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ABSTRACT

Despite the many advantages run-time reconfiguration of FPGAs brings to the table, its usage is mostly limited to
quasi-static applications. This is either due to the throughput of the reconfiguration process, or the time required to
create new hardware. In order to optimise the former, the literature proposes a block RAM (BRAM)-based architecture in
which a new configuration is stored in localised memory and reconfiguration is facilitated by a controller implemented
in the FPGA fabric. The limitation of this architecture is that only a subset of configurations can be stored. When new
hardware is required, the slow synthesis process (or a part thereof) has to be repeated for each new configuration.
Various third-party tools aim to mitigate this overhead, but since the bitstream is shrouded in obscurity, all rely on a
layer of abstraction that make them unusable in real-time. To address this issue, this paper presents a novel method to
parse and analyse a Xilinx® FPGA bitstream to extract certain characteristics. It is shown how these characteristics could
be used to design and implement a bitstream specialiser, capable of taking a bitstream and modifying the configuration
bits of lookup tables in real-time.
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1 INTRODUCTION

Dynamic reconfiguration refers to the ability of an application to adapt its hardware to improve
system performance by tailoring it for a specific purpose. Most of Xilinx®’s FPGAs from the Virtex-II®
onward incorporate this feature, with the addition of the internal configuration access port (ICAP)
that provides access to the configuration registers of the FPGA. Additional advantages can also
include a reduction in power consumption and component count (Kusse & Rabaey, 1998; Stitt,
Vahid, & Nematbakhsh, 2004; Todman et al., 2005). Despite these advantages, reconfiguring an
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application will only improve system performance if the execution time exceeds the configuration
time (Leonard & Mangione-Smith, 1997; Singh, Hogg, & McAuley, 1996). This is on account of
the overhead involved in generating new hardware, creating the corresponding configuration, and
loading this configuration onto the device. Reconfiguration times depend on the complexity of the
application and toolset used. Using Xilinx®’s conventional tools, reconfiguration times can vary from
seconds to hours, whereas third-party tools from researchers can reduce these times to milliseconds.

The implication is that a dynamic system, such as the active magnetic bearing (AMB) drive
electronic system (ADES) discussed in le Roux (2009), obtains very little benefit from reconfiguration.
This system utilises a PID controller with a 50 us control cycle to suspend a rotor between electro-
magnets in five degrees of freedom. As the rotor rotates, it goes through its various bending modes
and critical frequencies are excited that could cause the system to become unstable. By adapting
the PID controller’s parameters the effect of these frequencies can be minimised. Traditionally the
alternative PID parameters would be stored in memory from where they are read by the controller,
but reconfiguring the controller could yield additional advantages and the control scheme can also
be adapted. The drawback of this approach is that new hardware is required, and none of the
reconfiguration methods allow this within a time-frame necessary to maintain stable control.

Most of the techniques proposed to improve reconfiguration time add an additional layer of
abstraction that either increases the reconfiguration time, or does not allow the creation of a new
configuration and loading it onto the device while it is operational. Accordingly, some researchers
have tried to create new configuration files by modifying the bits directly. For applications with tight
time constraints, this would have been the optimal method to create a new configuration, but the
obscurity of the bitstream limits this approach severely. Furthermore, most of the relevant research
in this domain either focussed on Xilinx® FPGAs prior to the Virtex®-5, or were never completed.

This paper sets out to find a method to create a new configuration by directly manipulating the
bits of a Xilinx® Virtex®-5 FPGA bitstream within a time-frame that will allow reconfiguration of
a system with tight time-constraints. A novel method will be presented to parse and analyse the
bitstream of a Xilinx® FPGA, and even though a specific platform is used, the method can also be
applied to extract a certain set of characteristics from any Xilinx® FPGA. It will also be shown how
these characteristics can be used to implement a bitstream specialiser in FPGA fabric that is capable
of modifying the configuration of lookup tables in real-time.

The paper starts off by discussing methods currently employed by researchers to manipulate
the resources on an FPGA in Section 2. This is followed by a brief overview of the device and
configuration architecture of a Xilinx® FPGA in Section 3. Next, the analysis method of the bitstream
is explained in Section 4. The results are presented and discussed in Section 5 and 6 respectively.
Section 7 illustrates how the characteristics extracted from the bitstream can be used to design and
implement a bitstream specialiser. The specialisation process is verified in Section 8. Finally, the
work is concluded in Section 9.
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2 MANIPULATING FPGA RESOURCES

Even though the general structure of a Xilinx® FPGA bitstream is well documented, the exact encoding
of the logic cells (referred to as complex logic blocks, or CLBs) is proprietary. This is to protect both
the user and vendor from intellectual property (IP) theft and is referred to as “security through
obscurity". Most of these devices maintain the ability to be dynamically reconfigured, but adhere
to strict design flows, because the device can be physically damaged if a configuration accidentally
connects the outputs of two CLBs.

To allow access into the obscured bitstream, many researchers have opted to add an additional
layer of abstraction to aid in modifying the configuration. The term “bitstream specialisation" was
mainly used by Bruneel (2011), who proposed different techniques to adapt the configuration of
an FPGA. Later this was also used to dynamically adapt the routing of an application (Kulkarni &
Stroobandt, 2016).

