
120 Research Article – SACJ No. 56, July 2015

Hardware genetic algorithm optimisation by critical path

analysis using a custom VLSI architecture

Farouk Smith, Allan Edward van den Berg

Mechatronics Department, Nelson Mandela Metropolitan University, South Africa

ABSTRACT

This paper investigates optimisation of Evolutionary Hardware Systems (EHW) by means of digital circuit critical path

analysis. A 2×2 digital multiplier and a Finite State Machine (FSM) control circuit were evolved using a target-independent

Virtual Reconfigurable Circuit (VRC) architecture. An in-depth analysis of the phenotypes’ Critical Paths (CP) was

performed. Through analysing the CPs, it was shown that a great amount of insight can be gained into a phenotype’s

fitness. Particularly, the identification of the CP’s dependence is valuable, since dependent CPs reduced the required net

number of evolved Logic Elements (LE). Generally, in both the multiplier and state phenotypes, the CPs were evolved in

ascending order of the net LEs. This suggests that evolution always favoured CPs with lower net numbers. However, we

have seen that in one special case, if two independent CPs are used by a third CP, the resulting third CP has a lower net

number than both independent CPs. The CP analysis also led to the development of the FitnessOverall fitness function,

which had a distinctive way of not only rewarding correct output elements, but also encouraging more efficient evolution

through sustaining evolved CPs, and further developing partially-evolved CPs. Finally, by using the optimized fitness

function, we demonstrated the evolution of a FSM control circuit. The results verify that optimised GAs can find solutions

quicker, and with fewer attempts.

KEYWORDS: FPGA, genetic algorithm, virtual reconfigurable circuit, evolutionary hardware, logic element, digital
circuit, Cartesian genetic programming, hardware chromosome, intrinsic evolution, off-chip evolution, on-chip
evolution

CATEGORIES: B.6.3 [Logic design]: Design aids—automatic synthesis, hardware description language, optimisa-
tion, verification

ARTICLE HISTORY

Received 2 September 2014
Accepted 24 March 2015

1 INTRODUCTION

Traditional circuit-design methodologies “rely on rules
that have been developed over many decades” and
require more human expertise for increasingly complex
designs, which may be costly [1]. Complex designs are
often tackled using powerful design tools, such as Elec-
tronic Design Automation (EDA), high-level abstrac-
tion design-techniques and advanced Internet Protocol
core libraries. However, the design-productivity gap is
still increasing [2].

One solution to this design problem is Evolutionary
Hardware Systems (EHW). EHW is a combination of
three disciplines: Computer Science, Electronics Engi-
neering and Biology [3]. Through modelling biological
and natural intelligence, engineers and scientists have
been able to mimic natural evolution in software for

Email: Farouk Smith Farouk.Smith@nmmu.ac.za

use in hardware design [4].

Despite the increased research and resources in
the field, EHW systems remain largely unusable in
real-world applications [5]. Only a few engineering
applications have shown promise [6, 7], even though
early pioneers claim that evolution will soon be applied
to large-scale machines [8].

Researchers have raised a number of issues that
have retarded the growth of EHW applications. These
include the difficulties in configuring EHW platforms,
scalability [9], evolution time and problem complexity
[10].

EHW systems make use of evolutionary algorithms
(EA), usually genetic algorithms (GA), to evolve digi-
tal circuits on devices such as field-programmable gate
arrays (FPGAs) [11, 12, 13]. These systems are partic-
ularly useful in adaptive control systems, fault-tolerant
systems and the automatic design of low-cost hardware
[4].

Research Article – SACJ No. 56, July 2015 121

In EHW, each individual is represented using a
hardware chromosome, also called the genotype. A
hardware chromosome is a string of integers that rep-
resents a certain circuit configuration when decoded.
Each single integer in the hardware chromosome is
referred to as a hardware gene.

The decoded circuit is known as the phenotype.
Phenotypes are configured in terms of functionality
(the function of each component) and routing (how the
components are connected to one another).

Since EHW make use of genetic search algorithms
that need to explore large search spaces, the intricacy
and sheer scale of finding a solution becomes more
apparent as the solution circuit becomes more complex.
Many researchers have recognized that scalability is a
hindrance in the successful implementation of EHW in
real-world applications [14, 15].

Scalability, in this context, refers to the difficulty of
finding a satisfactory solution for large complex prob-
lems, those found in real-world applications due to
the GA’s search space being too large, or the solution
being too complex to be implemented on the EHW
system. To put scalability in context, EHW systems
have to evolve circuitry by placing digital logic gates,
often thousands of logic gates in larger systems, in
very specific configurations. In addition, as the com-
plexity of the circuit increases, so the genotype length
and the time required to calculate the fitness of each
phenotype also increases. This results in there being
billions of potential solutions which are cumbersome
and time-consuming to explore, even with evolutionary
techniques.

There are two EHW GAs investigated in this work
to demonstrate fitness function optimisation in digital
circuits to address the problem of scalability. The first
GA variant, referred to as a canonical GA, uses the
tournament-selection, uniform-crossover and mutation
genetic operators. Initial studies on canonical GAs did
not value mutation, and thus mutation did not often
feature [16]. This is in direct contrast to the second
GA variant, referred to as a 1 + λ GA.

The 1 + λ GA relies only on the mutation operator.
It makes use of (µ + λ)-selection, where µ represents
the number of parents and λ the number of offspring.
For example, a 1 + λ GA uses a single parent that is
mutated λ times until a new generation is computed.
This GA variant does not make use of tournament
selection or crossover.

A noteworthy contribution of this research is the
critical-path analysis of digital circuits in order to
understand the manner in which they are evolved in
EHW. With this knowledge, better fitness functions
and operators were developed to enhance the EHW
system’s efficiency.

A further contribution of this research is the de-
velopment of the ‘overall fitness function’, which has a
distinctive way of not only rewarding correct output
elements, but also encouraging more efficient evolution
through sustaining evolved CPs, and further develop-
ing partially-evolved CPs.

2 RELATED WORK

2.1 Evolving multiplier circuits in hardware

A combinational-multiplier circuit is an electronic cir-
cuit that computes the product of two unsigned binary
numbers. Multipliers are often useful for computing
mathematical instruction-sets in PCs’ arithmetic-logic
units. Most multiplier circuits use the scheme of first
computing the inputs’ partial products, and then sum-
ming the partial products to form the final product.

The complexity of a multiplier’s circuit increases
exponentially with an increase in the number of output
bits. For example, a conventional two-bit multiplier
may use approximately eight FPGA logic elements con-
figured to implement two half-adders, while a four-bit
multiplier may use up to 64 logic elements configured
to use four half- and eight full-adders. Considering
the above complexity, the simple two-bit multiplier
circuit is a favourable initial circuit to evolve since it
small enough to demonstrate EHW while still being a
practical sub-circuit for many digital ICs.

2.2 Scalability and chromosome length

Scalability and chromosome length are directly related.
As the complexity (i.e. number of external IOs) of the
solution circuit increases, so does the size of the search
space and length of the chromosome string. Long chro-
mosome strings are an inevitable side-effect of complex
systems. Thus, by simplifying or scaling-down complex
circuits, the chromosome strings can be reduced. This
will reduce the EA’s search space. However, a different
approach to scalability is to increase the EA’s comput-
ing power. To do this, researchers have proposed par-
allel evolution [17]. Parallel-evolution schemes make
use of two or more independent EAs, i.e. the EAs run
in parallel, thereby allowing multiple circuits to be
evolved simultaneously.

2.3 Overcoming scalability using a
multifaceted approach

In 2007, Wang et al. [17, p. 33] evolved both three-bit
adders and multipliers in less than three seconds, which
was reportedly “untouchable by any other reported
evolvable system.” The work showed that three-bit
adders/multipliers were scalable if a mutifaceted ap-
proch was taken. Wang et al. suggested overcoming
scalability using three techniques: optimising the EA;
limiting the chromosome length; and “decreasing the
computational complexity of the problem” [17, p. 25].

