
SACJ 32(2) December 2020
Research Article

Exchanging image processing and OCR
components in a Setswana digitisation
pipeline
Gideon Kotzé

 
 , Friedel Wolff

 
 

Academy of African Languages and Science, University of South Africa

ABSTRACT
As more natural language processing (NLP) applications benefit from neural network based approaches, it makes
sense to re-evaluate existing work in NLP. A complete pipeline for digitisation includes several components hand-
ling the material in sequence. Image processing after scanning the document has been shown to be an important
factor in final quality. Here we compare two different approaches for visually enhancing documents before Op-
tical Character Recognition (OCR), (1) a combination of ImageMagick and Unpaper and (2) OCRopus. We also
compare Calamari, a new line-based OCR package using neural networks, with the well-known Tesseract 3 as
the OCR component. Our evaluation on a set of Setswana documents reveals that the combination of ImageMa-
gick/Unpaper and Calamari improves on a current baseline based on Tesseract 3 and ImageMagick/Unpaper with
over 30%, achieving a mean character error rate of 1.69 across all combined test data.
Keywords: digitisation, optical character recognition, image processing, neural networks
Categories: • Applied computing ∼ Optical character recognition • Computing methodologies ∼ Image processing
Email:
Gideon Kotzé dr.gideon.kotze@gmail.com (CORRESPONDING),
Friedel Wolff friedel@translate.org.za

Article history:
Received: 10 May 2019
Accepted: 03 November 2020
Available online: 08 December 2020

1 INTRODUCTION

The work we present takes place in the context of a digitisation project of mostly older type-
written books in South African languages. The primary focus of the project is to extend text
corpora for the languages involved, but such projects also bring advantages, such as electronic
access to books that are out of print. Consequently, we aim for high-quality digital versions
of the text suitable for the Digital Humanities, corpus linguistics and applications in natural
language processing (NLP). The investigation into a digitisation pipeline is therefore to facil-
itate and accelerate the process leading to quality-assured digital versions of the text portions
of the books involved.
Kotzé, G. and Wolff, F. (2020). Exchanging image processing and OCR components in a Setswana digitisation
pipeline. South African Computer Journal 32(2), 218–231. https://doi.org/10.18489/sacj.v32i2.707

Copyright © the author(s); published under a Creative Commons NonCommercial 4.0 License (CC BY-NC 4.0).
SACJ is a publication of the South African Institute of Computer Scientists and Information Technologists. ISSN
1015-7999 (print) ISSN 2313-7835 (online).

https://orcid.org/0000-0001-7318-2245
https://orcid.org/0000-0002-6615-5780
mailto:dr.gideon.kotze@gmail.com
mailto:friedel@translate.org.za
https://doi.org/10.18489/sacj.v32i2.707
http://creativecommons.org/licenses/by-nc/4.0/


Kotzé, G. and Wolff, F.: Exchanging image processing and OCR components… 219

A typical pipeline consists of the following phases, applied in order: scanning, image pro-
cessing, optical character recognition (OCR) and post-processing. Scanned images often con-
tain imperfections such as skew, speckles and lack of contrast that can be improved through
the application of image processing software with the intent of creating better input for OCR
(see, for example, Gupta et al., 2007; Kotzé and Wolff, 2017; Patvardhan et al., 2013). OCR
itself is a difficult problem to solve, which as a result produces mostly less-than-perfect results.
Post-processing can then either attempt to directly solve OCR errors or focus on restoring the
logical layout of the resulting digital text. Given a perfect output example in the form of a
gold standard, digitisation output can be automatically evaluated using some sort of metric.
Here, we apply the widely used Character Error Rate (CER) metric, explained in Section 5.3.

A number of Free and Open Source (FOSS) tools are available for building such a digitisa-
tion pipeline. With such tools, the ability to train our own OCR models enables us to achieve
the best results possible. In this work, we compare the established Tesseract1 package with the
recently released Calamari2 package. Since they are not directly equivalent in functionality,
we have to compare Tesseract with a combination of Calamari and OCRopus tools (Breuel,
2008) to form a complete pipeline.

The success of neural networks in several NLP tasks in recent years, such as language mod-
elling, parsing and machine translation, suggests that its use in Calamari might be competitive
with the pattern-based approach of Tesseract version 3.

