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Abstract—We present an analysis of the problem of routing
and bandwidth allocation problem in packet switched networks.
In this problem, we identify a route for every pair of com-
municating nodes and then assign a capacity to each link in
the network in order to minimize the total line capacity and
delay costs. We have developed a mathematical programming
formulation which is an efficient solution. This formulation
is indicated to be effective procedure based on computational
results across a variety of networks.

Index Terms—Optimization routing, capacity assignment, net-
work delay, link flows, mathematical programming solution

I. INTRODUCTION

The capacity and flow assignment (CFA) problem [1]
involves determining the routing between origin-destination
(O-D) pairs and assigning capacities to the links used by
these routes; this is a dilemma in the design of the packet
switched networks. One of the objectives in network design is
to minimize total system costs, which consist of a) connection
costs depending on capacities and end-to-end delay, and b)
transfer costs which are incurred do to the limited line and
node capacities. A favorable design will make simultaneous
decisions on both routing and link capacities as they are
closely related. In a recent paper [2] the authors developed and
presented an efficient algorithm for MPLS network optimiza-
tion subject to constraints on routing imposed by QoS and
other considerations. The result of the experimentation was
to verify how to optimize the use of the available bandwidth
and minimize the effects of network congestion with MPLS
TE.

In this paper, we focus on the question of link capacity as-
signment: what capacity throughput should be made available
on each link of the network to provide a specified grade of
service (network performance)?

Topological design of distributed computer networks in
capacity assignment is a subject with comparatively few
published results, given that it has been studied since the
late 1970’s. (See examples [6], [7] and [11]). As such, this
complex field continues to be challenging to study; however,
there are some recent findings on relative bandwidth allocation
techniques, (See examples [8], [3], [4], and [5]).

Most of the published research devoted to this problem
handles capacity assignment and flow assignment separately.
All these research approaches to capacity assignment, also
utilize different performance criteria. In the capacity assign-
ment problem [6], [7], [8] the routing policy is assumed to

be given and the best capacity for each link is sought among
a set of discrete set of line capacities. The flow assignment
problem [9], [10], [11] starts from a given assignment of link
capacities, primary routes between O-D pairs are determined
to minimize either the average message delay or the maximum
message delay in the network.

An additional approach is to improve an existing network
by redistributing the link capacities while maintaining the total
sum of all capacities of the network.

Kleinrock [11] notes that the selection of an appropriate
algorithm to allocate capacities will depend on the cost-
capacity structure, on the presence of additional topological
constraints, on the degree of human interaction allowed and,
finally, on the tradeoff between cost and precision required by
the particular application. Kershenbaum describes a capacity
assignment approach in [10] that guarantees an optimal solu-
tion but can take an inordinate amount of time. The algorithm
can yield some approximate results by alternatively strength-
ening the dominance criterion. Another approach originally
proposed by Whitney [12] guarantees a solution in a very
reasonable amount of time and also gives a bound on the
quality of the solution it obtains (which is not, in general,
optimal).

Balakrishnan and Graves [13] studied the special case of
piecewise linear costs in directed networks where each link
is assigned a capacity and a path is identified for each O-D
pair. They formulated the problem as a mixed integer program
and developed a composite algorithm to generate both lower
bounds and feasible solutions. The model however does not
take into account the delay issue that arises when link capacity
utilization reaches certain levels.

In [14] Fratta et al. incorporate heuristic methods for
capacity assignment developed in [7] into a more general
procedure that iterates between a composite capacity as-
signment algorithm and flow assignment phase until a local
optimum is reached. They also describe a priority assignment
scheme which, with high likelihood, yields a less costly
capacity assignment satisfying the delay requirements. A
similar iterative procedure which alternates between capacity
and flow assignment is used by Gerla and Kleinrock [15]
where different heuristic methods based on the flow deviation
algorithm [14] for static route assignment is presented.

Gavish and Neuman [18] introduced a nonlinear integer
programming formulation of the problem which minimizes
the total system cost while selecting a route for each origin-
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destination pair and assigning a capacity to each link. One
of the major weaknesses of this procedure is that a priori
given set of possible routes are used throughout the solution
procedure. Computational tests in Gavish and Hantler [21]
have revealed that a poor choice of candidate routes can lead
to poor solutions

The authors in [1] extended the work in [18] by consid-
ering all possible routes for every communicating node pair.
They formulated the problem and used Lagrangean relaxation
embedded in a subgradient optimization procedure to obtain
lower bounds as well as feasible solutions to the problem.
They included cut constraints which are redundant in the
original problem to improve the lower bounds. These cut
constraints are assumed to be defined before the solution pro-
cedure starts. Obviously the quality of the solutions depends
heavily on the number and choice of the cuts.