Firstly, Wang et al. made use of a GA optimised
by omitting the crossover operator. Also, a multi-VRC
platform was used, thereby allowing the GA to test the
candidate circuits faster. Although not done by Wang
et al., other optimisations could also include finding
more effective mutation and crossover operators (if
used), and improving the fitness function [18, 19].

Secondly, the chromosome length was limited by
decomposing the solution circuit into modules, as done
in modular evolution. There are different ways of de-
composing circuits, each with varying levels of success

122 Research Article – SACJ No. 56, July 2015

and complexity. Examples include Shannon decompo-
sition [20], disjunction decomposition [21], and output
decomposition [17]. Wang et al. made use of output
decomposition, which decomposes a circuit according
to the number of external outputs.

Thirdly, to decrease the computational complexity,
parallel evolution was used. Unlike modular evolution,
parallel evolution does not decrease the complexity
of the solution circuit. It only improves the compu-
tational capacity of the evolution. Wang et al. used
a two-core system, with each core running indepen-
dent GAs and VRCs, and evolving a single sub-circuit.
Theoretically, there was no limit to the number of
implemented cores and VRCs.

The results showed that that modular evolution
decreased the number of generations required from
over 18-million generations for standard evolution, to
approximately 133 thousand. In addition, parallel
evolution was able to improve the evolution time from
approximately 77 seconds for standard evolution, to
2.6 seconds.

Finally, Wang et al. acknowledge that more com-
plex circuits would still need to be tested, adding that
“future work will be devoted to applying this scheme
to other more complex real-world applications.”

2.4 Variety of research

The diversity of EHW research may be considered both
beneficial and problematic: beneficial because diversity
promotes progress and unique solutions; problematic
because there is little standardisation within the field.

To analyse the diverse EHW research, EHW sys-
tems can be classified, as suggested by Torresen [12],
into the following categories: evolutionary algorithm,
evolution level, target platform/architecture, degree
of evolution and scope. The evolutionary algorithm
and target platform was previously discussed. The
remaining categories are defined below:

Evolution level: The level at which the evolution is
performed is called ‘granularity’, with gate-level
evolution being fine, and function-level evolution
being course.

Fitness computation: Refers to the manner in which
the fitness of a circuit is computed. Extrinsic
evolution only downloads the elite chromosome to
the target platform. Thus, much of the evolution
is simulated. Intrinsic evolution implements and
tests each chromosome in hardware.

Degree of evolution: Refers to whether or not “the
evolutionary algorithm is performed on a separate
processor incorporated into the chip containing
the target EHW” [20]. Off-chip evolution does
not make use of an incorporated processor, while
on-chip evolution does. Complete evolution does
not use a processor, but rather uses specialised
hardware.

Scope: Static evolution only puts the evolved circuit
to use once evolution is complete. Static evolution
is typically used in Evolved Hardware. Dynamic
evolution is undertaken while the evolved circuit

is used. Thus, dynamic evolution is used in Evolv-
able Hardware.

Most research during the last 20 years deals with simple
digital/analogue circuit synthesis [22], image filtering
[16], and system refinements [23]. There is little ev-
idence of real-world applications being implemented,
and thus most research is still focussed on refining sys-
tems, and testing these refinements by evolving simple
circuits such as adders and multipliers [17].

The EHW field was primarily target-platform
driven, with the Xilinx 6200 FPGAs initially being
the platform of choice. Later, post 2000, the Xilinx
Virtex FPGAs limited direct-bitstream evolution, lead-
ing to the popularisation of VRCs, with many designers
favouring VRCs due to cost and portability advantages.

Current work is concentrated on scalability; EHW
needs to become more prominent in real-world applica-
tions. From the literature, there are many solutions to
scalability, but the most promising solutions will need
a multifaceted approach.

3 THE FITNESS FUNCTION OPTIMISATION

Variations in GAs—such as changing the population
size, crossover, selection and mutation—may have a
vast impact on the performance of the algorithm. GA
operators are usually optimised for each EHW system
according to the makeup of the evolutionary platform
and architecture, the complexity of the circuit being
evolved, the fitness function and the representation of
the hardware chromosome. Thus, every GA is unique
to the specific application.

This section introduces the VRC, GA operators,
and hardware chromosome representation used to op-
timise the fitness function.

3.1 The virtual reconfigurable circuit era

The VRC is a second reconfigurable layer residing
on top of an FPGA, which takes the form of a two-
dimensional array of logic blocks, similar in architec-
ture to Cartesian Genetic Programming (CGP) [24].

VRC-based solutions, such as those designed by
Slorach & Sharman [25], Sekanina & Sllame [26], Sekan-
ina & Freidl [11] and Smith [13], generally always con-
sisted of:

Logic Elements (LEs): Programmable elements, some-
times called cells

Programmable interconnection network: Connecting
the LEs and external IOs

Configuration memory: Stored the VRC’s virtual bit-
stream so that the desired circuit could be imple-
mented

The GAs in this work use extrinsic hardware evolution,
by implementing the digital circuits on an FPGA by
means of the VRC or Virtual FPGA designed by the
first author, Smith [13].

In order to evolve the digital circuits, the VRC
was setup to use 20 LEs, with 4 external inputs and 4
external outputs.

Research Article – SACJ No. 56, July 2015 123

3.2 Reducing the search space

Evolution constraints can reduce the search space by
lowering the possible routing and functionality permu-
tations. For example, by limiting the LEs’ functionality
to fewer gates, the logic permutation can be reduced
significantly. For this reason, each circuit’s phenotype
was limited to the following configurations, which were
not permitted during evolution:

1. Each LE input was unique, i.e. an LE cannot have
the same two inputs.
Having identical inputs simply changes the LE’s
gate type, and is unnecessary.

2. Each LE’s function was limited.
The LEs’ functionality was limited to the seven
fundamental logic gates.

3. An external input cannot be directly connected to an
external output.
If connected directly, all the LEs are bypassed.

4. Each external output was unique.
None of the external outputs can be connected to
the same LE.

5. No feedback loops were allowed.
Feedback loops can create memory elements
within a circuit. This causes instability, thereby
creating unreliable fitness values. For example,
a circuit with feedback loops producing a fitness
of x% during one evaluation may produce a com-
pletely different fitness value when tested again.
This unstable circuit will cause inevitable genetic
problems, since there is a high probability of the
feedback loops being passed to the offspring.

An LE array of m rows by n columns, which
draws similarities from CGP, is used to prevent
feedback loops [11, 24]. An LE’s output can only
be connected to an external output or the input of
another LE which is in a following column. If an
LE’s output is connected to a preceding column’s
LE input, there is a risk of creating a feedback
loop.

6. External inputs could only be connected to column-
zero LEs.
In order to further reduce the GA’s search space,
the external inputs could only be connected to
the inputs of LE’s in column zero.

3.3 Testing a chromosome

During each GA generation, every chromosome needs
to be tested. Testing is done by comparing a circuit’s
output to a truth table modelled on the desired circuit.

During testing, each input vector is sequentially
loaded onto the external inputs of the VRC, and the
resultant external output vector is recorded. Fig. 1
shows input vector [0, 0, 0, . . . , 1, 0] being loaded onto
the VRC external inputs. The resultant output vector,
which in this arbitrary example is [0, 1, . . . , 1, 1], can
then be compared to the corresponding output vector
from the desired circuit’s truth table.

1 ...

Ex2_I
Ex1_I
Ex0_I

ExI-1_I
ExI-2_I	

Input	 Vector	 2

0 0 10 0
V-‐FPGA	
Test
Circuit

...

ExO-2_O
ExO-1_O

Ex0_O
Ex1_O

11 10

Output	 Vector

Figure 1: Loading an input vector onto the external
inputs

3.4 Fitness calculation

To explain how a phenotype’s fitness is calculated, first
consider the conventional multiplier-circuit in Fig. 2.

Each external output has its own critical path (CP).
A CP is the direct path linking the external inputs
to a particular external output. Hence, the multiplier
circuit can be thought of as four, smaller CP circuits
that have been coupled.