The rest of the paper is structured as follows: In Section 2, we discuss related work. The
research questions are posed next, in Section 3. This is followed by an introduction to the
Calamari package and how to train it (Section 4). Next, we discuss the digitisation pipeline
in Section 5. We present the experimental data in Section 6, the experiments and evaluation
results in Section 7, and a qualitative evaluation in Section 8. Finally, a discussion of the
results and planned future work is presented in Section 9.

2 BACKGROUND

As mentioned, Tesseract (Smith, 2007) is a pattern-based OCR system. It implements a type of
page analysis where page areas, lines, words and eventually characters are recognised through
a series of processes that involve (1) a static classifier and (2) an adaptive classifier that is
trained by the output of the former. It also involves a small measure of linguistic analysis, as
well as some image processing, such as border analysis and handling noise.

Hocking and Puttkammer (2016) present Tesseract models for ten South African languages,
achieving high accuracy in comparison with an English model on the same texts. It represents
a first attempt at distributing OCR engines used by open-source software (Tesseract) for South
African languages other than Afrikaans. We describe, in Kotzé and Wolff (2017), a complete
pipeline showing a notable improvement over the Setswanamodel in Hocking and Puttkammer

1https://github.com/tesseract-ocr/
2https://github.com/Calamari-OCR/calamari

https://doi.org/10.18489/sacj.v32i2.707

https://github.com/tesseract-ocr/
https://github.com/Calamari-OCR/calamari
https://doi.org/10.18489/sacj.v32i2.707


Kotzé, G. and Wolff, F.: Exchanging image processing and OCR components… 220

(2016) when image processing and post-processing steps are added, resulting in texts needing
less post-editing than without such pre- and post-processing. As with Hocking and Puttkammer
(2016), this was achieved with freely available and off-the-shelf software.

OCRopus is a complete OCR pipeline comprised of separate commands. Consequently, it is
trivial to swap out one of the commands for an alternative with similar functionality. Calamari
is a line-based OCR package (Wick et al., n.d.) aimed to integrate into the OCRopus pipeline
(Breuel, 2008). It uses Convolutional Neural Networks (CNNs) and bidirectional Long Short-
Term Memory (LSTM) layers. The network is trained by the Connectionist Temporal Classific-
ation (CTC) algorithm (Graves et al., 2006). It uses the Tensorflow3 framework for its neural
network computations and consequently can use GPU processing for better performance, dur-
ing both training and prediction.

The recently released version 4 of Tesseract implements a similar neural network approach,
but the documentation warns that training can take weeks, and that training “is a daunting
task” with caveats that can lead to reduced performance4. At the time of writing, Tesseract 4
does not support training on GPU hardware, which might be a central reason for the substantial
requirement in training time compared to Calamari, which does offer that ability. The officially
published models for Tesseract 4 do not include support for South African languages, with the
exception of Afrikaans. These models were trained on hundreds of thousands of text lines,
and with thousands of fonts. It is unclear if such a scale of training is required for reasonable
results, or if rather a more modest amount is sufficient.

The authors of Calamari compared it to several FOSS OCR engines (including the until then
unreleased Tesseract 4), and Calamari obtained some of the best results.

3 RESEARCH QUESTIONS

We have shown positive results (Kotzé &Wolff, 2017) for integrating Tesseract-based Setswana
OCR into a pipeline that includes pre- and post-processing components. The fact that NLP
solutions based on neural networks have made good progress in recent years, as well as the
positive results reported by Wick et al. (n.d.), lead to the reasonable hypothesis that adapting
such a pipeline to accommodate Calamari might lead to improved results. The question of
whether or not a given mode of image processing will have the same impact on a certain OCR
approach than another is also unanswered. Since Calamari has been developed to be used
with the OCRopus tools, which includes its own image processing tool, we are able to combine
both different image processing as well as OCR approaches within our complete pipeline and
contribute towards answering this question.

With this paper, we thus attend to the following research questions: Given a selection of
documents with gold standards:

3https://www.tensorflow.org/
4https://tesseract-ocr.github.io/tessdoc/TrainingTesseract-4.00

https://doi.org/10.18489/sacj.v32i2.707

https://www.tensorflow.org/
https://tesseract-ocr.github.io/tessdoc/TrainingTesseract-4.00
https://doi.org/10.18489/sacj.v32i2.707


Kotzé, G. and Wolff, F.: Exchanging image processing and OCR components… 221

1. Does the application of Calamari, everything else being equal, outperform the Tesseract
model in Kotzé and Wolff (2017), and if so, to which degree?

2. Does the application of a certain combination of components in the pipeline outperform
the combination of components reported in Kotzé and Wolff (2017), and if so, to which
degree?