The paper is structured as follows. We first describe our
modeling framework then a nonlinear integer programming
formulation of the network design problem is given in Section
II. The following Section presents our optimal capacity as-
signment algorithm. Computational experiments performed on
our solution procedure are reported in the subsequent sections.

II. MODELING AND ANALYSIS

In this section we introduce the appropriate notation and
definitions and follow this with the collection of assumptions
that define our model of the network. We identify the class of
analysis and synthesis problems that confront us in a network
studies.

Consider a physical network consisting of a set of N nodes
denoted by N and a set of L physical links denoted by L.
the nodes represent the routers in IP network. The traffic
requirements are specified by an N × N matrix Re = rij ,
called the requirement matrix, whose entries are non-negative.
Let Cij denote the capacity in bandwidth units of the physical
link from an origin node i to a destination node j. The set of
routes connecting O-D pair (o, d) is denoted by Ro,d. Each
route consists of a non-cycling sequence of physical links.

In the network design problem, the messages are offered
to O-D pair (i, j) according to a Poisson process with mean
rate λij . The average message length from node i to node j is
exponentially distributed with mean 1/µij . Let ρij = λij/µij
denote the intensity of the offered traffic stream. Let fr denote
the flow on route r. The total flow Fij on link (i, j) is denoted
by

Fij =
∑
r∈Aij

fr

where Aij is the set of routes that use link (i, j).

We are interested in the numerical solution of the following
network flow problem, subject to a constraint that the total
link capacity not exceed Cij :

Minimize: The average end to end network delay.

T =
∑
(i,j)

Fij
γ
Tij (1)

where γ =
∑
(i,j)

λij is the total message arrival rate from exter-

nal sources (bits/sec) and Tij is the average delay experienced
by a message on link (i, j) (sec) subject to:

0 ≤ Fij ≤ Cij ∀i, j ∈ N (2)

We further assume that the cost of constructing the channel
with capacity Cij is given by dijCij , an arbitrary function of
the capacity and of the channel. We let D represent the cost
of the entire network, which we assume to consist only of the
cost for channel construction, and so we have

D =
∑
(i,j)

dijCij (3)

where dij is the positive cost per unit capacity on link (i, j).

We have earlier defined the message delay as the total time
that a message spends in the network. Of most interest is the
average message delay (1) and we take this to be our basic
performance measure.

In any practical network design procedure, a large number
of design variables suggest themselves. Among these we
include: the selection of channel capacities; the form of
routing procedure; the form of flow control procedure; the
topological design of the network; the storage capacity at
each node; the choice of hardware and software programs
to be used for the switching computer; the partitioning of
messages into various-size packets; and so on. Since we are
interested mainly in the queueing marvels in this paper, we
discuss neither the hardware nor many aspects of the software
design of the switching computer itself any further.

III. CA PROBLEM FORMULATION

This section begins by considering the problem of assigning
optimal capacities to the links in the network given the link
topology (location of the nodes and links) and link flows. The
traffic requirements between the node pairs are measured in
bits per second. We assume a flow distribution – a flow on
each link which satisfies the requirements.

The objective is to compute the optimal link capacities for
a network where the topology and traffic flows are known and
fixed which minimizes the average network delay subject to
the linear overall cost of the system:

∑
(i,j)

dijCij (4)

In essence, we want to establish both the scope of resource
capacity required for the given demand volume, and how to
reasonably, efficiently distribute it in the network under a
set of routing/flow constraints. This determination, which is
typically found in medium to long-term network planning, is
broadly known as uncapacitated design.
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The uncapacitated problem has been studied by, among
others Rohne et al [16] who first design a physical network
under the assumption that all traffic will be routed on a node-
by-node basis, and then configure the virtual circuit highways
by cross connecting flows in the physical network according to
a cost model. Bauschert [17] also considers the uncapacitated
problem and uses a set of iteration loops to simultaneously
design a packet switched network and virtual path routing
policy. This scheme relies on an initial pre-selection of paths
and includes linear programming models.

