced algorithms
solving the puzzle with the minimum number of moves
for all thirty runs with a runtime of less than a sec-
ond. For this problem there was more variety in the
algorithms producing the best result on each run. An
algorithm produced on eleven of the runs was 24;a,
which is 24 iterations of the A* algorithm. Examples
of other algorithms induced that produced optimal
solutions include 22;a,2;s and 29;b,5;s. All the algo-
rithms producing optimal solutions begin with either
the A* algorithm or breadth first search.

Admissible solutions were also produced by the
induced algorithms on all thirty runs within a second
for Puzzle 3. Thirty seven of the solution algorithms
began with the A* search and the remaining three
algorithms with the breadth first search. Examples of
the induced algorithms include 37;a, 35;a,2;s, 34;a,11;b,
and 29;b,8;s.

HHAI has performed similarly on puzzles 4 to 8,
12 and 14 to 20. For all of these puzzles admissible
solutions were produced with an average runtime of
less than a second for the thirty runs. The algorithm
induced on all thirty runs for Puzzle 4 is 6;s, i.e. six
iterations of the best first search using the Manhattan
distance heuristic. The induced algorithms solving
Puzzle 5 begin with either the A* or breadth first
search algorithms, e.g. 26;b,10;s, 37;a,39;b,29;b, and
37;a,10;s. For Puzzle 6 the solution algorithms begin
with either the A* algorithm, breadth first search or
best search, e.g. 23;a,39;s,31;b, 45;b,34;s,33;h,31;h and
36;s,30;s,28;a,22;d. This algorithms evolved for Puzzle
7 also began with one of these three searches. Some
of the algorithms evolved for this puzzle used only the
best first search or A* algorithm. All the algorithms
using the breadth first search, used it together with
the A* or best first search. Essentially two algorithms
were evolved for Puzzle 8, namely, 4;s and 29;b.

HHAI induced algorithms that produced solu-
tions for all thirty runs for Puzzle 9. The algorithm
producing an optimal solution evolved by HHAI is
61;b,60;a,15;s which combines the breadth first, A*
algorithm and the best first search, beginning with the
breadth first. Neither of the uninformed searches were
able to solve this puzzle. The algorithms induced for
this puzzle have a minimum number of moves of 28
and a maximum of 40, with the number of moves for a
majority of the algorithms in the range 30 to 36. These
algorithms have performed better than both the best
first search and hill-climbing which solve this puzzle
with 58 and 48 moves respectively. The A* algorithm
produces a solution with a minimum number of moves
in 9 seconds while the HHAI takes 26 seconds. This
is expected as the HHAI evolves a population of 500
hundred algorithms over more than one generation.

The evolved algorithms producing optimal solu-
tions for Puzzle 10, Puzzle 11 and Puzzle 13 begin
with either the breadth first search or A* algorithm
and combine two or more of the breadth first search,
best first search and A* algorithm. The number of
runs producing admissible algorithms is not as high
as for the other puzzles. It is hypothesized that this
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could be improved with further tuning of parameter
values.

HHAI induced algorithms producing optimal solu-
tions for all thirty runs for Puzzle 12 and puzzles 14
to 20. Examples of the algorithms are listed in Table
14 for each of the puzzles. For Puzzle 14 40;b,9;s was
evolved for fifteen of the runs. Similarly, for Puzzle 15
the algorithm 34;b,8;s was produced on twenty three of
the thirty runs. All the algorithms for Puzzle 16 began
with the A* algorithm and some of the algorithms were
comprised of only the A* algorithm. The algorithm
evolved on all runs for Puzzle 17 is 12;s. For Puzzle
18 the algorithm 38;s was evolved on nineteen of the
thirty runs. Algorithms evolved for Puzzle 19 were
comprised of either the breadth first search, best first
search or the A* algorithm and the best first search,
with the breadth first and A* algorithm preceding the
best first search. All the algorithms for Puzzle 20 per-
form the breadth first search or start with the breadth
first search followed by the best first search.