Various other methods also aimed to provide access to the configuration bits of an FPGA. JBits”
(Guccione, Levi, & Sundararajan, 1999), XPART (Blodget, James-Roxby, Keller, McMillan, & Sun-
dararajan, 2003) and BitMan (Pham, Horta, & Koch, 2017) provided an application program interface
(API) with the Xilinx® FPGA bitstream using high level programming languages such as Java". Other
attempts include the Debit-project (Note & Rannaud, 2008), the Bitfile interpretation library (Bil)
(Benz, Seffrin, & Huss, 2012), PARBIT (PARtial Bltfile Transformer) (Horta & Lockwood, 2001) and
BitMaT (Bitstream Manipulation Tool) (Morford, 2005)—all of which were never fully completed.
The Xilinx® Design Language (XDL) (Beckhoff, Koch, & Torresen, 2011) is a design tool provided by
the company to manipulate resources at hardware level during the floorplan stage.

Upegui and Sanchez (2006) proposed modifying only the lookup tables (LUTs) using hard macros,
while keeping routing intact. Only the Virtex®-II Pro FPGA was targeted, which has a one-dimensional
(1D) routing architecture, implying that certain aspects of the routing (such as the carry chains)
takes place in only one direction (Compton & Hauck, 2002).

Using an additional layer of abstraction to modify the configuration bits of an FPGA either comes
with an increase in reconfiguration time, additional latency (le Roux, van Schoor, & van Vuuren,
2015), does not allow the specialisation to occur while the device is operational, or requires the user
to have a complete knowledge of the architecture in order to hand craft a solution (Zhu, Li, He, & Xia,
2007). Accordingly, some researchers have tried to access the configuration bits directly. For instance,
Castagna (2008) and Cancare, Santambrogio, and Sciuto (2010) targeted the Xilinx® Virtex®-4
devices. Unfortunately, most of the published work focused on the older Xilinx® architectures.

Other reasons to analyse the bitstream also include the creation of open source tools, as well as
security investigations. Examples of the former include Project X-Ray (SymbiFlow Team, 2019), that
focusses on documenting the Xilinx® 7-Series FPGA architecture to develop a Verilog to bitstream
toolchain, and EXTRA, an integrated environment for developing and programming reconfigurable
architectures (Ciobanu et al., 2018). Security investigations are mostly centred around injecting
malicious bits into the bitstream (Ender et al., 2019; Swierczynski, Becker, Moradi, & Paar, 2018),
weakening/breaking bitstream encryption (Celebucki, Graham, & Gunawardena, 2018; Swierczynski,
Fyrbiak, Koppe, & Paar, 2015), and extracting the design from the device (Ding, Wu, Zhang, & Zhu,
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2013). An excellent source covering the current state of reverse engineering of FPGA bitstreams,
including those from other vendors, can be found in (Yu, Lee, Lee, Kim, & Lee, 2018).

3 XILINX® DEVICE AND CONFIGURATION ARCHITECTURE

Before explaining the method used to analyse the bitstream, it is important to understand the layout
of the FPGA floorplan and how the configuration logic addresses the configuration memory. It is
also important to understand the differences between the different lookup table primitives, since the
bitstream encoding is determined by the required primitive.

Xilinx®’s FPGASs consist of an interconnected rectangular array of configurable logic blocks (CLBs),
input/output blocks (IOBs), block RAM (BRAM) and various other device-specific blocks such as
digital signal processing (DSP) blocks and embedded processors. As shown in Figure 1', these CLBs
are tiled across the FPGA floorplan and contain three slices named SLICEL, SLICEM or SLICEX, each
with unique x— and y—coordinates. A SLICEL is tailored to implement only combinational functions,
whereas the SLICEM can also be configured to implement distributed memory or shift registers. A
SLICEX on the other hand, is similar to a SLICEL, but lacks the carry logic.

A slice on a Virtex®-5 FPGA contains four logic function generators, i.e. lookup tables (LUTs), four
storage elements, multiplexers and carry logic. By connecting these elements, any combinational
and sequential circuits can be implemented. The LUTs can implement any arbitrary 6-input Boolean
function, or any two 5-input functions as long as the inputs are shared. When configuring a SLICEM
as distributed memory or a shift register, the LUTs are joined into a complex structure.

When configuring the device, the smallest addressable segment of the configuration memory is
called the configuration frame. Configuration frames on a Virtex®-5 FPGA span a vertical stack of
1,312 bits and contain the information of 20 CLBs, 40 IOBs or 4 BRAMS.

The physical position of each frame on the device is given by a unique 32-bit address. As shown
in Figure 2, this address is divided into five parts, each relatively self-explanatory except for the
minor and major addresses®. Each row of the FPGA is sub-divided into columns, addressed by using
the major address. Each column corresponds to a block in the FPGA array and contains a certain
number of frames. The address of each frame inside the column is addressed by the minor address.

The configuration logic responsible for addressing the configuration memory consists of a packet
processor and a set of registers and global signals with behaviour related to the content of the
registers. The packet processor is responsible for the dataflow to and from the configuration memory;,
controlling the configuration process. Two types of packets are used to write to the configuration
memory: Type 1, used for register reads and writes, and Type 2, for writing large blocks of data.
Tables 1 and 2 show the format for each packet. The type of packet is indicated by the Header Type,
the Opcode indicates a read, write or no operation and Word Count indicates the total number of
words. A Type 1 packet also includes a Register Address indicating the type of register. For the method
proposed in this paper, only three registers are of interest for parsing and analysing the contents of

INot according to scale
2The major address is also referred to as column address

https://doi.org/10.18489/sacj.v31i1.620


https://doi.org/10.18489/sacj.v31i1.620

Le Roux, R, Van Schoor, G. and Van Vuuren, P.: Parsing and analysis of a Xilinx FPGA bitstream 84

Configuration frame

4 10Bs / CLB array Block RAM/DSPs
/

WA

—

Y

Slice y-coordinate

SooooooOoOOOCooOoOOoOooooomoEmooooofe
|
|
|
|
S0 oooooDNODOOODDDODEEEEE]N
|
|
|
|

|
|
i
|

Slice x-coordinate
Figure 1: A typical Virtex®-5 FPGA floorplan

the bitstream: the frame address register (FAR), the frame data input register (FDRI), and the legacy
output register (LOUT). The functionality of these registers are:

Frame Address Register (FAR) Specifies the address of the frame.