CPs may be classified as either independent or
dependent. An independent CP does not have any
LEs in common with other CPs. For example, C0’s
CP is independent since none of its LEs are used by
any other CP (highlighted red in Fig. 2). Dependent
CPs, such as those of C1, C2 and C3, have LEs in
common.

Now, consider the multiplier’s truth table, shown
in Fig. 3. There are three sets of data within the truth
table that can be used to derive a phenotype’s fitness,
namely:

• The 16 output vectors of the corresponding test
vectors

• The 64 individual output elements of the output
vectors

• The 4 CP vectors of each external output

First, consider the output vectors. In initial evolu-
tion trial-runs, the phenotypes were awarded fitness
values according to Equation 1, which expresses the
percentage of correct output vectors. For example, if
a phenotype had 12 correct output vectors, it would
score an output-vector fitness of

FOV =
(Correct output vectors

Output vectors

)
%

Equation 1: Fitness function of the output vectors

However, this fitness scheme is flawed when applied
to digital logic circuits. Consider the AND-gate marked
as callout A in Fig. 2. This gate only affects the output
of C3. If the gate’s function was arbitrarily changed,
most of C3’s outputs would be incorrect. This would, in
turn, lead to most output vectors also being incorrect,
thereby yielding a low fitness value.

Nevertheless, this low fitness value would actually
be underrated; since even though the phenotype’s out-
put vectors are mostly incorrect, the phenotype’s LEs
and routing is generally correct (only the changed gate
is incorrect). For this reason, assigning fitness values
using the output vectors was considered inaccurate
and misleading.

124 Research Article – SACJ No. 56, July 2015

A0

A1

B0

B1

A1

B1

C2

A0

B0
C0

A0

A1

B0

B1
C1

A0

A1

B0

B1

A1

B1

C3

C0

C1

C2

C3
A0

A0

A1

B0

B1

A1

B0

B1

Critical	 Path	 of	 C0

Critical	 Path	 of	 C1

Critical	 Path	 of	 C2

Critical	 Path	 of	 C3

A

Figure 2: Conventional multiplier circuit (right) comprising of four smaller CP circuits (left)

A more useful and precise fitness value was derived
from the output elements and CP vectors.

There are O(2I) = 4(24) = 64 output elements for
O external outputs and I external inputs. Equation 2
expresses the number of correct elements as a percent-
age. Thus, if an example phenotype had 24 of the 64
elements correct, a fitness of FElements = 24

64 = 37.5%
would be assigned.

FElements =
(Correct output elements

Output elements

)
%

Equation 2: Fitness function of the output elements

The advantage of using output elements over out-
put vectors is that every correct element in the out-
put vectors contributes towards the final fitness value.
For example, if all the C3 output elements in Fig. 3
were incorrect, the truth table would yield zero cor-
rect output vectors but 16 incorrect output elements.
Thus, the phenotype would attain a fitness value of
FElements = 48

64 = 75% for an element evaluation, but
FOV = 0% for the output-vector evaluation. The
output-element evaluation would provide a more ac-
curate fitness value since the phenotype is partially
correct.

FElements does not, however, encourage the correct
evolution of CPs. It merely gives an overall indication
of a phenotype’s correctness.

To understand why the correct evolution of the
CPs is important, note that CPs are often dependent.

Because dependent paths rely on other CP LEs, cor-
rectly evolving one CP inevitably partially solves other
CPs. For example, if C1’s CP in Fig. 2 was to be
successfully evolved, two of the five LEs in paths C2

and C3 would, by default, also be correct. This would
in turn make the GA more efficient.

To encourage CP evolution, the CP vectors in
Fig. 3 need to be evaluated. To do this, the CP fitness,
or FCP , is used to express the percentage of correct
CP vectors, as shown in Equation 3. For example, if a
phenotype has three correct CP vectors, it would score
a CP-vector fitness of FCP = 3

4 = 75%.

FCP =
(Correct critical path vectors

Critical path vectors

)
%

Equation 3: Fitness function of the CPs

The problem with equation 3 is that FCP is very
rigid, and only rewards fully evolved CP vectors, par-
tially evolved CPs are not rewarded. For partially
evolved CPs, Equation 4 is used.

To explain Equation 4, first consider each CP vec-
tor in Fig. 3:

• C0’s CP vector requires 4 true bits and 12 false
bits

• C1’s CP vector requires 6 true bits and 10 false
bits

• C2’s CP vector requires 3 true bits and 13 false
bits

Research Article – SACJ No. 56, July 2015 125

A1	 A0	 B1	 B0	 C3	 C2	 C1	 C0	
0	 0	 0	 0	 0	 0	 0	 0	
0	 0	 0	 1	 0	 0	 0	 0	
0	 0	 1	 0	 0	 0	 0	 0	
0	 0	 1	 1	 0	 0	 0	 0	
0	 1	 0	 0	 0	 0	 0	 0	
0	 1	 0	 1	 0	 0	 0	 1	
0	 1	 1	 0	 0	 0	 1	 0	
0	 1	 1	 1	 0	 0	 1	 1	
1	 0	 0	 0	 0	 0	 0	 0	
1	 0	 0	 1	 0	 0	 1	 0	
1	 0	 1	 0	 0	 1	 0	 0	
1	 0	 1	 1	 0	 1	 1	 0	
1	 1	 0	 0	 0	 0	 0	 0	
1	 1	 0	 1	 0	 0	 1	 1	
1	 1	 1	 0	 0	 1	 1	 0	
1	 1	 1	 1	 1	 0	 0	 1	

	

Output	 VectorsTest	 Vectors

Critical-‐Path	 Vector	 of	 C3

Output	 Element

Output	 Vector

Figure 3: Analysis of a 2-bit multiplier’s truth table

FCP,Partial =
(∑3

i=0 0.5(of correct true bits for Ci
′s CP vector) + 0.5(of correct false bits for Ci

′s CP vector)

Critical path vectors

)
%

Equation 4: Fitness function of the partial CPs

• C3’s CP vector requires 1 true bit and 15 false
bits

For each CP vector, the percentage of correct true and
false bits is calculated, and weighted in a 0.5:0.5 ratio
in Equation 4. For example, if C0’s CP vector yielded
3 correct true and 10 correct false bits, a fitness of
0.5(34) + 0.5(1012) = 79.2% would be assigned. Once all
four CP-vectors have been assessed, the mean of the
four CP-vector fitness values can then be expressed as
FCP,Partial.

An important aspect of Equation 4 is the 0.5:0.5
ratio, in which the percentage of correct true and false
bits are weighted. This ratio is essential. If not used,
simply finding the percentage of correct bits will yield
inaccuracies. To explain, consider the circuit in Fig. 4,
which will always register a logic low regardless of
the input signals. If, for example, this circuit was
evolved as C3’s CP, the CP vector would register 16
false bits. Thus, the CP-vector fitness evaluation would
identify 15 of these false bits as correct and only one
as incorrect.

However, these 15 correct bits are deceptive. From
Fig. 2, note that C3’s CP is one of the multiplier’s
most complex CPs and makes use of five LEs. When
comparing the desired C3 CP circuit in Fig. 2 to the
evolved circuit in Fig. 4, there is a substantial difference.

Figure 4: Logic-low circuit

Thus, assigning a CP-vector fitness value of 15
16 =

93.8% will result in an overrated fitness score, since
the evolved CP does not resemble the desired CP.

One way to curb this inaccuracy is to place an equal
amount of emphasis on both the true and false bits.
This is what the 0.5:0.5 ratio does. If this ratio were to
be applied to the above example, a fitness of 0.5(0

1) +
0.5(1515) = 50% would be achieved. This lowered fitness
value is more truthful, as it more fittingly describes
the poorly evolved CP circuit.

Finally, all three fitness values, namely FElements,
FCP and FCP,Partial could now be combined in order
to describe the phenotype’s overall fitness, as shown
in Equation 5. Both FElements and FCP,Partial were
given an equal weighting of 30% of the overall fitness.
However, to ensure that fully evolved CPs are preserved
during the evolution process, a slightly higher 40%
weighting was given to the FCP fitness.