5.3 Performance of HHAI in solving the
Towers of Hanoi problem

HHAI derived algorithms solving all 5 instances of the
Towers of Hanoi problem. As shown in Table 15, all
the algorithms were admissible; that is, they produced
solutions with the shortest solution path for each of
the problem instances.

HHAI is able to evolve admissible algorithms for
the problem with 3, 4 and 5 discs within a second, with
an average runtime for 6 discs being 18 seconds and 5.42
minutes for 7 discs. Example solutions algorithms are
listed in Table 16. The algorithm evolved on all thirty
runs for the 3 disc problem is 24;b, which uses only the
breadth first search. The algorithms evolved for the 4
disc problem either applies the breadth first, best first
or A* algorithms, or combines two of these searches.
Similarly, the algorithms for the 5 disc problem either
apply these three searches separately or combine two or
three of the searches. All the algorithms generated for
the 6 disc problem begin with the breadth first search
or A* algorithm. The algorithms are quite varied and
combine two to four of all four searches. All of the
algorithms evolved for the 7 disc problem except 2
combine the breadth first search and the A* algorithm
or apply just the breadth first search. The remaining
two algorithms begin with the best first search and
combine the best first search and A* algorithm.

5.4 Performance of HHAI in solving the Blocks
World problem

HHAI evolved admissible algorithms for all five blocks
world instances. The results are listed in Table 17.
Admissible algorithms were induced on all thirty runs.
The average runtimes for BW1, BW2, BW3, BW4 and
BW5 are less than a second, eight seconds, four sec-
onds, less than a second and two seconds respectively.
The algorithms produced by HHAI performed better
than the uninformed searches and comparably to the
informed searches in solving the five problem instances.

Table 18 lists examples of the algorithms evolved
for each of the problem instances. For BW1 the algo-
rithms on 28 of the runs implemented the best first
search. For two of the runs the algorithm 42;s,20;b
was evolved combining the best first and breadth first
search. Similarly, all the algorithms evolved for BW2
except two performed the best first search. Of the re-
maining two algorithms one combined the breadth first
and best first search and the other the A* algorithm
and best first search.

Essentially two types of algorithms were evolved
for BW3. The first algorithm performed the best first
search on twelve runs) and the second combined the
breadth first search and best first search (on fifteen
runs). An algorithm combining the A* and best first
algorithms was produced on two runs and an algorithm
performing hill-climbing on one run. For 28 of the runs
the algorithm 10;s was produced for the BW4, and 21;a
for two of the runs. Three algorithms were induced
for BW5, namely, 37;b,10;s, 37;s,10;s and 37;a,10;s.
All three include the best first search, with one of the
algorithms combining the breadth first and best first
searches and the remaining algorithm combining the
A* algorithm and best first searches.

5.5 Comparison with previous work

This section empirically compares the performance of
the hyper-heuristic in [6] to that presented in this study
to design search algorithms, comprised of the tradi-
tional artificial intelligence searches, for solving the
8-Puzzle and Towers of Hanoi problem. A comparison
of performance on the Blocks World problem is not
possible as the hyper-heuristic in [6] was not applied to
this domain. HHAI was developed to address the short-
comings identified in the previous version reported in
[6] (see Section 3). The differences between HHAI and
the hyper-heuristic in [6] include:

• A Pareto comparison of fitness including both
correctness and optimality of the solution path in
HHAI.

• An improved mutation operator which includes
gene deletion, iteration replacement, search re-
placement and gene insertion, in addition to gene
replacement used in [6].

• A crossover operator that swaps sections of chro-
mosomes to produce an offspring in HHAI.

Both hyper-heuristics were able to produce optimal
solutions for all puzzles. Table 19 lists the admissibility
rate for both hyper-heuristics for each of the twenty
problem instances. It is evident from Table 19 that
HHAI performs better at producing admissible algo-
rithms than the hyper-heuristic in [6]. For Puzzle 9
and Puzzle 12, which the hyper-heuristic in [6] was not
able to find admissible algorithms, the best evolved
algorithm produced a minimum number of moves of
32 and 38 respectively.