Frame Data Input Register (FDRI) Writes to this register configure frame data at the frame address
specified in the FAR register.

Legacy Output Register (LOUT) Software uses this register to drive data to the DOUT pin® during
serial daisy-chain configuration. It is also used during debugging of the configuration.

For a detailed description of the configuration architecture, refer to the Xilinx® Virtex®-5 configu-
ration user guide (Xilinx Inc., 2012).

3Serial data output for downstream daisy-chained devices.

https://doi.org/10.18489/sacj.v31i1.620
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Figure 2: Frame address register (FAR) decoding

4 BITSTREAM ANALYSIS METHOD

The method used to parse and analyse the bitstream is based on the technical report written by
Castellone (2011). The general idea is illustrated in Figure 3 and involves:

1. Placing a base design created in Xilinx®’s FPGA Editor™ at the slice origin (SLICE_X0YO0). This
design initialises all LUTs in the slice with zeros (0x0000000000000000), which implies a
logical output of ‘0’ for all possible inputs on Al to A6. With the exception of the inputs and
outputs of the slice, the rest of the design remains unrouted.

2. Next, the same design is used, but this time the LUTs are initialised with ones
(OxFFFFFFFFFFFFFFFF). This is equivalent to a multiplexer with an output of ‘1’, regardless of
input. A valid Boolean expression for a multiplexer with an output of An, irrespective of input,
is (A1 + A2 + A3 + A4 + A5+ A6) % 0 + An.

3. The bitstreams of these two designs are then compared and the differences highlighted by
placing “X"s in the bit-positions where the differences were detected, as shown in Figure 4.
The matching lines were converted into their equivalent hexadecimal values and decoded into
a packet command.

4. Using the three steps above, the slice is then moved across the FPGA floorplan and the translation
between logical x and y coordinates and frame coordinates determined by analysing the FAR-
value of each slice.

5. To determine the encoding for each possible LUT primitive, the steps above were repeated, but
this time the LUTs were initialised as multiplexers, ROM, RAM, and shift register LUTs (SRLs).

Castagna (2008) used Python" to generate FPGA Editor™ batch scripts for opening the base
design, moving the required slice to a new location, modifying its contents, re-routing the design,

Table 1: Type 1 packet header format

Type Opcode Register Address Reserved ‘Word Count

[31:29] [28:27] [26:13] [12:11] [10:0]

001 XX RRRRRRRRRXXxXXX RR XXXXXXXXXXX

https://doi.org/10.18489/sacj.v31i1.620
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Table 2: Type 2 packet header format

Type Opcode Word Count

[31:29] [28:27] [26:0]

010 RR |  XXXXXXXXXXXXXXXXXXXXXXXXXXXX

and saving the modified netlist. UNIX command-line tools were then used to generate the bitstreams.
Castellone (2011) showed how this method can be applied to parse and analyse the bitstream of a
Virtex®-4 FPGA, but the method was never adapted for newer FPGAs. Complex LUT primitives, such
as RAM, ROM and SLR, were also not considered.

The method proposed in this paper is consistent with that of Castagna and Castellone’s, but
MATLAB® was used to generate FPGA Editor™ scripts and to compare the bitstreams. A different
FPGA, the Virtex®-5 (specifically the XCVFX70T), was used to allow validation of the proposed
method and to compare the results obtained by Castellone for a different FPGA. The following
complex LUT primitives were considered:

* 6-input SLICEL multiplexer

* 6-input SLICEM multiplexer

* Hexadecimal value stored in ROM

* 64 1-bit values stored in RAM (RAM64X1)
¢ 16 8-bit values stored in RAM (RAM16X8)
¢ 16 4-bit values stored in RAM (RAM16X4)
e 32 8-bit values stored in RAM (RAM32X8)
¢ A 16-bit value stored in a SRL (SRL16)

* A 32-bit value stored in a SRL (SRL32)

In order to simplify the comparison of the bitstreams, switches -b and DebugBitstream:Yes were
used when generating the bitstreams. These create a slightly larger ASCII bitstream with the
commands grouped into 32-bit words (Xilinx, Inc., 2011), and generate a bitstream where every
frame is written in a separate packet. The current frame address register (FAR) is also written to
legacy output register (LOUT) after each write to the frame data input register (FDRI). These values
were used to determine how each frame is written to the configuration memory. To further isolate
the LUT configuration bits, all CRC checks were disabled.

https://doi.org/10.18489/sacj.v31i1.620
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Base bitstream

Bitstream 1 Comparison

Bitstream 2

Base design > >
Moving the slice
A 4
Design 1 *  Bitgen >
Changing design
A 4
Design 2 > >
—

Figure 3: Diagram of the method used to compare and analyse a bitstream.