3. Can we get a measure of how generalisable our approaches are, and therefore make an
informed decision on how to digitise new documents leading to less post-editing?

Here, “gold standard” refers to a plain text file against which the pipeline output is automat-
ically evaluated, and “outperform” refers to an improvement in the CER (see Section 7).

In the following section, we discuss the Calamari package and how to train it.

4 TRAINING CALAMARI

Only a few pretrained models are available for Calamari. However, training a new model is
relatively easy. To make results more comparable to the Tesseract model, we generate training
lines from the Setswana portion of the NCHLT text corpus5 comprising just over 20,000 lines
and 302,508 words. The text was not normalised (or regularised in Calamari terminology) so
that a wider repertoire of characters would be supported. For example, our requirement is for
eventual post-edited documents to contain the full variety of typographic punctuation marks
(such as “curly” typographic quotes and dashes in addition to hyphens), therefore an ideal
pipeline would generate them as input to the post-editing process. For this purpose, most
straight quotation marks in the text were replaced automatically with their typographical
variants to ensure that they are present in the training data.

An additional 4,551 lines with almost 70,000 words served as validation set, which Cala-
mari uses to stop training. An OCRopus script, ocropus-linegen, is used to generate the graphical
training and validation data automatically based on a number of common open-source font
files including all their varieties (such as bold, italic, etc.) comprising a total of 123 visual
variants. Default training parameters were used, except for a batch size of 32 and the use of
“simple” text regularisation. Training was accelerated with an NVIDIA Tesla K80 GPGPU. The
training was stopped automatically after about 19 hours when performance on the validation
set converged.

Training was performed with a version of Calamari directly from version control6 after
version 0.2.0 which has support for Tensorflow 1.11.

5https://repo.sadilar.org/handle/20.500.12185/343
6https://github.com/Calamari-OCR/calamari/tree/effde8d7

https://doi.org/10.18489/sacj.v32i2.707

https://repo.sadilar.org/handle/20.500.12185/343
https://github.com/Calamari-OCR/calamari/tree/effde8d7
https://doi.org/10.18489/sacj.v32i2.707


Kotzé, G. and Wolff, F.: Exchanging image processing and OCR components… 222

5 PIPELINE

The processing pipeline contains the following main components:

1. Image processing improves visual properties such as contrast, removes visual noise, and
deskews the scanned images so that text lines are perfectly horizontal.

2. Page and line segmentation and OCR involve the visual analysis from page level down
to line level, and provide textual output.

3. Post-processing corrects mismatches in text representation between the document and
the expected format, such as the use of newlines or hyphenation.

4. Evaluation compares the final output with the gold standard and summarises the discrep-
ancies.

5.1 Image processing
Documents are scanned using our local Xerox machine. Scans are in high quality (600 DPI)
and colour, in order to keep as much of the image data intact—also for archival purposes.
When required, image quality can then always be downgraded and/or converted to grayscale
or monochrome. Indeed, the Tesseract documentation recommends 300 DPI as input and
therefore, for our experiments, scanned documents were converted to 300 DPI before further
processing. The image processing software that we describe here converts input files to mono-
chrome.

Scanning data is received in the form of PDF/A files that can either be directly OCR’d or
handled by image processing software. These files are split into separate pages in order to
support parallel processing. For the purpose of our experiments, we compare two alternative
image processing solutions:

1. a combination of ImageMagick7 and the tool Unpaper8 (henceforth referred to as IMU).
2. the OCRopus script for image binarisation called ocropus-nlbin (henceforth referred to as

nlbin).

ImageMagick is mainly used for removing noise, to set contrast and brightness levels, and to
convert between image file formats. Unpaper performs page deskewing, rotation, as well as
border and margin operations. nlbin performs more or less the same set of tasks as the above.

7https://www.imagemagick.org/
8https://github.com/Flameeyes/unpaper

https://doi.org/10.18489/sacj.v32i2.707

https://www.imagemagick.org/
https://github.com/Flameeyes/unpaper
https://doi.org/10.18489/sacj.v32i2.707


Kotzé, G. and Wolff, F.: Exchanging image processing and OCR components… 223

5.2 Optical character recognition
The output of image processing can be used for OCR, using either Tesseract or Calamari. This is
an involved step with architectural differences between the tools we are comparing. Tesseract
handles the whole process with one tool, whereas Calamari is combined with tools from the
OCRopus project. As such, we are not comparing Tesseract with Calamari alone, but with
Calamari combined with a few OCRopus tools that perform equivalent functions to the whole
of Tesseract. We therefore use Tesseract in its usual configuration that performs some image
processing and all of the page analysis in a single software component. By contrast, in the
case of Calamari, the OCR step is broken down into separate page and line segmentation steps
(performed by ocropus-gpageseg) and the OCR performed by Calamari.