Table 20 lists the admissibility rate for the hyper-
heuristic in [6] and HHAI for the Towers of Hanoi
problem. Both hyper-heuristics have produced solu-
tions for all instances of this problem.
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Table 14: Example optimal algorithms for the 8-Puzzle problem

Puzzle Example optimal algorithms
12 27;a,26;h 27;s,21;h,33;b 20;b,26;h,2;b
14 40;b,9;s 22;b,10;s 27;a,20;a,8;b
15 34;b,8;s 58;b,6;s 18;a
16 32;a 26;a,5;s 31;a,1;b
17 12;s
18 38;s 34;s,14;b 23;a,11;s
19 35;b,12;s 36;a,12;s
20 40;b,5;s 22;b,28;b

Table 15: Performance of HHAI in solving the Towers of Hanoi problem (A = success rate, B = admissibility rate,
C = known minimum, D = minimum solution path length, E = maximum solution path length)

A B C D E
3 discs 100% 100% 7 7 7
4 discs 100% 100% 15 15 15
5 discs 100% 100% 31 31 31
6 discs 100% 100% 63 63 63
7 discs 100% 100% 127 127 127

Table 16: Example optimal algorithms for the Towers of Hanoi problem

Puzzle Example optimal algorithms
3 discs 24;b
4 discs 34;b,12;b 41;a,6;b 46;a 45;s,8;s 44;a,2;s 30;b,8;s
5 discs 36;b,66;a,15;s 43;b,57;b,24;b 32;a,26;a,27;s,24;b
6 discs 195;b,314;b,288;d,226;s 228;a,258;b 211;b,275;b,131;h,208;s
7 discs 834;a,522;b 440;b,544;b,126;b 393;s,422;s,332;a,157;a

Table 17: Performance of HHAI in solving the Blocks World problem (A = success rate, B = admissibility rate,
C = known minimum, D = minimum solution path length, E = maximum solution path length)

A B C D E
BW1 100% 100% 11 11 11
BW2 100% 100% 14 14 14
BW3 100% 100% 16 16 16
BW4 100% 100% 7 7 7
BW5 100% 100% 13 13 13

Table 18: Example optimal algorithms for the Blocks World problem

Puzzle Example optimal algorithms
BW1 44; s, 1; s 45; s 42; s, 20; b
BW2 249; s 245; s, 4; s 239; b, 10; s 239; a, 10; s
BW3 49; s, 21; s 49; b, 21; s 49; a, 21; s 16;h
BW4 10; s 21; a
BW5 37; b, 10; s 37; s, 10; s 37; a, 10; s
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Table 19: Performance comparison for the 8-Puzzle
problem

Hyper-heuristic
in [6]

HHAI

1 2% 100%
2 60% 100%
3 70% 100%
4 100% 100%
5 30% 100%
6 40% 100%
7 30% 100%
8 60% 100%
9 0% 3%

10 10% 37%
11 20% 37%
12 0% 100%
13 0% 53%
14 50% 100%
15 90% 100%
16 20% 100%
17 60% 100%
18 90% 100%
19 70% 100%
20 30% 100%

Table 20: Performance comparison for the 8-Puzzle
problem

Hyper-heuristic
in [6]

HHAI

1 50% 100%
2 20% 100%
3 0% 100%
4 0% 100%
5 0% 100%

The minimum number of moves that the best al-
gorithm induced by the hyper-heuristic in [6] for the
5 disc, 6 disc and 7 disc problem is 32, 125 and 226
respectively. HHAI has also performed better in terms
of admissibility for this domain as well.