Line position

559438
559439
559440
559441
559442
559443

559482
559483
559484
559485
559486
559487

559526
559527
559528
559529
559530
559531

559570
559571
559572
559573
559574
559575

906167
906168
906169
906170
906171

Bitstream content

00000000
30010001
0011809F
30004029
000000000000000000000000XXXXXXXX
00000000

00000000
30010001
001180A0
30004029
000000000000000000000000XXXXXXXX
00000000

00000000
30010001
001180A1
30004029
000000000000000000000000XXXXXXXX
00000000

00000000
30010001
001180A2
30004029
000000000000000000000000XXXXXXXX
00000000

30000001
0000DEFC
30008001
0000000D
20000000

Decoded command

Type 1 Write to LOUT 1 words
FAR-value written
Type 1 Write to FDRI 41 words

Type 1 Write to LOUT 1 words
FAR-value written
Type 1 Write to FDRI 41 words

Type 1 Write to LOUT 1 words
FAR-value written
Type 1 Write to FDRI 41 words

Type 1 Write to LOUT 1 words
FAR-value written
Type 1 Write to FDRI 41 words

Type 1 Write to CRC 1 words
CRCvalue

Type 1 Write to CMD 1 words
DESYNCH

Type 1 NOP

Figure 4: The resulting comparison between the two ASCII-formatted bitstreams.
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5 BITSTREAM PARSING RESULTS

This section presents the results when parsing the bitstream of the Xilinx® Virtex®-5 XCVFX70T FPGA.
It is important to note that although these results are device specific, similar results can be obtained
by applying the methodology discussed in Section 4 to a different device. Even though a Virtex®-5
FPGA was the only platform available for implementing the bitstream specialiser of Section 7, using
FPGA Editor” it can be confirmed that similar results can be obtained for any Xilinx® FPGA with a
similar configuration architecture.

5.1 Address translation

Figure 5 shows the typical result when comparing the base design, with all LUTs initialised with
zeros, to a design with all LUTs initialised with ones. Each marker-set indicates the line in the
bitstream where the differences were detected between the various LUTs, as well as the specific bits
that differ. These differences are also tabulated in more detail in Table 3. In this table it can be seen
that the 64-bits required to configure each LUT are equally distributed among four frames, as seen
in the increase in minor addresses. In actual fact, it was found that the configuration of the 80 LUTs
constituting a row of 20 slices are neatly contained inside four frames.

Combining this result with the information given in the configuration user guide for the device
considered (in this case, the Virtex®-5 XCVFX70T (Xilinx Inc., 2012)), the content and composition
of a single frame can be obtained. The result is shown in Figure 6 and contains the first 16-bit
configuration data for each of the 80 LUTs in the 20 CLBs between (x, y) = (0,0) and (x, y) = (0, 19).
Also shown is the location of the 12 bits (bits 640 to 651) used to store the error checking code
(ECC) for the frame, and the miscellaneous horizontal clock (HCLK) configuration bits (bits 652 to
655). Bits 656 to 671 are the unused HCLK configuration bits.

The FAR-values of each experiment were then used to derive a set of device-specific formulas
to translate the slice coordinates to the frame address. For the Virtex®-5 XC5VEX70T FPGA, x =
{0,1,...,75}, y = {0,1,...,159} and the LUTs are given by L = {A,B,C,D}. Because only block
configurations are written, the block type will be set as Type = 0 (as per the configuration user
guide (Xilinx Inc., 2012)) in each of the formulas. The top or bottom position, Pos, is given by (1),
with 1 the indicator function defined by (2).

Top(y) = ]l{yz?,z}(J’) (D
_J1 ifxeA
T4(x) = {O ifx¢A (2)

The height of the device considered is 159 slices with 40 slices per row. Because row numbering
is repeated for the top and the bottom of the device, (3) is used to calculate the row.

2y—159H 3)

Row(y) = H 20

https://doi.org/10.18489/sacj.v31i1.620
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v v v v v LUTA
v v v v & LUTB
30— v x v x v x v x x LUTC
v X v X v X v X o LUTD
v X vV X v X v X
v X vV X v X v X
v X vV X v X v X
25— v X AvARS v % v x
v X vV X v X v X
v X vV X v X v X
v X v X v X v X
v x v x v x v x
20— v % AVARS v % v %
S v x v x v x v x
= v X vV X v X v X
8 v X vV X v X v X
& &0 “ 0 &0 &0
15— o O = 0 =0 =0
£ 0 % 0 &0 =0
£ 0 % 0 &0 =0
o0 = 0O e =0
&0 “ 0 &0 &0
10— & O “ 0 =0 = O
£ 0 % 0 &0 =0
% 0 % O » O * 0
&0 “ 0 &0 &0
“ 0 = 0O =0 =0
5 & O 0 &0 &0
%0 % 0 =0 =0
£ 0 % 0 &0 =0
« 0 pean| gy =0
&0 “ 0 &0 &0
L L L L
5.59440 5.59484 5.59528 5.59572 x10°

Offset from start of the ASCII converted bitstream

Figure 5: A typical plot showing the differences detected between a base and reference design.

| BLUT(0,0) ALUT(0,0)
Illlllllllllllll—
I31 16/15 0
DLUT(0,0) CLUT(0,0) |
I I I
64 48147 32!
| BLUT(0,1) ALUT(0,1)
Illlllllllllllll—
los 80179 64
LUT(0,1) CLUT(0,1) |
—IIIIIIIIIIIIIIII
127 1121111 96!
UNUSED MISC ECC

|

671

656 655

|

703

BLUT(0,19)

688 687

1311

DLUT(0,19)

12641263

AL

|

640

BLUT(0,10) ALUT(0,10)
I I

672

uT(0,19)

1248

CLUT(0,19)

1296'1295

1280

Figure 6: The composition of a frame, showing the location of all 80 LUTs of an FPGA row.
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Table 3: The differences between a base design with all LUTs initialised to zero, and a reference design with
the LUTs initialised to output 1 for all inputs.