For Tesseract, we have so far applied Tesseract 3 in order to be able to use the model
described by Hocking and Puttkammer (2016). By default, it generates plain text, although in
the pipeline, we have set its output to produce PDF in order for post-processing to take place.

5.3 Post-processing and evaluation
After applying OCR, post-processing steps can be taken in order to ensure correct logical flow
of the text. For example, a set of single lines should be displayed as a paragraph instead,
headers and footers could be removed in order to ensure continuity of adjoining paragraphs,
and end-of-line hyphens occurring in the scan could be removed to correctly join and display
the words that they are hyphenating.

Our digitisation pipeline supports the analysis of OCR output in the form of readable PDF
files. Here, we only experiment with the PDF analysis tool Ontrafel, as described in Kotzé
and Wolff (2017). Ontrafel’s main features are the ability to use the information present in a
readable PDF to reconstruct paragraphs from separate lines, recognise paragraph boundaries,
isolate headings from adjoining paragraphs, normalise end-of-line hyphenation, as well as the
removal of headers, footers and page numbers. Typical output is in the form of a single text
file that can be evaluated against a gold standard.

As in previous work (Hocking & Puttkammer, 2016; Kotzé & Wolff, 2017), we evaluate the
results using the CERmetric that calculates the number of character insertions (i), substitutions
(s) and deletions (d) that are needed to transform a given output into the reference text—this
is then divided by the total number of characters in the reference.

CER = (i+ s+ d)/n (1)
In this paper we express CER as a percentage, where lower scores are better. For the calculation
of the CER we use the ISRI Analytic Tools for OCR Evaluation (Rice, 1996)9 that do not only
calculate the CER, but also provide statistics that are useful for qualitative evaluation. For this
particular task (Section 8), we mainly consult, for each experiment, a generated frequency list
of incorrectly recognised strings, as well as a list of all characters showing to which degree they

9https://github.com/eddieantonio/isri-ocr-evaluation-tools

https://doi.org/10.18489/sacj.v32i2.707

https://github.com/eddieantonio/isri-ocr-evaluation-tools
https://doi.org/10.18489/sacj.v32i2.707


Kotzé, G. and Wolff, F.: Exchanging image processing and OCR components… 224

Table 1: List of books used for experiments. We will refer to the books in the rest of the paper using
the abbreviated names in italics.

Book Author Year
Maungo a Matsapa (maungo) HJK Rathabe 1992
Go sa Baori (baori) DP Semakaleng Monyaise 1994
Kgosi Isang Pilane (pilane) MOM Seboni 1961
Botshelo jwa ga Jean Calvin (botshelo) CP Senyatsi unknown
Kgosi Sebele II (sebele) MOM Seboni 1956
Ke ne ka rata Kgarejwana (ke ne ka) Walter Trobisch 1966
Ke rata Lesogana (lesogana) Walter Trobisch 1967
Go Ipaakanyetsa Nyalo (nyalo) J Marshall 1974
Rammônê Wakgalagadi (rammônê) MOM Seboni 1947

Table 2: Descriptive statistics on the documents used for experiments. The footnotes in lesogana have
been deleted for the sake of continuous flow of paragraphs, leading to a slightly worse score.

Book Features Pages / Total Words
maungo few marks 62 / 64 16,442
baori occasional small margins, no marks 123 / 126 60,676
pilane occasional small margins; few pen marks 55 / 60 24,481
botshelo 5 pictures; some bleedthrough 65 / 68 14,821
sebele occasional small margins; some pen underlined text 117 / 124 36,891
ke ne ka no marks 33 / 36 14,415
lesogana moderate amount of pencil marks, two footnotes 60 / 62 26,413
nyalo 4 pictures, 6 diagrams; some underlined text; typed 166 / 178 40,331
rammônê moderate pencil marks, some pages with verse form 98 / 102 27,652

were correctly recognised in the text. This information can quickly show us if, for example,
line segmentation can go awry (long strings that are missing in the output), specific characters
are especially problematic for OCR, or to gauge the contribution of post-processing (better
handling of newline characters, for example).