Once the capacity in a network is known and the demand
volume is given, the problem changes to how to allocate flows
on different paths is a manner that optimizes a given network
goal (e.g., minimum cost routing or maximum total revenue).
The system costs are composed of connection costs which
depend on link capacities and delay costs incurred by users
due to the limited capacities of the links and the resulting
queueing at intermediate nodes.

We wish to focus on three very basic design parameters
that we must consider: first is the selection of the channel
capacities Cij ; second is the selection of the channel flows
Fij ; and third there is the topology itself. All of these may be
varied to improve network performance. The notion of “opti-
mum design” is extremely difficult to achieve in any realistic
network design; however we define, the performance criterion,
the average message delay T , and attempt to minimize this
quantity (thereby optimizing performance). This approach will
allow us to make some important qualitative statements about
network design and performance. Of course, any optimization
problem must be subject to some form of cost constraint, and
here we choose the fixed cost constraint given in Eq. (3).
Therefore we have a performance measure T , a cost constraint
D, and three variables design “parameters,” Cij , Fij , and the
topology.

This study overcomes thoughtful shortcoming of previous
methods suggested in past research. In the routing selection
process, these methods assume that a set of pre-specified
candidate routes chosen from among all possible routes is
given for every communicating O-D pair. Obviously, the
quality of the solutions obtained by these methods depends
heavily on the choice of the candidate route sets generated
before the procedure is applied. The use of only a subset
of all possible routes by these methods results in a practical
limitation which is the possibility of generating lower bounds
higher than the values of the optimal solutions to the rout-
ing and capacity assignment problem. Our solution method
eliminates this limitation by considering all possible routes
for every communicating node pair.

One of the primary attractions of the technique known as
Lagrangean relaxation is that it provides both upper and lower
bounds on the value of the objective function [19]. That is,
we know the optimal objective function value lies between
the value of the best feasible solution found and a value that
it can be no better than. In this paper, a Lagrangean problem
is formed by multiplying some of the constraints by Lagrange
multipliers and adding them to the objective function. As
a result, the Lagrangean problem is separable to a routing

subproblem and a link subproblem. Each type of subproblem
is further separable into subproblems for each link and for
each communicating pair. The link subproblem consists of
assigning a capacity to a link and the route subproblem deals
with choosing a route for a communicating O-D pair.

To minimize the objective function, we proceed by using
a Lagrange multiplier β and by forming the Lagrangean
relaxation function as follows:

L = T + β

(∑
(i,j)

dijCij −D
)

(5)

where D is the total cost of the network and T is given by
the M/M/1 delay function:

T =
1

γ

∑
(i,j)

(
Fij

Cij − Fij

)

In Eq. (5), if we find the minimum value of L with
respect to the capacity assignment, then we will have found
the solution to the capacity assignment problem since the
bracketed term is identically equal to zero. The parameter
β is the undetermined multiplier to be evaluated.

If β is large enough, it is a penalty for violating the
constraint on total capacity. If the sum of the Cij exceeds
D, the term in the brackets is positive and if multiplied by β
increases the value of the objective to be minimized. Values
of Cij are sought which do not violate the constraint. If β is
too large, however, it is possible to make this new objective
function smaller by letting the sum of the Cij become strictly
less than D, thus minimizing the new objective function but
not the original one. As β increases from zero, the sum of
the Cij decreases as the first term is traded in the objective
against the second. There is a unique value of β which makes
the sum exactly equal to D. This is the value sought along
with the corresponding values of the Cij .

As is usual in Lagrangean optimization problems, we set
the partial derivatives ∂L/∂Cij to zero:

∂L

∂Cij
= βdij −

Fij
γ(Cij − Fij)2

= 0 (6)

Solving for Cij gives:

Cij = Fij +
1√
βγ

√
Fij
dij

(7)

The objective now is to find the value of β. Once we have
evaluated the constant β, this will be our solution.∑

(i,j)

dijCij =
∑
(i,j)

(
Fijdij +

1√
βγ

√
Fijdij

)

From this equation, solving for β gives,
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1√
βγ

=

D −
∑
(i,j)

Fijdij∑
(i,j)

√
Fijdij

Using this last form in the Eq. (7), the optimal solution to
the capacity assignment problem is

Cij = Fij +
D −

∑
(i,j) Fijdij∑

(i,j)

√
Fijdij

√
Fij
dij

(8)

The algorithm assumes:

1) The nodes of the network and the input traffic flow for
each pair of nodes are known.