In summary: FElements provides an overview of a

126 Research Article – SACJ No. 56, July 2015

FitnessOverall = (0.3FElements + 0.4FCP + 0.3FCP,Partial)%

Equation 5: Overall fitness function

phenotype’s correctness, FCP ensures that correct CPs
are sustained, and FCP,Partial encourages the correct
evolution of partially evolved CPs.

4 RESULTS

The results will be addressed in two parts: the outcome
of the canonical evolution and the outcome of the 1+λ
evolution.

In order to aid comparison, the following control
variables were kept constant:

• Both GAs made use of a six-individual population

• Both GAs made use of the same fitness function
(Equation 5)

• Both GAs made use of the same GA constraints
(Section 3.2)

4.1 Canonical evolution

The canonical-evolution results are presented in two
subsections below. The first section discusses the re-
sults of an initial trial run; the second section discusses
the final-canonical GA results.

4.1.1 Trial-canonical results

The first successful-trial GA to evolve a 100%-fit
phenotype made use of fifty individuals; and all LE
functionality was allowed, unlike the constraint speci-
fied in Section 3.2, point 2, i.e. 16 LE functions were
permitted. (This is in direct contrast to the final-
canonical GA’s parameters, which used a six-individual
population and only fundamental LEs.) Furthermore,
another notable difference was the trial’s fitness func-
tion, shown in Equation 6. The function does not
consider the CP vectors.

FitnessTrial = (0.75FElements + 0.25FOV)%

Equation 6: Trial fitness function

Nevertheless, even though the trial GA did not use
optimised parameters, it was successful.

Fig. 5 shows the progress of the fittest individual
using the successful-trial GA. The first parent had an
initial fitness of 51.5%, which steadily increased during
the first 50 generations. Notice that there are large
jumps in the graph. This is expected, since changing
the routing or function of one LE can dramatically
improve, or deteriorate, a phenotype’s fitness.

The following milestones are also noted in Fig. 5’s
graph:

Figure 5: The results of the successful trial

• At fitness values 69.9%, 82.1%, 95.3% and 100%,
the outputs C0, C3, C1 and C2 respectively are
correctly evolved. C0’s CP passes two LEs, C3 and
C1’s CPs pass three LEs, while C2’s CP passes
six LEs.

• It took a total of 885 generations to evolve the
phenotype.

Fig. 6 shows the evolved phenotype. The bold
circuitry shows the CPs. Notice that of the twenty
available LEs, only ten were used in the evolved circuit.

Fig. 6 can be further simplified into the circuit
shown in Fig. 7 by removing:

• The wire LEs, i.e. LEs which only pass data
through them. There are two examples of wire
LEs in Fig. 6, which have been demarcated as
callouts A.

• Redundant NOT-gates. The NAND-gate (callout
B) is connected to a NOT-gate (callout C) and an
inverted input to an AND-gate (callout D). Thus,
the two bubbles and NOT-gate are, in reality,
redundant and can be removed.

C0

C1

C2

C3

A0

A0

A1

B0

B1

A1

B0

B1

Figure 7: Simplified trial phenotype (red outline indi-
cates an independent CP)

4.1.2 Final-canonical results

After analysing the successful trial runs, the impor-
tance of rewarding correctly evolved CPs was con-

Research Article – SACJ No. 56, July 2015 127

C0
C1

C2

C3

0

A1

A1

A1

B0

A1

A1

B0

A0

A0

A0

A1

B0

B1

A1

A1

B0

B1 A

AB C

D

Figure 6: Evolved trial phenotype

firmed. This in part led to the derivation of the
FitnessOverall fitness function (Equation 5).

The final-canonical GA was executed eleven times
before a 100%-fit phenotype was evolved. Each run
was limited to 3000 generations.

Fig. 8 shows the progress of the fittest parent using
the final-canonical GA. Within the first 200 genera-
tions, the GA had evolved two of the four CPs. As the
case with the trial-canonical GA, notice that there are
large jumps in the graph. However, unlike in the trial,
these jumps are largely due to the FCP function in
the FitnessOverall fitness evaluation. When a correct
CP is evolved, the FCP variable increases the overall
fitness by 10%, resulting in noticeable jumps.

Figure 8: Results of the final-canonical GA

The following milestones are also noted in Fig. 8:

• At fitness values 52.7%, 66.5%, 84.5% and 100%,
the outputs C0, C3, C2 and C1 respectively are
correctly evolved. C0’s CP passes one LE, C3 and

C1’s CPs pass three LEs, while C2’s CP passes
five LEs.

• It took a total of 2656 generations to evolve the
phenotype.

The final-canonical phenotype is shown in Fig. 9, with
the bold circuitry showing the CPs. Out of the twenty
available LEs, nine were used.

Fig. 9 can be further simplified into the circuit
shown in Fig. 10 by removing the wire LEs. Since
the final-canonical GA only made use of fundamental
gates, there are no redundant bubbled or NOT-gates.

4.2 1 + λ evolution

The 1+λGA was executed eight times before a 100%-fit
phenotype was evolved. As the case with the canonical
GA, each run was limited to 3000 generations.

Fig. 11 shows the progress of the fittest individual
using the 1+λ GA. Notice that there are four spikes in
the graph (demarcated with ×). These spikes represent
downloading errors, where the phenotype has been
incorrectly downloaded onto the V-FPGA.

The following milestones are noted in Fig. 11’s
graph:

• At fitness values 55.5%, 70.0%, 82.2% and 100%,
the outputs C0, C1, C3 and C2 respectively are
correctly evolved. C0’s CP passes one LE; C1’s
CP passes three LEs; C3’s CP passes five LEs;
while C2’s CP passes nine LEs.

• It took a total of 1711 generations to evolve the
phenotype.

The final 1 + λ phenotype, shown in Fig. 12, made use
of eleven LEs. Of these eleven, three were wire LEs.

128 Research Article – SACJ No. 56, July 2015

C0

C1

B1

A0

A0

B0

B1

B0

A1

A0

A1

B0

C2

C3

Figure 9: Canonical phenotype

Figure 11: Results of the 1 + λ GA

Again, the wire LEs was removed in the simpli-
fied circuit, shown in Fig. 13. C0’s CP is the only
independent CP.

5 DISCUSSION

5.1 The genetic algorithms

Comparing the final-canonical and 1 + λ results, the
final-canonical GA took 945 generations longer to find
a solution. In addition, the 1 + λ GA found a solution
after eight attempts, compared to the final-canonical
GA’s eleven.

Although the study was based on a small sample
of evolution attempts, overall, the results suggest that
the 1 + λ GA was more efficient, and agree with the
findings of Vassilev et al. [19] and Sekanina & Freidl
[11]. The subsections below discuss possible reasons

C0

C1

C2

C3

A1

B1

A0
B1

A1

B0

A0
B0

Figure 13: Simplified 1 + λ phenotype (red outline
indicates an independent CP)

why.

5.1.1 The crossover and mutation operators

In traditional GAs, used to solve mathematical prob-
lems, the chromosomes are represented using floating-
point notation. The crossover operator creates new
offspring by combining the parents’ genes. This is done,
for example, by finding the arithmetic mean of each
pair of genes. The result is that the offspring’s fitness
is never worse than a parent’s fitness.

The above idea falls under the topic of ‘evolvabil-
ity’. Evolvability is defined as the ability for an EHW
system to produce individuals fitter than those found
in previous generations [27]. To examine why EHW
systems have poor evolvability, we need to consider
the GAs’ fitness landscapes.

For traditional GAs, the fitness landscape is con-
sidered to be smooth, resulting in the offspring always
converging towards a solution. However, this is untrue
in EHW systems.