LOUT LUT value LUT value Maj | Min
(Hex) (binary value of base design) (binary value of bitstream 2) addr | addr
1180A0 | 00000000000000000000000000000000 | 00000000000000001111111111111111 0 3 1 32
1180A1 | 00000000000000000000000000000000 | 00000000000000001111111111111111 0 3 1 33
AGLUT 1180A2 [ 00000000000000000000000000000000 [ 00000000000000001111111111111111 0 3 1 34
1180A3 | 00000000000000000000000000000000 [ 00000000000000001111111111111111 0 3 1 35
1180A0 | 00000000000000000000000000000000 | 11111111111111110000000000000000 0 3 1 32
1180A1 [ 00000000000000000000000000000000 [ 11111111111111110000000000000000 0 3 1 33
BeLut 1180A2 [ 00000000000000000000000000000000 ( 11111111111111110000000000000000 0 3 1 34
1180A3 [ 00000000000000000000000000000000 ( 11111111111111110000000000000000 0 3 1 35
1180A0 [ 00000000000000000000000000000000 [ 00000000000000001111111111111111 0 3 1 32
1180A1 [ 00000000000000000000000000000000 [ 00000000000000001111111111111111 0 3 1 33
coLuT 1180A2 | 00000000000000000000000000000000 [ 00000000000000001111111111111111| 0 3 1 34
1180A3 | 00000000000000000000000000000000 [ 00000000000000001111111111111111 0 1 3 1 35
1180A0 [ 00000000000000000000000000000000 ( 11111111111111110000000000000000 0 1 3 1 32
1180A1 [ 00000000000000000000000000000000 ( 11111111111111110000000000000000 0 1 3 1 33
DOLUT 1180A2 [ 00000000000000000000000000000000 | 11111111111111110000000000000000 0 1 3 1 34
1180A3 | 00000000000000000000000000000000 | 11111111111111110000000000000000 0 1 3 1 35

The derivation of the major address calculation, (4), was done by moving the slice horizontally
across the FPGA floorplan. The offset added to each calculation is dependent on other columns, such
as RAM, DSP and I/O, situated between the CLBs. Again, this equation can be simplified by using
the indicator function as shown in (5).

Major(x) = <

-

rrrrrr

—

*+1, 0<x<7

*+2, 8<x<19
*|+3  20<x<31
*]+4, 32<x<39
2]+6, 40<x<47
*|+7, 48<x<51
*]+8, 52<x<55
2]+9, 56<x<59
*]+10, 60<x<67
*]+11, 68<x<75

4)
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, X
Major(x) = [EJ + 1+ T geag () + Liyson (x)
T30y () + 1m0y () + 158y (X)
Lo (0) + Lipnsep () + Lm0 ()
168y (x) (5

+ +

While moving the slice horizontally across the FPGA floorplan, an interesting phenomenon was
observed; the configuration of every fourth column was byte-swapped. For even columns, the
minor addresses [32, 33, 34, 35] were swapped to [34, 35, 33, 32] and for uneven columns minor
addresses [26, 27, 28, 29] were swapped to [28, 29, 27, 26]. Castellone (2011) found that columns
30, 96 and 97 break this convention and also swap on the Virtex®-5 VLX110T. On the contrary, it was
found that columns 50, 54 and 58 are swapped on the VFX70T. After further investigation, it was
ascertained that these columns are SLICEMs on the respective devices. As a result, the byte swapping
can be ascribed to a difference in encoding between SLICEL and SLICEM. Using this information, it
is possible to determine whether the frame should swap using (6). In this Boolean equation, Swap is
a binary variable that is only true if the bytes of the LUT configuration are permuted. From this, the
composition and order of the minor addresses are given by (7).

Swap(x)=(xmod4=0Vx=50Vx =54V x=>58) (6)

{[32,33,34,35] (x even)

winor(y = | 1[26:27.28.29] (xoday 5P )
inor(x) = {[34,35,33,32] (xeven) .
if Swap(x)

[28,29,27,26] (xodd)

5.2 LUT multiplexer encoding

An n-bit LUT can encode any n-input Boolean function by modelling these functions as truth tables,
with the columns corresponding to the inputs of the LUT. This is effectively the same as a multiplexer
whose select lines are the inputs of the LUT, meaning that any n-bit LUT can be modelled as such. This
is the fundamental hardware underlying any LUT primitive. By configuring the LUTs as multiplexers
and comparing them to a base design, a unique set of 64-bit strings was found, listed in Table 4,
used to encode the configuration data for each LUT input.

Listed under Combinational are the strings used to implement combinational logic on any slice
type, whereas the strings listed under Complex are solely used to implement complex primitives,
such as ROM, RAM and SRL, on SLICEMs. It is interesting to note that the configuration strings for
the 5-input combinational logic are a subset of the 6-input configuration strings. This also holds true
for complex memory primitives, because one input is controlled by software and as a result, only
5-inputs are used per LUT.
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Table 4: LUT multiplexer configuration strings

Input

Combinational

Complex

SLICEL LUT6

SLICEM LUT6

SLICEL LUT5

SLICEM LUT6

SLICEL LUT5

Al

A2

A3

A4

A5

A6

5555AAAAAAAAS5555

FFFFFFFF00000000

5555555555555555

3333333333333333

OFOFOFOFOFOFOFOF

O0O0FFOOFFOOFFOOFF

AAAAS5555AAAAS5555

00000000FFFFFFFF

5555555555555555

3333333333333333

OFOFOFOFOFOFOFOF

O0O0FFOOFFOOFFOOFF

5500AA00AA005500

FFOOFF0000000000

5500550055005500

3300330033003300

OFO000FO00FO00F00

0000000000000000

00AA005500AA0055

0000000000FFOOFF

0055005500550055

0033003300330033

000FO00FO00FO00F

0000000000000000

AA005500AA005500

00000000FFOOFFO0

5500550055005500

3300330033003300

O0FO000FO00F000F00

0000000000000000

These strings can be used to derive the bitstream encoding of any LUT primitive by simply
substituting each input variable into the Boolean expression represented by the LUT. Consider the
following Boolean expression: AGLUT = ((A2 A (A1 A (A3 @ (A6 ® (A4 ® A5))))) V(A2 A (A1 V (A3 @
(A6 @ (A4 ® A5)))))). By substituting the corresponding configuration strings into this equation, it
is possible to show that the configuration for combinational logic implemented on a SLICEL and
SLICEM would be 0x7DD7EBBE41142882 and 0x41142882EBBE7DD?7 respectively.