5.6 Summary

This section provides a summary of the performance
of the searches applied individually to the problem
instances and HHAI. The uninformed searches were
not able to find solutions for all of the 8-Puzzle prob-
lem instances. The difficult problem instances are
clearly Puzzle 9 to Puzzle 13. The runtimes for the
uninformed searches ranged from less than a second
to a maximum of seventeen seconds, the more diffi-
cult problem instances taking longer to solve. The
informed searches were able to produce solutions for
all twenty problem instances with only the A* algo-
rithm inducing admissible solutions. All three searches
were able to solve all problems within a second with
the exception of the A* algorithm on Puzzle 9, Puzzle
10, Puzzle 11 and Puzzle 13, which took 9, 29, 28 and
29 seconds to solve respectively. This again emphasizes

the difficulty of these problem instances. All searches
were able to produce solutions for the Towers of Hanoi
problem instances within a second. Admissible solu-
tions were generated by the breadth first search and
A* algorithm. The uninformed searches were only able
to solve one problem instance for the Blocks World
problem, namely BW4. All three informed searches
induced admissible solutions for all five Blocks World
problem instances. All runtimes were less than a sec-
ond, with an exception of the A* algorithm in solving
BW3 which took seven seconds.

Due to the stochastic nature of HHAI thirty runs
were performed for each problem instance and the
performance of HHAI evaluated over the thirty runs.
HHAI was able to produce admissible solutions for all
problem instances of the 8-Puzzle problem. Admissible
solutions were found on thirty runs for all the problem
instances with an exception of Puzzle 9, Puzzle 10,
Puzzle 11 and Puzzle 13, with admissible solutions
produced on 3%, 37%, 37% and 53% of the thirty runs
respectively. HHAI induced admissible solutions for
all thirty runs for each problem instance of Towers of
Hanoi and Blocks World problems. The runtimes for
HHAI ranged from a minimum of less than a second
for a majority of the problem instances to a maximum
of 26 seconds. HHAI was found to produce more than
one admissible solution algorithm, i.e. combination
of searches, for a majority of the problem instances.
Patterns were found in the evolved algorithms for the
different problem instances, e.g. all algorithms begin-
ning with an admissible search.

This study was aimed at improving the initial at-
tempt in [6]. Improvements made include incorporating
a measure of optimality of the solution path in the
fitness function, a mutation operator which performs
gene deletion, iteration replacement, search replace-
ment and gene replacement, and the use of crossover.
HHAI outperformed the hyper-heuristic in [6], produc-
ing admissible solutions for all instances of the 8-Puzzle
and Towers of Hanoi problems.

6 CONCLUSION AND FUTURE WORK

The research presented in this paper forms part of a
larger initiative aimed at using hyper-heuristics for the
design of intelligent hybrid systems. In an attempt to
investigate the potential of hyper-heuristics for this
purpose, this study examines the use of an evolutionary
algorithm hyper-heuristic (HHAI) to design traditional
search algorithms to solve three classical artificial in-
telligence problems, namely, the 8-Puzzle problem,
Towers of Hanoi and Blocks World. HHAI was able
to produce solution algorithms for all instances for all
three problem domains.

In addition to this, HHAI was able to evolve algo-
rithms producing admissible solutions for all problem
instances. For some problem instances the same algo-
rithm was evolved on all thirty runs indicating that
only one admissible solution algorithm exists for the
problem instance. In some cases although different
algorithms were generated on different runs, a pattern
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could be found in the algorithms producing optimal so-
lutions, e.g. the algorithms begin with the same search,
two or three of the same searches are combined.

Some searches were also found to perform well for
certain problem domains. For example, the admissible
solution algorithms induced for all instances of the
Blocks World problem were comprised essentially of the
best first search. The algorithms generated by HHAI
were found to outperform the uninformed searches in
solving the difficult instances of the 8-Puzzle problem
and the Blocks World problem.

Given the success of this study and hence the po-
tential of hyper-heuristics for algorithm design, future
work will investigate the use of hyper-heuristics for
designing intelligent hybrid systems for high-level rea-
soning. The low-level heuristics in this case will be
genetic algorithms, tabu search, variable neighbour-
hood search and simulated annealing. The main con-
tribution of this research is the automated design of
intelligent systems. This has long term benefits for
the software industry as a means of reducing the man
hours needed for intelligent system design.
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