Research Article – SACJ No. 56, July 2015 129

C0

C1

C2

C3

A1

B1

A0
B1

A1

B0

A0
B0

Figure 10: Simplified canonical phenotype (red outline indicates an independent CP)

EHW systems have rugged fitness landscapes,
where small changes in a gene dramatically influence
the fitness. For example, one altered gene can map
a NOT-gate in a fit phenotype, thereby inverting
all the output signals and completely destroying the
phenotype. Similarly, simple routing changes can also
influence the fitness of a phenotype.

Vassilev et al. [19] elaborate:

The difference [between a smooth and rugged
landscape] originates in the structure of the
genotypes, which are strings defined over two
completely different alphabets, and are re-
sponsible for the functionality and connectiv-
ity of the array of logic cells.

Stated differently, there is no mathematical correlation
between the phenotype’s fitness and the genotype’s
logic and/or routing genes.

During evolution, two parents may have similar
fitness values, but their phenotypes can be completely
dissimilar. This raises concerns as to how to imple-
ment crossover, if at all. Simply swapping the parents’
genes, randomly combining segments of two different
parent phenotypes’ topologies and functionality, will
inevitably result in weak offspring.

Thus, to maintain a system’s evolvability, crossover
should be used with caution when applied to digital
circuitry. Instead, as used in the 1 + λ GA, an EHW
GAs should rely on mutation. By making small adjust-
ments to a phenotype, there is a greater probability of
producing fit offspring.

5.1.2 The population size

In the initial trials, large populations, with fifty or
more individuals, were used. These large populations
inevitably took longer to execute since there were more
individuals to evaluate.

However, it was found in the final-canonical and
1 +λ GAs that large populations were unnecessary. To
explain why, first consider a fifty-individual population.

To create a new generation, the fittest parent in the
population is crossed-over and/or mutated fifty times
according to the implemented GA. This means that
even if the first offspring is fitter than the parents, the
GA will continue to crossover/mutate the parents from
the original population until fifty new offspring are
created. Only once the new generation is formed will
this fitter offspring become the new parent.

Now, consider a smaller six-individual population,
where the GA crosses-over/mutates the parent six
times. Unlike in the large population, if the first off-
spring is fitter, the GA only has to create five more
offspring (and not 49) in order to form a new six-
individual population. Again, once complete, this
fitter offspring will become the new parent.

Because smaller populations are evaluated in
smaller batches, the fittest parents are updated more
regularly than in larger populations. This ensures the
mutation and crossover operators are more effective
and the GA has a greater level of efficiency. Thus, the
smaller six-individual population was favoured.

5.2 The evolved phenotypes

5.2.1 Comparing the simplified evolved phenotypes

The conventional and evolved multiplier circuits show
similarities in that they all made use of the same
external-input combinations to the AND-gates. These
AND-gates are crucial since they calculate the partial
products of the multiplicand and multiplier. However,
unlike in the conventional circuit which adds the partial
products, none of the evolved phenotypes made use of
the half-adders.

All three simplified phenotypes are unique, show-
ing that there is more than one solution circuit within
a GA’s search space. In particular, the final-canonical
phenotype is interesting because it did not evolve a sec-
ond XOR-gate (as found in the trial-canonical and 1+λ
phenotypes). This uniqueness is a by-product of the
inherent degree of randomness a GA possess, as seen in

130 Research Article – SACJ No. 56, July 2015

C0

C1

A0

A1

B0

A0

A0

A1

B1

B0

A1

B1

C2

C3

Figure 12: 1 + λ phenotype

the random mutation, crossover and initial population.
Also, the uniqueness demonstrates a major advantage
of using an EHW system, they can autonomously find
unusual, novel and often more efficient solutions to
problems.

To show that the evolved phenotypes are often
more efficient, consider Table 1. The table sum-
marises the total number of LEs used by each sim-
plified phenotype, as well as the number of LEs used
by each CP.

Table 1: LE summary of the simplified phenotypes

C0 C1 C2 C3 Total no.
of LEs

Conventional
multiplier

1 3 5 5 8

Trial-canonical
phenotype

1 3 4 3 7

Final-canonical
phenotype

1 3 4 3 8

1 + λ phenotype 1 3 5 3 7

From the table, the following is observed:

• C0 and C1’s CP remained unchanged in both the
evolved and conventional circuits.

• C2’s CP in the conventional multiplier used five
LEs. This was improved upon in both canonical
phenotypes by using only four LEs, but remained
unchanged in the 1 + λ phenotype.

• Again, C3’s CP in the conventional multiplier used
five LEs. This was improved upon in all evolved
phenotypes by using only three LEs.

• Both the conventional circuit and final-canonical

phenotype made used of eight LEs, while the trial-
canonical and 1 + λ phenotypes only used seven.

In summary, of the four evolved CPs, two remained
unchanged; one was usually improved upon; while one
was always improved. No phenotype was less efficient
than the conventional circuit, with two of the three
evolved phenotypes improving the circuit’s efficiency
by one LE. All evolved phenotypes were unique.

5.2.2 The evolved critical paths

In all the experiments, using both the canonical and
1+λ GAs, the sequence in which the CPs were evolved
was also unique. For the three successfully evolved
phenotypes, the sequence of the evolved CPs was as
follows:

• Trial-canonical GA: C0 C3 C1 C2, where C1 is
independent

• Final-canonical GA: C0 C3 C2 C1, where C1 is
independent

• 1 + λ GA: C0 C1 C3 C2, where C0 is independent

The above CP results are summarised in Table 2:

1. The first row in the table shows the number of
LEs used by each CP.

2. During evolution, due to some CPs being depen-
dent, some LEs are shared and thus only need to
be evolved once. This is shown in the second row.
Thus, all independent CPs and the first evolved
dependent CPs will always have no previously
evolved LEs, and will yield a 0 in the second row
of the table.

3. Finally, by finding the difference between the num-
ber of used LEs and the number of previously
evolved LEs, the net number of LEs that was

Research Article – SACJ No. 56, July 2015 131

needed to be evolved for the particular CP can be
calculated, as shown in the final row.

From the table, the following is observed:

• C0’s CP was always evolved first, regardless of its
dependence. This is due to its simplicity, i.e. it
only used one or two LEs.

• C1’s CP sequence varied–from third to fourth to
finally second place.

In both canonical GAs, C1 was independent and thus
was never partially evolved with the evolution of the
other CPs. This explains why the CP took longer to
evolve when compared to the 1 + λ phenotype.

For the 1 + λ phenotype, C1’s CP was the first
dependent CP to be evolved. This is due to its simplic-
ity when compared to the other dependent CPs in the
1 + λ phenotype, i.e. it used three LEs compared to
the five and nine LEs used by C3 and C2 respectively.

• C2’s CP was evolved either third or last, mostly
due to its complexity. In all three phenotypes, C2’s
CP used the most LEs–it used five LEs in the final-
canonical phenotype, six LEs in the trial-canonical
phenotype and nine LEs in the 1 + λ phenotype.
However, due to C2’s CP always being dependent,
the net number of evolved LEs was much lower,
and thus C2’s CP evolved in a reasonable amount
of time. This is particularly evident in the 1 + λ
GA, where C3’s CP is a key component to C2’s
CP, providing five of the nine required LEs.

• Although C3’s CP was evolved either second or
third, it was always the second dependent CP to
evolve due to it neither being the simplest, nor
the most complex dependent CP.

The net-evolved-LE number reveals an important in-
sight into the manner in which a GA evolves the phe-
notypes. Note that the net number, for a particular
phenotype, increases for each CP. This shows that
GAs tends to evolve CPs with smaller net numbers
first. Thus, the fewer net LEs a CP requires, the more
likely a GA will correctly evolve the CP. This is ex-
pected, since intuitively there is a higher probability of
correctly evolving a simpler CP which uses fewer LEs.

5.2.3 Erroneously-evolved chromosomes

During evolution, as more CPs are successfully evolved,
so the probability of mutating a correct LE increases;
and the number of available LEs decreases. This im-
plies that as individuals become fitter, so the difficulty
finding a solution also increases.