5.3 LUT primitive encoding

LUT primitives are described using a high level INIT-parameter. This parameter initialises the
truth table for each of the LUTs in the slice. Consider an INIT-parameter of 0x00000000000000B0.
Synthesizing this design and examining it in FPGA Editor, it is possible to analyse the placement
and routing of the slice I/O. Say for instance that input A3 is tied high by the synthesiser. Using this
information, the truth table can be populated as shown in Table 5 and because each entry in the
truth table represents a Boolean function, this translates to (A6 AA5 AA4 AA3 AA2 AAT)V (A6 AA5 A
A4 NA3 NA2 NAL)V (A6 AA5 AA4 AA3 AA2 AA1). Using the configuration strings in Table 4, the LUT
configuration can be calculated as 0x4000400000004000 for SLICEM and 0x4000000040004000 for
their SLICEL counterparts.

This also holds true for all LUT storage primitives. The only differences are the way the truth
table is populated—the hardware is synthesised and optimised in different ways and the truth table
is dependent on the LUT inputs—and the configuration strings used. Some control over the location
and order of the LUT inputs can be exercised by adding placement and routing constraints, or by
manual routing.

5.4 SRL encoding

The only variation to the LUT bitstream encoding occurs when considering SRL LUT primitives. This
is because these primitives are represented by a shift register and a multiplexer, shown in Figure 7.
Consequently, the SRL has an output, SHIFTOUT, for the most recent bit shifted out and an output,
Q, where any of the bits in the register can be accessed. A dynamic read of the SRL is performed
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Table 5: Example of a populated truth table with A3 tied high

A6 [ A5 | A4 | A3 | A2 | Al | Output
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 1 1 0
0 0 0 1 0 0 1
0 0 0 1 0 1 1
0 0 0 1 1 0 0
0 0 0 1 1 1 1
0 0 1 0 0 0 0
0 0 1 0 0 1 0

SHIFTIN(D) —— ]

WE

WL 177

CLK ——

Address

Q

Figure 7: The shift register and multiplexer representing a shift register LUT (SRL).

using the five most significant bits of the address lines (i.e. input A2 to A6). During this process, Al
is tied high. Therefore, every line in the truth table with A1 =1 is used for initializing the output of
the multiplexer (Q) and every other line is used to initialise the SHIFTOUT.

As an example, consider an SRL initialisation parameter of 0x0000000000000005. When inserting
this value into a truth table for the SRL, only the lines with A1 = 1 are considered, as shown in
Table 6. However, when calculating the Boolean expression represented by the truth table, the
preceding lines should also be considered. This yields a Boolean equation of (A1 A A2 A A3 A A4 A
A5 ANA6)V (A1 AA2 AA3 AA4 AAS AAG)V (A1 AA2 AA3 AAA NAS AA6)V (A1 AA2 NA3 AA4 AA5 NA6).
Again, using the configuration strings given in Table 4, this equation results in a configuration of
0xC000C00000000000.
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Table 6: Example SRL16 truth table

A6 | A5 | A4 | A3 | A2 | A1 | Output
olo|oflo|o]o 0 Shift out
olo|ofo]o]|1 1 Dynamic read
o|lo|lofo]|1]o 0
olofolol|1]1 0
o|lo|lo|1]o]|o 0 Shift out
olofof|1]|]o0o]1 1 Dynamic read
olofol1|1]o 0
olo|of|1]1]1 0
olofloflo|lol]o 0
olofofol]ol]1 0

6 PARSING AND ANALYSIS DISCUSSION

By comparing different reference designs to a base design, it was shown that it is possible to map the
configuration space of the FPGA to the bitstream. In this instance, it was found that the Virtex®-5
XCVFX70T FPGA has its configuration of 80 LUTs equally spaced among four consecutive frames.
Because 64 bits are required to configure a LUT, each frame contains 16 bits of the total LUT
configuration. It was also shown that by analysing the FAR-value of each packet in the bitstream,
it is possible to derive a set of mathematical formulas for translating the device’s slice coordinates
to the frame address. This allows a designer to determine the exact frame address using the slice
coordinates and protects from accidentally changing the bitstream content of an unknown component,
creating hardware contention and potentially damaging the device.

To determine the specific device’s bitstream encoding of the LUTs, different LUT primitives
were analysed. The initialisation for each of these primitives is done using INIT-parameters, which
initialises the truth table of the primitive and represents a Boolean expression. It was found that
most of these can be modelled using multiplexers, and by analysing the bitstreams for each primitive
configuration, it was possible to derive a set of configuration strings for both 5- and 6-input SLICEM
and SLICEL slices. Using these derived configuration strings, it is possible to determine the bitstream
encoding of any LUT primitive.

