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ABSTRACT
Reinforcement learning has recently experienced increased prominence in the machine learning community.
There are many approaches to solving reinforcement learning problems with new techniques developed con-
stantly. When solving problems using reinforcement learning, there are various difficult challenges to overcome.

To ensure progress in the field, benchmarks are important for testing new algorithms and comparing with
other approaches. The reproducibility of results for fair comparison is therefore vital in ensuring that improve-
ments are accurately judged. This paper provides an overview of different contributions to reinforcement learn-
ing benchmarking and discusses how they can assist researchers to address the challenges facing reinforcement
learning. The contributions discussed are the most used and recent in the literature. The paper discusses the
contributions in terms of implementation, tasks and provided algorithm implementations with benchmarks.

The survey aims to bring attention to the wide range of reinforcement learning benchmarking tasks available
and to encourage research to take place in a standardised manner. Additionally, this survey acts as an overview
for researchers not familiar with the different tasks that can be used to develop and test new reinforcement
learning algorithms.
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1 INTRODUCTION

Reinforcement learning (RL) is a subfield of machine learning, based on rewarding desired
behaviours and/or punishing undesired ones of an agent interacting with its environment
(Sutton & Barto, 2018). The agent learns by taking sequential actions in its environment,
observing the state of the environment and receiving a reward. The agent needs to learn a
strategy, called a policy, to decide which action to take in any state. The goal of RL is to find
the policy that maximises the long-term reward of the agent.

In recent years RL has experienced dramatic growth in research attention and interest due
to promising results in areas including robotics control (Lillicrap et al., 2015), playing Atari
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2600 (Mnih et al., 2013; Mnih et al., 2015), competitive video games (Silva & Chaimowicz,
2017; Vinyals et al., 2017), traffic light control (Arel et al., 2010) and more. In 2016, RL came
into the general spotlight when Google DeepMind’s AlphaGo (Silver et al., 2016) program de-
feated the Go world champion, Lee Sedol. Even more recently, Google DeepMind’s AlphaStar
AI program defeated professional StarCraft II players (considered to be one of the most chal-
lenging real-time strategy games) and OpenAI Five defeated professional Dota 2 players.

Progress in machine learning is driven by new algorithm development and the availability
of high-quality data. In supervised and unsupervised machine learning fields, resources such
as the UCI Machine Learning repository1, the Penn Treebank (Marcus et al., 1993), the MNIST
database of handwritten digits2, the ImageNet large scale visual recognition challenge (Rus-
sakovsky et al., 2015), and Pascal Visual Object Classes (Everingham et al., 2010) are available.
In contrast to the datasets used in supervised and unsupervised machine learning, progress in
RL is instead driven by research on agent behaviour within challenging environments. Games
have been used for decades to test and evaluate the performance of artificial intelligence sys-
tems. Many of the benchmarks that are available for RL are also based on games, such as the
Arcade Learning Environment for Atari 2600 games (Bellemare et al., 2013) but others involve
tasks that simulate real-world situations, such as locomotion tasks in Garage (originally rllab)
(Duan et al., 2016). These benchmarking tasks have been used extensively in research and
significant progress has been made in using RL in ever more challenging domains.

Benchmarks and standardised environments are crucial in facilitating progress in RL. One
advantage of the use of these benchmarking tasks is the reproducibility and comparison of
algorithms to state-of-the-art RL methods. Progress in the field can only be sustained if exist-
ing work can be reproduced and accurately compared to judge improvements of new methods
(Henderson et al., 2018; Machado et al., 2018). The existence of standardised tasks can facili-
tate accurate benchmarking of RL performance.

This paper provides a survey of the most important and most recent contributions to bench-
marking for RL. These are OpenAI Gym (Brockman et al., 2016), the Arcade Learning Envi-
ronment (Bellemare et al., 2013), a continuous control benchmark rllab (Duan et al., 2016),
RoboCup Keepaway soccer (Stone & Sutton, 2001) and Microsoft TextWorld (Côté et al., 2018).
When solving RL problems, there are many challenges that need to be overcome, such as the
fundamental trade-off problem between exploration and exploitation, partial observability of
the environment, delayed rewards, enormous state spaces and so on. This paper discusses
these challenges in terms of important RL benchmarking contributions and in what manner
the benchmarks can be used to overcome or address these challenges.

The rest of the paper is organised as follows. Section 2 introduces the key concepts and ter-
minology of RL, and then discusses the approaches to solving RL problems and the challenges
for RL. Section 3 provides a survey on the contributions to RL benchmarking and Section 4
discusses the ways that the different contributions to RL benchmarking deal with or contribute
to the challenges for RL. A conclusion follows in Section 5.

1http://archive.ics.uci.edu/ml/index.php
2http://yann.lecun.com/exdb/mnist/
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Figure 1: Illustration of an RL system.