For example, suppose for the 20-LE VRC, one CP
is correctly evolved using four LEs, with the remaining
sixteen LEs yet to be evolved for the other CPs. One
may think that the GA now has a greater chance of
success since there are fewer routing or logic config-
urations, i.e. there are only sixteen potential LEs to
be evolved compared to the initial twenty. However,
this is not the case, since these four evolved LEs can
still be altered by the GA. During evolution, the GA
cannot distinguish between correctly and incorrectly
evolved LE. Consequently, the GA can modify any LE,
even if correct. Thus, in actuality, there is an increased

chance of erroneously altering a correct LE, thereby
making it less likely to successfully evolve the next CP.
The above explanation is reflected in the results. Most
failed attempts, managed to evolve three of the four
CPs, with the complex or independent CP failing to
evolve.

To further clarify the above explanation, consider
another example. Suppose a GA has correctly evolved
three of the four CPs. During evolution, even if the
GA correctly evolves the fourth CP in a particular
phenotype, there is a high probability that the GA, in
the process of evolving this fourth CP, will erroneously
alter the other three CPs. Thus, the fitness function
will return a low value for this phenotype since one or
more of the original three CPs are now incorrect.

It may be beneficial for a GA to identify and isolate
correct genes within a chromosome. By doing this,
there will be no chance of erroneously modifying correct
LEs, and thus mutation and crossover will only be
applied to the genes still requiring further evolution.

6 IMPLEMENTATION OF A FINITE-STATE
MACHINE (FSM)

A FSM’s control circuit, represented in Fig. 14, used
in a typical mechatronics application, needs to be de-
signed and evolved. To do this, the system’s control
requirements, components and operation are first de-
fined. Then, based on these parameters, the FSM is
modelled using a state diagram. Based on the FSM, we
derived the next state and output tables, which later
forms a core part of the GA’s fitness function. Finally,
by using the hardware VRC setup and GA discussed
in the previous section, each state’s combinational
sub-circuit is then independently evolved.

6.1 Case study

A packaging company, which manufactures corrugated
boxes, makes use of a FSM control circuit that controls
the production of glue in two tanks. The first tank,
the mixing tank, is used to mix starch and water to-
gether, at a specified temperature, in order to produce
a batch of glue. The predefined temperature set-point
is selected by the tank’s operator via a numeric key-
pad. This set-point determines the glue’s viscosity,
an important aspect influencing the integrity of the
final box. After mixing and heating, the glue is then
pumped into a second tank, the holding tank.

The holding tank stores the glue, also at a specific
temperature, until it is needed by the factory’s gluing
machinery. When the glue is pumped from the holding
tank, it is pumped in a ten-second-on, five-second-off
cycle. The pumped glue is used to produce the board
needed for the boxes.

From the system description, the tanks’ operation
was analysed and modelled as a FSM, using two states,
the mixing-tank and holding-tank states.

132 Research Article – SACJ No. 56, July 2015

Table 2: Summary of the net number-of-LEs evolved by each CP (red text indicates an independent CP)

Trial-canonical
phenotype

Final-canonical
phenotype

1 + λ-phenotype

C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

Number of evolved
LEs used by the
CP

2 3 3 6 1 3 5 3 1 3 5 9

Number of LEs
used by the CP
that were previ-
ously evolved by
other CPs

0 1 0 3 0 1 2 0 0 0 2 5

Net number of LEs
that were evolved
(Net evolved LEs)

2 2 3 3 1 2 3 3 1 3 3 4

	

Finlet_1
Flow	 Sensor-‐	 Determines	 whether	

water	 is	 running	 into	 the	 mixing	 tank.	
Outputs	 high	 if	 water	 flows	 into	 tank.

Lmax_1

Maximum	 Water-‐Level	 Sensor.	 Detects	
the	 maximum	 water	 level.	 Outputs	 high	

if	 water	 covers	 the	 sensor.
Lmin_1

Minimum	 Water-‐Level	 Sensor.	 Detects	
the	 minimum	 water	 level.	 Outputs	 high	

if	 water	 covers	 the	 sensor.

T1
Temperature	 SensorDetects	 the	

water’s	 temperature.	 Outputs	 high	 if	
temperature	 reaches	 the	 set-‐point.

Vinlet_1

Inlet	 Solenoid	 Valve.	 Allows	 water	
into	 tank
Voutlet_1

Outlet	 Solenoid	 Valve.	 Allows	
glue	 out	 of	 tank

Pump1
Mixing	 Pump	 Mixes	 tank’s	 content

Water1
Water	 Heater	 -‐	 Heats	 tank’s	

content

State	 1	 –	 	
Mixing	 Tank

Lmin_2
Minimum	 Glue-‐Level	 Sensor.	 Detects	 the	
minimum	 glue	 level.	 Outputs	 high	 if	 glue	

covers	 the	 sensor.
T2

Temperature	 Sensor.	 Detects	 the	 glue	
temperature.	 Outputs	 high	 if	 temperature	

reaches	 the	 set-‐point.
TL_I_2

On-‐Delay	 Long	 Timer.	 Determines	 whether	
the	 long	 countdown	 has	 elapsed.	 Outputs	

high	 after	 10	 seconds.

TS_I_2
On-‐Delay	 Short	 Timer.	 Determines	
whether	 the	 short	 countdown	 has	

elapsed.	 Outputs	 high	 after	 5	 seconds.

Voutlet_2

Outlet	 Solenoid	 Valve.	 Allows	 glue	
out	 of	 tank
Heater2

Water	 Heater.	 Heats	 glue
T1_0_2

Long	 Timer.	 Activates	 or	 resets	 the	
long	 timer
T2_0_2

Short	 Timer.	 Activates	 or	
resets	 the	 short	 timer

Counter	 =	 high	 if	 state	 one	 has	 been	
executed	 a	 predefined	 	 number	 of	 times.	 	 	

Set	 to	 one	 for	 this	 example	

Lmin_2	 =	 high	 if	 the	 minimum	 glue-‐level	
sensor	 in	 the	 holding	 tank	 is	 activated,

State	 2	 –	
Holding	 Tank

Figure 14: State diagram of the tank system

6.2 State diagram

Fig. 14 shows a basic state diagram of the tank system
with three important sets of data:

1. The sequence in which the states are executed

2. The conditions for the current state to be executed

3. The conditions to transition from one state to the
next

Based on the FSM, we derived the next state and
output tables for each state. The system consists of
five sub-circuits: combinational logic, sequential logic,
counter circuit and two timing circuits.

To evolve the FSM’s combinational circuit, a truth
table used by the fitness function, representing the
outputs for each possible external-input combination,
was required for each state. Two separate combina-
tional circuits, one for each state, were then evolved.
The truth table used to control the mixing tank’s inlet
and outlet valves, heater and pump, as well as the
holding tank’s truth table, were derived similarly from
the FSM.

The combinational logic portion, implemented us-
ing Boolean logic, connects directly to the system’s
sensors and actuators. It controls the system’s exter-
nal outputs according to the logic combination on the
external inputs, timer inputs and state lines.

Following on from the previous section, the same
EHW setup, used to evolve the multiplier, was used to

evolve the combinational logic of the FSM. In addition,
the GA made use of the same evolutionary constraints,
elitism, mutation and FitnessOverall function (from
Section 3.3).

The evolution results for each state are discussed
below. As was the case with the evolved multipliers,
each evolution attempt was limited to 3000 generations.

6.2.1 State one

The final simplified phenotype is shown in Fig. 15.
Within the first 39 generations, two of the four CPs
were evolved, with the third and fourth CPs taking
1890 and 2964 generations respectively.

As expected, Fig. 15 shows why the first two CPs,
Pump1 and Heater1, evolved quickly, the CPs only
pass one LE. In contrast, VOutlet2 and VInlet2 pass five
and six LEs respectively. In total, ten of the twenty
available LEs were used

Notice that Pump1 and VOutlet1 are independent
of each other, but dependent on VInlet1, i.e. Pump1
and VOutlet1 were independent CPs until VInlet1 was
evolved. The significance of this is discussed in Section
6.3.