The modelling of SRL primitives differs from the other primitives mentioned above. This is
because an SRL is modelled as a multiplexer with a shift register as input. It was found that in order
to derive the Boolean expression represented by the SRL truth table for this device, the rows with
Al =1 are used for initializing the multiplexer component and every other line is used to initialise
the shift register. Once the Boolean expression is derived, the bitstream encoding can be obtained by
applying the configuration strings.

The reason for focussing the results in Section 5 on the XCVFX70T, is because this device was
used to implement the specialiser discussed in the following section. Despite this, the bitstream
parsing and analysis method proposed in this paper is device independent and can be applied to any
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Specialiser

INIT_param ———»
—— ConfigString

ENABLE ————

SLICE_type ————»

[—— > ConfigReady

RESET ————

Figure 8: Block diagram of the top-level bitstream specialiser initialisation

Xilinx® FPGA to extract certain characteristics. Generally, the differences between Xilinx®’s FPGA
families’ configuration architectures are; the frame length, the frame composition and the physical
layout of hardware resources. Once these have been obtained for a new device, the methodology
discussed in Section 4 can simply be applied for the new architecture. New formulas will then be
derived depending on the frame length and composition, the homogeneity of the columns, and slice
configuration.

This study was unfortunately limited by the toolset (which is considered deprecated), but similar
results can be found for different devices in the Virtex® FPGA family up to the Virtex®-5. This is
primarily due to these devices having similar configuration architectures. The Spartan®series FPGAs
from Xilinx® have different configuration architectures, but with proper parsing and analysis, similar
characteristics can be extracted.

Although FPGA Editor™ (which is part of the deprecated Xilinx® ISE® design suite) was used
to parse and analyse the bitstream, it is possible to follow the same method using Xilinx®’s new
Vivado™ design suite. The FPGA Editor™ scripts will be substituted by Tcl (Tool Command Language)
equivalents, and the floor-plan centric nature of Vivado™ suits the proposed method perfectly. This
approach is currently being investigated.

7 IMPLEMENTATION OF THE BITSTREAM SPECIALISER

Figure 8 shows the top level block diagram of the developed specialiser. The specialisation process is
triggered by a rising edge on ENABLE, whereafter the specialiser uses the new initialisation parameter
(INIT param) to produce a new configuration string (ConfigString) based on the LUT construct type
(SLICE_type). The ConfigReady pin is used to establish handshaking with the rest of the hardware.
For this paper, an FPGA architecture was considered that combines four 6-input fracturable LUTs
per slice (LUT5 and LUT6). Consequently, eight initialisation parameters are required to initialise each
slice. This also implies that eight specialisers are required when implementing it in a system. The
result is shown in Figure 9, with a reconfiguration controller as the hub of the process. This controller
also encapsulates the internal configuration access port (ICAP) to transfer the new initialisation
parameter to the configuration memory, and the state machine used for reconfiguration.
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INIT_param C c INIT_param
ENABLE ENABLE
Specializer 0 Specializer 1 SLICE_t
-_type
SLICE_type (6LUT) ConfigReady (5LUT)
ConfigReady RESET
RESET
c
!é) I_'
INIT_param
-param ConfigString 9 2 g 9 c INIT_param
El 5 2 S
ENABLE . & R AR z & ENABLE
Specializer 2 @ 14 3 Q = @ Specializer 3
SLICE_type 6LUT, E i 4] s ES pecializer
=B O | onfigReady = ~ |8 & eLum) SLICE type
RESET (o} o ConfigReady —
> a RESET
ConfigString_C6 ConfigString_C5
Reconfig_controller
ConfigString_B6 ConfigString_B5
INIT_param
P — ConfigString WA C INIT_param
ENABLE M1
sLicE Specializer 4 © 2 Spociaizers ENABLE
_type 6LUT > |
= OWUD | gReady g g 2 contaondy | LD SLICE_type
RESET % ﬂfm tg RESET
> = = e—
= S €
5 8 S
3 o
INIT_param
LY ConfigString ° INIT_param
ENABLE M MM ENABLE
SLICE_type Specere Specializer 7
- _lyp BLUT,
=S OUD o igReady contionsy | ELUD SLICE_type
RESET + RESET

Figure 9: Diagram depicting the interconnectivity of the specialiser and the reconfiguration controller
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Table 7: Initialisation parameters used to verify the specialisation process

Initialisation | Value LUT Configuration string
INIT 00 0xB5F0 | D6LUT | 0x0050007000400070
INIT 01 0x55AE | D5LUT | 0x900060009000E000
INIT 02 0xEA90 | C6LUT | 0x0060001000300050
INIT 03 0x1C66 | C5LUT | 0x900040006000A000
INIT 04 0x0000 | B6LUT | 0x0000000000000000
INIT 05 0x0000 | BSLUT | 0x0000000000000000
INIT 06 0x0000 | A6LUT | 0x0000000000000000
INIT 07 0x0000 | ASLUT | 0x0000000000000000

Also seen in Figure 9 is that the even-numbered specialisers are used to generate new configuration
strings for the LUT6-expressions (ConfigString A6 to ConfigString D6), whereas the odd-numbered
specialisers are used for LUT5 (ConfigString A5 to ConfigString D5). The AND-gates at the bottom
of the figure use the ConfigReady signal of each specialiser to synchronise to the reconfiguration
process. These lines are driven high once a valid configuration string is available. These strings are
then injected into the bitstream at the address specified on LUT baseAddress and transferred to the
configuration memory by the reconfiguration controller. The injected words are done 16 bits at a
time, corresponding to the location of the specific LUT in the bitstream. Once the reconfiguration
process completes, a soft reset can be issued on SpecializerRST, should it be required.