Finally, the option remains to normalise a given text before evaluation occurs. We have
mainly applied normalisation to single and double quotation marks—this is discussed further
in Section 7.

https://doi.org/10.18489/sacj.v32i2.707

https://doi.org/10.18489/sacj.v32i2.707


Kotzé, G. and Wolff, F.: Exchanging image processing and OCR components… 225

Figure 1: From left to right, clockwise: (1) Bleedthrough in botshelo (2) Typewriter font in nyalowith un-
derlined words. Also note the Afrikaans word “sielkundige” (psychologist) that may present additional
problems for OCR. (3) Underlining with pencil in rammônê. (4) Underlining with pen in sebele.

6 DATA

In our experiments (Section 7) we used a selection of nine Setswana books from the Unisa
library on its main campus, written between 1947 and 199410 in a variety of fonts, and con-
taining a mix of fiction and non-fiction. Table 1 contains more information. Note here that
for each book, we have added an abbreviated name that we will use to refer to it from now on.
The same names are used in Tables 2, 3, 4 and 5, as well as in Figures 1 and 2. All of these
works are copyrighted and hence, our dataset is currently not available for distribution.

The books have been scanned, digitised (using the aforementioned Tesseract model) and
quality assured by a mother-tongue expert, mainly for the purposes of inclusion into a text
corpus. However, we found that they are prime candidates for evaluating digitisation as well:
the books are mostly of good quality, they contain few pictures and the text layout is very
simple, with few to no complicating elements such as footnotes, separate text blocks or double
columns.

Nevertheless, we decided to pre-process the books by removing a selection of pages. These
mainly include any title pages, tables of contents, pages consisting of only graphics, and pages
with irregular layouts such as those often found in the back section. Although we digitise these
pages for our corpus as well, we argue that for the purpose of testing a digitisation approach,
correct OCR recognition of the exact number of leader dots in the table of contents or text
in an irregular font printed on top of a graphic, for example, is of little scientific interest.
Furthermore, as the largest part of our data consists of simple, flowing text, we are more
interested in the performance of the digitisation pipeline on this particular aspect.

In botshelo, four pages contain both graphics and text (excluding captions), whereas in
nyalo, six pages contain text pages with diagrams. Similarly, the first page of maungo contains
a stamp and some stickers added by the library. As more text is better, and to obtain a measure
of how well the systems can handle the distinction, we decided to leave these pages in.

10One of them has no discernible date.

https://doi.org/10.18489/sacj.v32i2.707

https://doi.org/10.18489/sacj.v32i2.707


Kotzé, G. and Wolff, F.: Exchanging image processing and OCR components… 226

Table 2 presents some descriptive statistics on the texts, while Figure 1 contains some
examples of notable characteristics described in the table. The total word count of all used
pages is 262,122.

7 EXPERIMENTS AND EVALUATION RESULTS

Since we are comparing complete pipelines on a full document digitisation task, we can only
report on the results of the whole pipeline, and not of the OCR alone. That, however, provides
an evaluation of the choices that are currently easily available—not all components can be
mixed and matched at will.

We report using a combination of the Setswana and English models of Tesseract (Kotzé &
Wolff, 2017). In order to keep the results more comparable, we use the Setswana model only,
since the Calamari model was not trained on English data.

In preparatory work, we found that setting the parameter values of ImageMagick’s bright-
ness and contrast settings—to -20 and 80, respectively—improved the visual attributes of the
scanned pages, since the default values did not result in usable output. The same parameter
values were used for all books, with the exception of rammônê, where our default setup led
to many blank spots on the pages. In this case, applying the default values of the black and
white threshold parameters for Unpaper led to much more acceptable results. Note that in
order to avoid bias, we did not choose values based on evaluation output scores, and hence,
this process requires manual inspection for each book used in our experiments. In the case of
nlbin, as well as with Tesseract’s image processing, only default values were used.

An obvious shortcoming of the Tesseract model that emerged from evaluation is the lack
of typographically correct quotation marks. In a project where such marks are required, this
shortcoming can be addressed reasonably successfully by post-processing—a simple script can
substitute straight quotes with their typographic alternatives based on a simple consideration
of context. Although this approach is not perfect (e.g. an apostrophe at the start of a word
is bound to rather be converted to an opening single quote), it provides an easy way to com-
pensate for this shortcoming of the Tesseract pipeline. Typographic quotation marks were
used in all books except in nyalo that was prepared with a typewriter.

Since some straight quotation marks could still be generated with the Calamari pipelines,
we perform the post-processing for all systems.