Research Article – SACJ No. 56, July 2015 133

T1

T1

LMin1

LMax1

FInlet1

LMin1

Heater1

VOutlet1

VInlet1

Pump1

Figure 15: State one’s simplified phenotype

6.2.2 State two

The evolved phenotype, shown in Fig. 16, makes use of
six LEs. At fitness values 61.9%, 71%, 82.5% and 100%,
the outputs Heater2, TL O 2, TS O 2 and VOutlet2 re-
spectively were correctly evolved. The Heater2, TL O 2

and TS O 2 CPs pass one LE while VOutlet2 CP passes
six. It took a total of 1085 generations to evolve the
phenotype.

TS_O_2

TL_O_2

VOutlet2

TS_I_2

TL_I_2

LMin2

T2

LMin2 Heater2

TS_I_2

T2

TL_I_2

T2

Figure 16: State two’s simplified phenotype

6.3 Evolved FSM discussion

6.3.1 The evolved critical paths

As was done in Section 5.2.2, Table 3 shows the net
number of LEs that were evolved for each CP. Unlike
with the evolved multipliers, the state-one CPs were
not all evolved in ascending order of the net number.
In particular, VOutlet1 was evolved before VInlet1 even
though their net numbers are five and four respectively.
This is because the Pump1 and VOutlet1 CPs are in-
dependent of each other, but are both dependent on
VInlet1.

During evolution, two or more initially independent
CPs, or pre-independent CPs, can be linked together to
form a third CP, thereby making all the CPs dependent.
The third CP will take longer to evolve since the pre-
independent CPs first need to be evolved; but will

require fewer net LEs because the CP will be dependent.
This explains why the VInlet1 CP, although last to
evolve, has a lower net-number.

All CPs with one net LE were evolved within the
first 200 generations. In contrast, the VOutlet1 and
VOutlet2 CPs both have a net number of five—the
highest of all the CPs evolved in this study. Both took
over 1000 generations to evolve, with the VOutlet1 CP
taking 1890 generations.

The above results are in concurrence with the re-
sults of the multiplier CPs in Section 5. The more net
LEs a GA has to evolve, the longer the evolution takes
(with the exception of pre-independent CPs).

From the simplified phenotypes, the complete
combinational-logic circuit for the FSM can be realised
by adjoining the sub-circuits.

7 LIMITATIONS AND FUTURE WORK

A number of important limitations of this study need to
be considered. Firstly, while recognising that the hard-
ware setup produced successful results, data commu-
nication between LabVIEW and the VRC was mostly
slow, and at times inaccurate. This was evident in the
spikes seen in Section 4 and the long evolution times.
Future research will investigate completely eliminating
LabVIEW and the DAQ interfacing hardware, and
instead concentrate on implementing the GA using a
soft-processor, thereby creating an on-chip solution.

The current study has only examined modular
evolution using state decomposition, which relied on
each state’s sub-circuit being evolvable. However, this
will not always be the case, as complex states will
require further decomposition. Stomeo et al. have pro-
posed a new method called ‘Generalised Disjunction
Decomposition’, or GDD, where a circuit is decom-
posed according to the inputs [21]. This is based on
the fact that the number of generations required to
evolve a circuit is directly influenced by the number of
external inputs.

Stomeo et al. showed that a 15-input circuit can
take ten times longer to evolve than a 10-input circuit.

Future work should consider using GDD when
evolving larger state sub-circuits, especially since the
GDD research has shown usefulness in combinational-
logic evolution. In addition, Stomeo et al. have con-
cluded that GDD-evolved circuits have reached “higher
values of fitness during optimisation”, and are thus
more efficient.

Finally, though recognising the results documented
here and by others involved small and simple circuits,
these circuits should not be dismissed, as they still play
a major role in optimising system parameters. Small
circuits are far more practical to analyse, and provide
important insight into scalability and the unusual ways
in which GAs synthesise circuits.

Until scalability is overcome, and evolution can
provide solutions to real-world applications, further
progress in the field will be required to make EHW a
credible engineering tool.

134 Research Article – SACJ No. 56, July 2015

Table 3: Summary of the net number of LEs evolved by each CP

State one’s phenotype State two’s phenotype

Pump1 Heater1 VOutlet1 VInlet1 Heater2 TL O 2 TS O 2 VOutlet2

Number of evolved LEs used
by the CP

1 1 5 6 1 1 1 6

Number of LEs used by the CP
that were previously evolved by
other CPs

0 0 0 2 0 0 0 1

Net number of LEs that were
evolved (Net evolved LEs)

1 1 5 4 1 1 1 5

8 CONCLUSIONS

This paper investigated optimisation of EHW by means
of digital circuit critical path analysis. The optimisa-
tion is done is by: omitting a canonical GAs crossover
operator (i.e. by using a 1 + λ algorithm); applying
evolution constraints; and optimising the fitness func-
tion. A 2×2 digital multiplier and a state-decomposed
control circuit were evolved using a target-independent
VRC architecture.

The results showed that the evolved multiplier
circuits, when compared to a conventional multiplier,
are either equal or more efficient. All the evolved
circuits improve two of the four critical paths, and all
are unique.

By comparing the 1 + λ and canonical GAs, the
results verify that optimised GAs can find solutions
quicker, and with fewer attempts. Part of the optimi-
sation includes a comprehensive critical-path analysis,
where the findings show that the identification of de-
pendent critical paths is vital in enhancing a GA’s
efficiency.

A critical-path analysis of each circuit needs to
be completed in order to understand the manner in
which the circuits are evolved. With this knowledge,
better fitness functions and operators was developed
to further enhance the EHW system’s efficiency.

9 ACKNOWLEDGMENTS

The financial assistance of the National Research Foun-
dation (NRF) towards this research is hereby acknowl-
edged. Opinions expressed and conclusions arrived at
are those of the authors and are not necessarily to be
attributed to the NRF.

The authors would like to thank the anonymous
reviewers for their invaluable feedback.

REFERENCES

[1] G. T. Gordon and J. P. Bentley. “On evolvable
hardware”. In S. Ovaska and L. Sztandera (editors),
Soft computing in industrial electronics, pp. 279–323.
Springer, 2002. DOI http://dx.doi.org/10.1007/

978-3-7908-1783-6_8.

[2] F. Cancare, S. Bhandari, D. B. Bartolini, M. Carmi-
nati and M. D. Santambrogio. “A bird’s eye
view of FPGA-based evolvable hardware”. In 2011

NASA/ESA conference on adaptive hardware and sys-
tems (AHS), pp. 169–175. IEEE, 2011. DOI http:

//dx.doi.org/10.1109/AHS.2011.5963932.

[3] E. Stomeo, T. Kalganova and C. Lambert. “Mutation
rate for evolvable hardware.” In International confer-
ence on computational intelligence - ICCI 2005, pp.
117–124. 2005.

[4] P. Husbands, R. C. Moioli, Y. Shim, A. Philippides,
P. A. Vargas and M. O’Shea. “Evolutionary robotics
and neuroscience”. In The horizons of evolutionary
robotics, chap. 2, pp. 17–63. MIT Press, March 2014.

[5] A. Stoica, R. Zebulum, D. Keymeulen, M. Ferguson
and X. Guo. “Scalability issues in evolutionary syn-
thesis of electronic circuits: Lessons learned and chal-
lenges ahead”. In American association for artificial
intelligence. 2003.

[6] T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi,
M. Murakawa, I. Kajitani, E. Takahashi, K. Toda,
N. Salami, N. Kajihara et al. “Real-world applications
of analog and digital evolvable hardware”. IEEE trans-
actions on evolutionary computation, vol. 3, no. 3, pp.
220–235, 1999. DOI http://dx.doi.org/10.1109/

4235.788492.

[7] M. Matarić and D. Cliff. “Challenges in evolving con-
trollers for physical robots”. Robotics and autonomous
systems, vol. 19, no. 1, pp. 67–83, 1996. DOI http:

//dx.doi.org/10.1016/S0921-8890(96)00034-6.