2 REINFORCEMENT LEARNING

RL focuses on training an agent by using a trial-and-error approach. Figure 1 illustrates the
workings of an RL system. The agent evaluates a current situation (state), takes an action, and
receives feedback (reward) from the environment after each act. The agent is rewarded with
either positive feedback (when taking a “good” action) or negative feedback as punishment for
taking a “bad” action. An RL agent learns how to act best through many attempts and failures.
Through this type of trial-and-error learning, the agent’s goal is to receive the best so-called
long-term reward. The agent gets short-term rewards that together lead to the cumulative,
long-term reward. The key goal of RL is to define the best sequence of actions that allow
the agent to solve a problem while maximizing its cumulative long-term reward. That set
of optimal actions is learned through the interaction of the agent with its environment and
observation of rewards in every state.

This section provides the key concepts and terminology of RL used throughout this paper.
The challenges of RL are also discussed.

2.1 Concepts and terminology
The core idea behind RL is to learn from the environment through interactions and feedback,
and find an optimal strategy for solving the problem. The agent takes actions in its envi-
ronment based on a (possibly partial) observation of the state of the environment and the
environment provides a reward for the actions, which is usually a scalar value. The set of all
valid actions is referred to as the action space, which can be either discrete (as in Atari and Go)
or continuous (controlling a robot in the physical world). The goal of the agent is to maximise
its long-term cumulative reward.

2.1.1 Policy
A policy of an agent is the control strategy used to make decisions, and is a mapping from states
to actions. A policy can be deterministic or stochastic and is denoted by π. A deterministic
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policy maps states to actions without uncertainty while a stochastic policy is a probability
distribution over actions for a given state. Therefore, when an agent follows a deterministic
policy it will always take the same action for a given state, whereas a stochastic policy may
take different actions in the same state. The immediate advantage of a stochastic policy is that
an agent is not doomed to repeat a looped sequence of non-advancing actions.

2.1.2 On-policy and off-policy learning
There are two types of policy learning methods. On-policy learning is when the agent “learns
on the job”, i.e. it evaluates or improves the policy that is used to make the decisions directly.
Off-policy learning is when the agent learns one policy, called the target policy, while follow-
ing another policy, called the behaviour policy, which generates behaviour. The off-policy
learning method is comparable to humans learning a task by observing others performing the
task.

2.1.3 Value functions
Having a value for a state (or state-action pair) is often useful in guiding the agent towards the
optimal policy. The value under policy π is the expected return if the agent starts in a specific
state or state-action pair, and then follows the policy thereafter. So the state-value function
vπ is a mapping from states to real numbers and represents the long-term reward obtained
by starting from a particular state and executing policy π. The action-value function qπ is a
mapping from state-action pairs to real numbers. The action-value qπ(s, a) of state s and action
a (where a is an arbitrary action and not necessarily in line with the policy) is the expected
return from starting in state s, taking action a and then following policy π. The optimal value
function v∗ gives the expected return starting in a state and then following the optimal policy
π∗. The optimal action-value function q∗ is the expected return starting in some state, taking
an arbitrary action and then following the optimal policy π∗.

These state-value and action-value functions all obey so-called Bellman equations, where
the idea is that the value of the agent’s starting point is the reward that is expected to be
obtained from being there, plus the value of wherever the agent lands next. These Bellman
equations are used in most RL approaches where the Bellman-backup is used, i.e. for a state
or state-action pair the Bellman-backup is the (immediate) reward plus the next value.

2.1.4 Function approximators
In many RL problems the state space can be extremely large. Traditional solution methods
where value functions are represented as arrays or tables mapping all states to values are
therefore very difficult (Sutton & Barto, 2018). One approach to this shortcoming is to use
features to generalise an estimation of the value of states with similar features. Methods that
compute these approximations are called function approximators. There are many techniques
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used for implementing function approximators including linear combinations of features, neu-
ral networks, decision trees, nearest neighbours, etc.

2.1.5 Monte Carlo methods
Monte Carlo methods are a class of learning methods where value functions are learned (Sutton
& Barto, 2018). The value of a state, si, is estimated by running many trials starting from si
and then averaging the total rewards received on those trials.

2.1.6 Temporal difference algorithms
Temporal difference (TD) learning algorithms are a class of learning methods that are based
on the idea of comparing temporally successive predictions. These methods are a fundamental
idea in RL and use a combination of Monte Carlo learning and dynamic programming (Sutton
& Barto, 2018). TD methods learn value functions directly from experience by using the so-
called TD error and bootstrapping (not waiting for a final outcome).

2.1.7 Markov decisions processes
The standard formalism for RL settings is called a Markov decision process (MDP). MDPs are
used to define the interaction between an agent and its environment in terms of states, actions,
and rewards. For an RL problem to be an MDP, it has to satisfy the Markov property: “The
future is independent of the past given the present”. This means that once the current state
is known, then the history encountered so far can be discarded and that state completely
characterises all the information needed as it captures all the relevant information from the
history. Mathematically, an MDP is a tuple: ⟨S,A,R,P , γ⟩, where S is a (finite) set of states,
A is a (finite) set of actions, R : S ×A× S → R is the reward function, P is a state transition
probability matrix and γ ∈ [0, 1] is a discount factor included to control the reward.