2) A routing model determines the optimal flows Fij of
all links (i, j) given the link original capacities Cij .
We assume that the link flows minimize a cost function∑
ij

Dij(Fij) and Fij can be determined by minimizing

the average packet delay,

T =
1

γ

∑
(i,j)

(
Fij

Cij − Fij
+ Fijp

′
i

)
based on the M/M/1 formula, where γ is the total input
traffic into the network, and Cij and p′i are the capacity
and the processing and propagation delay, respectively,
of link (i, j). The algorithms described in [2] can be
used for this purpose.

IV. THE ALGORITHM

This section describes the different steps of the capacity
assignment algorithm and how it works.

The capacity assignment algorithm

Step 1: Select a network topology with initial capacities
and requirements.

Step 2: Compute optimal link flows that minimize the
average delay for the network using the FOA algorithm.

Step 3: Allocate the link capacities to minimize the delay
with the link flows computed in step 2, given the constraints
on the total cost of a system.

Step 4: Use these link capacities instead of the original
capacities with the original requirements and go to step 2.
The delay calculated in this step will be less than in step 2.

Step 5: Reallocate the optimal link capacities with the
optimal link flows from step 4. The new delay will be smaller
than the delay in step 3.

The iteration is repeated until the new network delay is not
significantly smaller than the old delay. The convergence of
the algorithm is guaranteed by the fact that there are only
a finite (albeit large) number of shortest route flows, and
repetitions of the same flow are not possible, as the delay
is decreasing.

Fig. 1. An ATM infrastruture network

Fig. 2. The optimal versus the intial link capacities

In general, this approach only leads to a local minimum,
not a global optimum. However, for the special case (i.e.,
dijCij = dijC

α
ij + dij0 where dij0 is a positive start-up cost,

and 0 ≤ α ≤ 1), it is still possible to find a global minimum
[19].

V. NETWORK PERFORMANCE ANALYSIS

An application of our algorithm to the network topology
shown in Fig. 1 is next introduced. The network model
consists of 8-nodes and 10-links introduced and presented in
[20] to compute the optimal link capacities. Each link carries
traffic in both directions. The double lines between nodes 3
and 4 and 7 and 8 indicate that there are two links in each
direction connecting these nodes. The capacity of each link
is 5624 units.

We now compare the network optimal link capacities with
their initial values. Table I shows the optimal link flows and
capacities computed after the convergence of the capacity
assignment algorithm. The optimal and initial link capacities’
values calculated are displayed in Fig. 2

Figure 3 plots the capacity assigment for link (1-2) as the
algorithm executes while the network delay is plotted in Fig-
ure 4 as the algorithm executes. The delays converge after 44
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Fig. 3. Capacity assignment algorithm

Fig. 4. Convergence of the algorithm

iterations. That is, when the newly calculated network delay
is not significantly better than the previous one. Comparison
with Figure 3 shows a strong correlation between the delay
and the assigned capacity. This can be expected since the
delay is a function of capacity. The delays decrease since the
flows are shifted onto optimal paths in order to reduce the
delays on congested links. This smaller flow on the congested
links in turn leads to a decrease in the capacity required to
achieve a given delay.

VI. CONCLUSIONS AND FURURE WORK

In this paper, the routing and capacity assignment prob-
lem have been investigated. A mathematical programming
formulation of the problem is presented and efficient solution
procedures based on a Lagrangean relaxation of the problem
are developed. Overall system costs are minimized by trading
off link capacity costs versus expected network delay costs.
The major incentive of the work here is that by using a route
generation procedure as part of the Lagrangean procedure,
routes are generated only when needed as an integral part
of the solution method, resulting in reduced running times
and storage requirements. In future work, we plan to develop

TABLE I
OPTIMAL LINK FLOWS AND LINK CAPACITIES

Links Optimal Flows Optimal Cap Initial Cap
(1,2) 520 1469.4 5624
(1,8) 2280 4268.1 5624
(2,3) 7040 10533.4 5624
(3,4) 8800 12705.8 11248
(3,8) 3240 5609.9 5624
(4,6) 4480 7266.8 5624
(5,7) 2640 4779.3 5624
(6,7) 1200 2642.3 5624
(7,5) 2640 4779.3 5624
(7,8) 4040 6686.4 11248

and evaluate the extension of this algorithm from single- to
multi-service network traffic.
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