The additional post-processing to correct for typographic quotes resulted in a marked im-
provement for two books (maungo and baori) when processed with the Tesseract pipelines, and
slight improvements for all the others, apart from nyalo that was not post-processed (see Figure
2 and table 3). The following can however be noted about Calamari with IMU: It has the best
average (1.69) and median (1.07) scores, and additionally its minimum (0.24) and maximum
(4.97) scores are the lowest. The standard deviation is also slightly lower, which suggests
more consistent performance. If nyalo is removed from the evaluation, however, Tesseract
with nlbin has the best average, standard deviation and maximum.

https://doi.org/10.18489/sacj.v32i2.707

https://doi.org/10.18489/sacj.v32i2.707


Kotzé, G. and Wolff, F.: Exchanging image processing and OCR components… 227

Figure 2: CER for all four systems on post-processed data

Tesseract seems to perform best with nlbin rather than IMU, whereas Calamari with IMU
usually outperforms Calamari/nlbin—despite the fact that Calamari’s own documentation re-
commends using it with the OCRopus tools. The largest difference between Tesseract and
Calamari is with nyalo. This book was prepared on a typewriter, and the lower-case letter ‘l’
is visually indistinguishable from the digit ‘1’. Here, Calamari with the LSTMs seems to take
context successfully into account and outperforms Tesseract by far (CER of 1 vs. 6).

8 QUALITATIVE EVALUATION

Tables 4 and 5 show two small extracts from the ISRI Analytic Tools for the books pilane and
maungo. In the former, it is clear that incorrect line segmentation plays a significant role in
reducing the score. In the latter, none of the errors are caused by line segmentation errors,
instead being the result of OCR misclassification mostly based on single characters. This, as
well as the lesser amount of error counts, lead to a much reduced error rate.

Further analysis shows a clear difference in the nature of errors between Tesseract and
Calamari. With Tesseract, single character confusions like quotation marks, digit ‘1’ vs. lower-
case letter ‘l’ vs. upper-case letter ‘I’ were some of the largest sources of errors—particularly in
nyalo. The Calamari output suffers more frequently from incorrect line segmentation, resulting
in entire lines of text missing from the output. The most common case is two consecutive
lines being kept together during line segmentation. Another frequent error with the Calamari

https://doi.org/10.18489/sacj.v32i2.707

https://doi.org/10.18489/sacj.v32i2.707


Kotzé, G. and Wolff, F.: Exchanging image processing and OCR components… 228

Table 3: CER scores for all four systems on post-processed data, including their average and the standard
deviation of the scores for each system. Bolded scores indicate the best score of all systems for a given
document across each row.

Book Tess/IMU Tess/nlbin Calam/IMU Calam/nlbin
maungo 0.42 0.42 0.24 0.50
baori 0.95 0.78 0.83 0.63
pilane 1.16 0.73 2.19 1.08
botshelo 1.08 0.96 0.78 1.14
sebele 2.33 2.15 0.33 0.93
ke ne ka 2.25 1.44 2.13 1.62
lesogana 2.32 1.71 2.64 2.53
nyalo 6.02 5.94 1.07 1.17
rammônê 5.16 3.43 4.97 6.46
AVG 2.41 1.95 1.69 1.78
STDEV 1.94 1.76 1.50 1.85

pipelines is missing spaces between words.
Although incorrect line segmentation results in relatively larger reductions in accuracy

compared to single character errors, they might be easier to identify by a post-editor, as the
error is often blatant. Character substitutions where characters are visually similar offer a
challenge, also during human post-editing, and can more easily be missed by a human post-
editor compared to blatant errors. Similarly, correcting large contiguous errors (e.g. with
empty output for incorrect line segmentation) might also be easier, since it involves typing
a few lines of running text which is faster per character than correcting the corresponding
number of single character errors. For example, correcting a complete missing line of 50
characters requires the post-editor to identify one (large) error, to position the editing cursor
once, and to type 50 contiguous characters. Alternatively, correcting 50 single character errors
requires 50 errors to be identified, and the cursor to be positioned 50 times before correction.
In our estimation, the output of Calamari therefore holds time savings in the post-editing phase
for a project like ours.

The accurate handling of opening and closing quotes also offers advantages for post-
processing, as it offers more information for accurate paragraph segmentation—an unmatched
opening quotation mark strongly hints that the following lines should be joined with the cur-
rently processed paragraph.