[8] H. de Garis, N. Nawa, F. Gers, M. Korkin and
A. Agah. “‘CAM-brain’ ATR’s billion neuron artificial
brain project: A three-year progress report”. Artifi-
cial life and robotics, vol. 2, no. 2, pp. 56–61, 1998.
DOI http://dx.doi.org/10.1007/BF02471155.

[9] A. Bedi. A generic platform for the evolution of hard-
ware. Ph.D. thesis, Auckland University of Technology,
2009.

[10] L. Sekanina. “FPGA-based evolvable hardware sys-
tems”. In Proceedings of the 26th international confer-
ence on architecture of computing systems, February
2013, Prague, Czech Republic. 2013.

[11] L. Sekanina and Š. Friedl. “An evolvable combinational
unit for FPGAs”. Computing and informatics, vol. 23,
no. 5-6, pp. 461–486, 2012.

[12] J. Torresen. “An evolvable hardware tutorial”. In
Field-programmable logic and application, pp. 821–830.
Springer, 2004. DOI http://dx.doi.org/10.1007/

978-3-540-30117-2_83.

[13] F. Smith. “A virtual VLSI architecture for computer
hardware evolution”. In Proceedings of the 2010 an-
nual research conference of the South African insti-
tute of computer scientists and information technolo-

http://dx.doi.org/10.1007/978-3-7908-1783-6_8
http://dx.doi.org/10.1007/978-3-7908-1783-6_8
http://dx.doi.org/10.1109/AHS.2011.5963932
http://dx.doi.org/10.1109/AHS.2011.5963932
http://dx.doi.org/10.1109/4235.788492
http://dx.doi.org/10.1109/4235.788492
http://dx.doi.org/10.1016/S0921-8890(96)00034-6
http://dx.doi.org/10.1016/S0921-8890(96)00034-6
http://dx.doi.org/10.1007/BF02471155
http://dx.doi.org/10.1007/978-3-540-30117-2_83
http://dx.doi.org/10.1007/978-3-540-30117-2_83

Research Article – SACJ No. 56, July 2015 135

gists (SAICSIT), pp. 294–303. ACM, 2010. DOI http:

//dx.doi.org/10.1145/1899503.1899536.

[14] T. G. Gordon and P. J. Bentley. “Development
brings scalability to hardware evolution”. In Pro-
ceedings of the 2005 NASA/DoD conference on evolv-
able hardware., pp. 272–279. IEEE, 2005. DOI http:

//dx.doi.org/10.1109/eh.2005.18.

[15] A. Swarnalatha and A. Shanthi. “Complete hardware
evolution based SoPC for evolvable hardware”. Applied
soft computing, vol. 18, pp. 314–322, 2014. DOI http:

//dx.doi.org/10.1016/j.asoc.2013.12.014.

[16] R. Dobai and L. Sekanina. “Towards evolvable systems
based on the Xilinx Zynq platform”. In 2013 IEEE
international conference on evolvable systems (ICES),
pp. 89–95. IEEE, 2013. DOI http://dx.doi.org/10.

1109/ICES.2013.6613287.

[17] J. Wang, C. H. Piao and C. H. Lee. “Implementing
multi-VRC cores to evolve combinational logic circuits
in parallel”. In Evolvable systems: From biology to
hardware, pp. 23–34. Springer, 2007. DOI http://dx.

doi.org/10.1007/978-3-540-74626-3_3.

[18] P. Martin and R. Poli. “Crossover operators for a
hardware implementation of GP using FPGAs and
Handel-C”. In GECCO, pp. 845–852. 2002.

[19] V. K. Vassilev, J. F. Miller and T. C. Fogarty. “On
the nature of two-bit multiplier landscapes”. In Pro-
ceedings of the first NASA/DoD workshop on evolvable
hardware, 1999., pp. 36–45. IEEE, 1999. DOI http:

//dx.doi.org/10.1109/eh.1999.785433.

[20] T. Kalganova. “Bidirectional incremental evolution in
extrinsic evolvable hardware”. In Proceedings of the
second NASA/DoD workshop on evolvable hardware,
2000., pp. 65–74. IEEE, 2000.

[21] E. Stomeo, T. Kalganova and C. Lambert. “Gener-
alized disjunction decomposition for evolvable hard-
ware”. IEEE transactions on systems, man, and cy-
bernetics, part B: cybernetics, vol. 36, no. 5, pp. 1024–
1043, 2006.

[22] A. Thompson. “An evolved circuit, intrinsic in silicon,
entwined with physics”. In Evolvable systems: From
biology to hardware, pp. 390–405. Springer, 1997.

[23] F. Cancare, M. D. Santambrogio and D. Sciuto. “A
direct bitstream manipulation approach for Virtex4-
based evolvable systems”. In Proceedings of 2010
IEEE international symposium on circuits and systems
(ISCAS), pp. 853–856. IEEE, 2010.

[24] M. Majzoobi, F. Koushanfar and M. Potkon-
jak. “Trusted design in FPGAs”. In Introduc-
tion to hardware security and trust, pp. 195–229.
Springer, 2012. DOI http://dx.doi.org/10.1007/

978-1-4419-8080-9_9.

[25] C. Slorach and K. Sharman. “The design and im-
plementation of custom architectures for evolvable
hardware using off-the-shelf programmable devices”.
In Evolvable systems: From biology to hardware, pp.
197–207. Springer, 2000. DOI http://dx.doi.org/

10.1007/3-540-46406-9_20.

[26] L. Sekanina and A. M. Sllame. “Toward uniform
approach to design of evolvable hardware based sys-
tems”. In Field-programmable logic and applications:
The roadmap to reconfigurable computing, pp. 814–817.
Springer, 2000. DOI http://dx.doi.org/10.1007/3-

540-44614-1_92.

[27] L. Altenberg. “The evolution of evolvability in genetic
programming”. In K. Kinnear (editor), Advances in
genetic programming, vol. 3, pp. 47–74. Cambridge,
MA, 1994.

http://dx.doi.org/10.1145/1899503.1899536
http://dx.doi.org/10.1145/1899503.1899536
http://dx.doi.org/10.1109/eh.2005.18
http://dx.doi.org/10.1109/eh.2005.18
http://dx.doi.org/10.1016/j.asoc.2013.12.014
http://dx.doi.org/10.1016/j.asoc.2013.12.014
http://dx.doi.org/10.1109/ICES.2013.6613287
http://dx.doi.org/10.1109/ICES.2013.6613287
http://dx.doi.org/10.1007/978-3-540-74626-3_3
http://dx.doi.org/10.1007/978-3-540-74626-3_3
http://dx.doi.org/10.1109/eh.1999.785433
http://dx.doi.org/10.1109/eh.1999.785433
http://dx.doi.org/10.1007/978-1-4419-8080-9_9
http://dx.doi.org/10.1007/978-1-4419-8080-9_9
http://dx.doi.org/10.1007/3-540-46406-9_20
http://dx.doi.org/10.1007/3-540-46406-9_20
http://dx.doi.org/10.1007/3-540-44614-1_92
http://dx.doi.org/10.1007/3-540-44614-1_92

	 Hardware genetic algorithm optimisation by critical path analysis using a custom VLSI architectureto 3em Farouk Smith, Allan Edward van den Berg to.44em.
	Introduction
	Related work
	Evolving multiplier circuits in hardware
	Scalability and chromosome length
	Overcoming scalability using a multifaceted approach
	Variety of research

	The fitness function optimisation
	The virtual reconfigurable circuit era
	Reducing the search space
	Testing a chromosome
	Fitness calculation

	Results
	Canonical evolution
	Trial-canonical results
	Final-canonical results

	1 + evolution

	Discussion
	The genetic algorithms
	The crossover and mutation operators
	The population size

	The evolved phenotypes
	Comparing the simplified evolved phenotypes
	The evolved critical paths
	Erroneously-evolved chromosomes

	Implementation of a finite-state machine (FSM)
	Case study
	State diagram
	State one
	State two

	Evolved FSM discussion
	The evolved critical paths

	Limitations and future work
	Conclusions
	Acknowledgments