8 VERIFYING THE SPECIALISATION PROCESS

To verify the operation of the specialiser, consider a LUT primitive with the initialisation parameters
and primitive listed in the first three columns of Table 7. Using a truth table a Boolean expression
for each of the initialisation values can be derived. Next, the configuration parameters derived in
Section 5 and listed in Table 4 are substituted into these expressions to yield the configuration strings
given in the last column of Table 7.

As can be seen, these values correspond with the simulated results of Figure 10. Also seen in the
figure is that the new configuration strings (ConfigString D6 to ConfigString A5) are available imme-
diately after assigning the new initialisation parameters (INIT param) and enabling the specialiser
via ENABLE.

Figure 11 illustrates the timing of the reconfiguration controller using these values in the reconfig-
uration process. Once the specialisation process completes, the reconfiguration controller is notified
using ConfigReady. A base configuration, also called the golden image which can be used for fallback,
is then read from the memory, one word at a time, as shown by Configuration read and Word read,
and sent to the configuration memory via the ICAP If the word counter matches the address specified
on LUT baseAddress (in this particular instance, 28), the corresponding configuration strings are
injected into the current and subsequent line. This is repeated for every 41 words read, as per the
frame composition. The Xilinx® reconfiguration user guide (Xilinx, Inc., 2010) also specifies that
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INIT_param (1) XXXXXXXXXXXXXXXX [00000000000055AE
INIT_param (0) XXXOO00KXXXXXXXX J000000000000B5F0
INIT_param (3) XXXXXXXXXXXXXXXX X0000000000001C66
INIT_param (2) XXXXXXXXXXXXXXXX XOOOOOOOOOOOOEA90
INIT_param (5) XXXXXXXXXXXXXXXX 10000000000000000
INIT_param (4) XXXOOXKXXXXXXXX ]0000000000000000
INIT_param (7) XCOO0OO0O00MKK J0000000000000000
INIT_param (6) XXXXXXXXXXXXXXXX J0000000000000000
ENABLE |
Al AA005500AA005500
A2 00000000FFOOFF00
A3 5500550055005500
A4 3300330033003300
A5 OFO00FO00FO00F00
A6 0000000000000000
SpecFinished |
ConfigReady [
ConfigString_D6 0000000000000000 ]0050007000400070
ConfigString_D5 0000000000000000 [900060009000E000
ConfigString_C6 0000000000000000 10060001000300050
ConfigString_C5 0000000000000000 X900040006000A000
ConfigString_B6 0000000000000000 10000000000000000
ConfigString_B5 0000000000000000 10000000000000000
ConfigString_A6 0000000000000000 J0000000000000000
ConfigString_A5 0000000000000000 ]0000000000000000

1000000000 ps

2000000000 ps

Figure 10: Simulated timing results of the configuration specialiser

these values have to be byte swapped, which is shown by ICAP Input.

9 CONCLUSION

Despite the obscurity of the bitstream, this paper described a method used to parse and analyse the
bitstream of a Xilinx® FPGA, based on work done by Castagna (2008) and Castellone (2011). Using
this method, not only were mathematical formulas derived for translating the slice coordinates to
frame addresses, but the configuration strings used to encode the LUT bitstream information for
each slice were also extracted.

The general idea is that any LUT can be expressed as a truth table, with each line representing
a Boolean function. The LUTs are initialised by a 64-bit* initialisation parameter, which is used in
conjunction with the address lines to determine the output of the truth table. This output is then

“4For 6-input LUTs
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ak— L1 1 | T I I L |
SpecFinished
ENABLE
ConfigString_D6 0050007000400070
ConfigString_D5 900060009000E000
ConfigString_C6 0060001000300050
ConfigString_C5 900040006000A000
ConfigString_B6 0000000000000000
ConfigString_B5 0000000000000000
ConfigString_A6 0000000000000000
ConfigString_A5 0000000000000000
LUT_baseAddress 28
ConfigReady
ICAP state machine ST_CONFIG
Configuration read 300040CD [E2E2E2E2 Joooooooo
Word read 27 I28 J29 J30 31 I32 133
Configuration data 20000000 [300040cD Jooooo000 Jo0509060 Joooooo000
ICAP Input 00880105 Jo4000000 Jocooo2B3 Joooooooo Joo0A0906 Joooooo00

[ A T I N N
1749748000 ps

[ R ]
1749744000 ps

[ T T T R R
1749736000 ps

[ oo
1749740000 ps 1749752000 ps

Figure 11: Simulated timing results of the reconfiguration process with specialiser

encoded into a bitstream, with the specific encoding determined by the LUT primitive.

Using this information, it is possible to modify the configuration bits of a bitstream directly. Once
the required LUT primitive is identified, the associated Boolean expression can be derived by using
the initialisation parameter as an additional address line for its truth table. The Boolean expression
is then evaluated using the configuration strings and the result placed into the bitstream at the
required frame address.

This process was illustrated by implementing a bitstream specialiser in FPGA fabric. As a base
bitstream is loaded from memory, a new configuration can be derived for the LUTs and injected into
the bitstream while it is being transferred to the device’s configuration memory via the ICAP. This not
only results in extremely high reconfiguration throughput without any latency, but also creates new
hardware on-the-fly as required.

The implication is that a real-time system, such as the high-speed, five degree-of-freedom active
magnetic bearing system developed in le Roux (2009), can be dynamically reconfigured regardless
of its tight time constraints. An added benefit is an improvement in the functional density of the
application. Functional density is a measure of the composite benefits of dynamic reconfiguration
above its static generic counterpart, and measures the computational throughput (in operations per
second) per unit hardware resources. Future work will include measuring this functional density
advantage, as well as analysing the bitstream of a 7-series FPGA to see if similar characteristics can
be extracted.
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