9 DISCUSSION AND FUTURE WORK

Addressing the research questions, we can state the following:

https://doi.org/10.18489/sacj.v32i2.707

https://doi.org/10.18489/sacj.v32i2.707


Kotzé, G. and Wolff, F.: Exchanging image processing and OCR components… 229

Table 4: An extract (slightly adapted for clarity) from the log file created by the ISRI Analytic Tools
for OCR Evaluation after evaluation on the book pilane using Calamari/IMU and after correcting for
quotation marks, sorted by descending order of errors.

Error count Correct Generated
86 {di ne di sa ka ke tsa to...} {}
84 {} {-}
80 {gagwe. Go ka se ke ga re...} {::;:<\n>}
76 { } {}
74 {o ise o omelele. Ka tsel...} {}
70 {golwana tsa tsone di itl...} {}
65 {go di tlhoa gotlhe-gotlh...} {::::}

Table 5: An extract (slightly adapted for clarity) from the log file created by the ISRI Analytic Tools
for OCR Evaluation after evaluation on the book maungo using Calamari/IMU and after correcting for
quotation marks, sorted by descending order of errors.

Error count Correct Generated
39 {} {-}
26 {<\n>} { }
26 {} { }
11 {,} {}
8 { } {<\n>}
7 { } {}
6 {.} {}

1. Everything else being equal, Calamari’s average CER is around 20.41% better than Tesser-
act. This of course does not take into account the generalisability of the approach, where
performance may not always correlate with certain features of the book such as its visual
quality.

2. Combining different components in the pipeline has led to four different systems being
compared to each other, one of them the combination reported in Kotzé andWolff (2017).
When applied to our data set, after post-processing normalisation, our best approach
(Calamari/IMU) outperforms the original combination (Tesseract/IMU) by 30.01% CER
on average.

3. A certain approach can be said to be more generalisable if there are not as many unex-
pected results on different inputs. For example, if apparently good quality scans lead to
a notably worse result with a given system than similar scans have, the robustness of
the approach and thus its generalisability over different data sets have to be called into

https://doi.org/10.18489/sacj.v32i2.707

https://doi.org/10.18489/sacj.v32i2.707


Kotzé, G. and Wolff, F.: Exchanging image processing and OCR components… 230

question. A smaller standard deviation of scores across a data set—even if the average
may be worse—may be an indication that the system generalises better over a variety
of different inputs. On average, Calamari/IMU has both the smallest standard deviation
and the best CER, where the scores outperform the second best by around 14.52% and
5.48%, respectively.

However, unanswered questions remain. For example, with pilane, we found that the com-
bination of Calamari/IMU is unexpectedly worse than all three other systems, even though
we judged the quality of the scanned document as relatively good. Closer inspection reveals
that the quality of the line segmentation is below par, even though visually, IMU has seem-
ingly done a good job. A better understanding of the factors that impact the quality of line
segmentation is therefore yet to be determined.

Digitisation projects involving books with more involved page layout might benefit from
an additional step where page segmentation distinguishes between text and non-text regions
of all pages. Software such as Aletheia (Clausner et al., 2011), Agora (Ramel et al., 2006), and
LAREX (Reul et al., 2017) offer solutions to this problem. In our current document collection
there are very few documents with any graphics, so this was not a pressing need for us.

We did not use Calamari to its full extent in the work presented in this paper. Particularly
the use of model voting and retraining holds promise for further improvements in character re-
cognition accuracy. Domain and genre adaptation through retraining or training from scratch
would be beneficial to investigate. For the sake of high accuracy on mixed language docu-
ments it might also be beneficial to have multiple languages represented in the training data.
It is unclear at this stage how much the domain and language of the training data influence the
results, but such an investigation might provide some insights in the role of the LSTM layers in
the neural network. They have shown their value in language modelling tasks, and combined
with in-domain training data might provide further improvements. These possible improve-
ments will, however, not reduce the extent to which line segmentation currently reduces the
accuracy of the full Calamari pipeline.

For the Calamari pipeline, the line segmentation is the most pressing issue that needs
improvement. It seems that Calamari is best at line level OCR on correctly identified lines.
Since the recently released Tesseract 4 implements an LSTM approach similar to Calamari,
it might prove an optimal solution when combined with its superior page analysis. Where
the bad performance on a single book affects our evaluation of which system is best, clearly
continuous evaluation on our growing collection will be important.

ACKNOWLEDGMENTS

The work described in this paper was supported by funding from the erstwhile Academy of
African Languages and Science Strategic Project of the University of South Africa. We thank
our former colleague Motswalle Kanyane for the quality assurance performed.

https://doi.org/10.18489/sacj.v32i2.707

https://doi.org/10.18489/sacj.v32i2.707


Kotzé, G. and Wolff, F.: Exchanging image processing and OCR components… 231

References

Breuel, T. (2008). The OCRopus open source OCR system. Proceedings of IS&T/SPIE 20th Annual
Symposium 2008. https://doi.org/10.1117/12.783598

Clausner, C., Pletschacher, S. & Antonacopoulos, A. (2011). Aletheia – An advanced document
layout and text ground-truthing system for production environments. Proceedings of the
11th International Conference on Document Analysis and Recognition (ICDAR2011), 48–52.
https://doi.org/10.1109/ICDAR.2011.19

Graves, A., Fernández, S., Gomez, F. & Schmidhuber, J. (2006). Connectionist temporal clas-
sification: Labelling unsegmented sequence data with recurrent neural networks. Pro-
ceedings of the 23rd International Conference on Machine Learning, 369–376. https://doi.
org/10.1145/1143844.1143891

Gupta, M., Jacobson, N. & Garcia, E. (2007). OCR binarization and image pre-processing for
searching historical documents. Pattern Recognition, 40(2), 389–397. https://doi.org/
10.1016/j.patcog.2006.04.043

Hocking, J. & Puttkammer, M. (2016). Optical character recognition for South African lan-
guages. Pattern Recognition Association of South Africa and Robotics and Mechatronics In-
ternational Conference (PRASA-RobMech), 2016. https://doi.org/10.1109/RoboMech.
2016.7813139

Kotzé, G. & Wolff, F. (2017). Developing and evaluating a pipeline for Setswana OCR. Proceed-
ings of the 2017 Pattern Recognition Association of South Africa and Robotics and Mechat-
ronics International Conference (PRASA-RobMech). https://doi.org/10.1109/RoboMech.
2017.8261154

Patvardhan, C., Verma, A. & Lakshmi, C. (2013). Document image denoising and binarization
using Curvelet transform for OCR applications. Proceedings of 2012 Nirma University In-
ternational Conference on Engineering (NUiCONE). https://doi.org/10.1109/NUICONE.
2012.6493228

Ramel, J., Busson, S. & Demonet, M. (2006). AGORA: The interactive document image analysis
tool of the BVH project. Proceedings of Second International Conference on Document Image
Analysis for Libraries (DIAL’06). https://doi.org/10.1109/DIAL.2006.2

Reul, C., Springmann, U. & Puppe, F. (2017). LAREX – A semi-automatic open-source tool for
layout analysis and region extraction on early printed books. CoRR, abs/1701.07396.
https://doi.org/10.1145/3078081.3078097

Rice, S. (1996). Measuring the accuracy of page-reading systems (Ph.D. dissertation). University
of Nevada, Las Vegas.

Smith, R. (2007). An overview of the Tesseract OCR engine. Proceedings of the Ninth Interna-
tional Conference on Document Analysis and Recognition (ICDAR), 629–633. https://doi.
org/10.1109/ICDAR.2007.4376991

Wick, C., Reul, C. & Puppe, F. (n.d.). Calamari – A high-performance Tensorflow-based deep
learning package for optical character recognition.

https://doi.org/10.18489/sacj.v32i2.707

https://doi.org/10.1117/12.783598
https://doi.org/10.1109/ICDAR.2011.19
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1016/j.patcog.2006.04.043
https://doi.org/10.1016/j.patcog.2006.04.043
https://doi.org/10.1109/RoboMech.2016.7813139
https://doi.org/10.1109/RoboMech.2016.7813139
https://doi.org/10.1109/RoboMech.2017.8261154
https://doi.org/10.1109/RoboMech.2017.8261154
https://doi.org/10.1109/NUICONE.2012.6493228
https://doi.org/10.1109/NUICONE.2012.6493228
https://doi.org/10.1109/DIAL.2006.2
https://doi.org/10.1145/3078081.3078097
https://doi.org/10.1109/ICDAR.2007.4376991
https://doi.org/10.1109/ICDAR.2007.4376991
https://doi.org/10.18489/sacj.v32i2.707

	Introduction
	Background
	Research questions
	Training Calamari
	Pipeline
	Image processing
	Optical character recognition
	Post-processing and evaluation

	Data
	Experiments and evaluation results
	Qualitative evaluation
	Discussion and future work