2.1.8 Model-free and model-based reinforcement learning approaches
There are different aspects of RL systems that can be learnt. These include learning policies
(either deterministic or stochastic), learning action-value functions (so-called Q-functions or
Q-learning), learning state-value functions, and/or learning a model of the environment. A
model of the environment is a function that predicts state transitions and rewards, and is an
optional element of an RL system. If a model is available, i.e. if all the elements of the MDP are
known, particularly the transition probabilities and the reward function, then a solution can
be computed using classic techniques before executing any action in the environment. This
is known as planning: computing the solution to a decision-making problem before executing
an actual decision.

When an agent does not know all the elements of the MDP, then the agent does not know
how the environment will change in response to its actions or what its immediate reward will
be. In this situation the agent will have to try out different actions, observe what happens and
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in some way find a good policy from doing this. One approach to solve a problem without
a complete model is for the agent to learn a model of how the environment works from its
observations and then plan a solution using that model. Methods that use the framework of
models and planning are referred to as model-based methods.

Another way of solving RL problems without a complete model of the environment is to
learn through trial-and-error. Methods that do not have or learn a model of the environment
and do not use planning are called model-free methods. The two main approaches to repre-
sent and train agents with model-free RL are policy optimisation and Q-learning. In policy
optimisation methods (or policy-iteration methods) the agent learns the policy function di-
rectly. Examples include policy gradient methods, asynchronous advantage actor-critic (A3C)
(Mnih et al., 2016), trust region policy optimization (TRPO) (Schulman et al., 2015) and prox-
imal policy optimization (PPO) (Schulman et al., 2017). Q-Learning methods include deep
Q-networks (DQN) (Mnih et al., 2013), C51 algorithm (Bellemare et al., 2017) and Hind-
sight Experience Replay (HER) (Andrychowicz et al., 2017). Hybrid methods combining the
strengths of Q-learning and policy gradients exist as well, such as deep deterministic policy
gradients (DDPG) (Lillicrap et al., 2015), soft actor-critic algorithm (SAC) (Haarnoja et al.,
2018) and twin delayed deep deterministic policy gradients (TD3) (Fujimoto et al., 2018).

In the current literature, the most used approaches incorporates a mixture of model-based
and model-free methods, such as Dyna and Monte Carlo tree search (MCTS) (Sutton & Barto,
2018), and temporal difference search (Silver et al., 2012).

2.2 Challenges for reinforcement learning
This section discusses some of the challenges faced by RL. These challenges will be discussed
in terms of how they are addressed by different contributions in Section 4.

2.2.1 Partially observable environment
How the agent observes the environment can have a significant impact on the difficulty of the
problem. In most real-world environments the agent does not have a complete or perfect per-
ception of the state of its environment due to incomplete information provided by its sensors,
the sensors being noisy or some of the state being hidden. However, for learning methods that
are based on MDPs, the complete state of the environment should be known. To address the
problem of partial observability of the environment, the MDP framework is extended to the
partially observable Markov decision process (POMDP) model.

2.2.2 Delayed or sparse rewards
In an RL problem, an agent’s actions determine its immediate reward as well as the next state
of the environment. Therefore, an agent has to take both these factors into account when
deciding which action to take in any state. Since the goal is to learn which actions to take that
will give the most reward in the long-run, it can become challenging when there is little or
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no immediate reward. The agent will consequently have to learn from delayed reinforcement,
where it may take many actions with insignificant rewards to reach a future state with full
reward feedback. The agent must therefore be able to learn which actions will result in an
optimal reward, which it might only receive far into the future.

In line with the challenge of delayed or sparse rewards is the problem of long-term credit
assignment (Minsky, 1961): how must credit for success be distributed among the sequence
of decisions that have been made to produce the outcome?

2.2.3 Unspecified or multi-objective reward functions
Many tasks (especially real-world problems) have multiple objectives. The goal of RL is to
optimise a reward function, which is commonly framed as a global reward function, but tasks
with more than one objective could require optimisation of different reward functions. In
addition, when an agent is training to optimise some objective, other objectives could be
discovered which might have to be maintained or improved upon. Work on multi-objective
RL (MORL) has received increased interest, but research is still primarily devoted to single-
objective RL.

2.2.4 Size of the state and action spaces
Large state and action spaces can result in enormous policy spaces in RL problems. Both state
and action spaces can be continuous and therefore infinite. However, even discrete states and
actions can lead to infeasible enumeration of policy/state-value space. In RL problems for
which state and/or action spaces are small enough, so-called tabular solutions methods can
be used, where value functions can be represented as arrays or tables and exact solutions are
often possible. For RL problems with state and/or action spaces that are too large, the goal is
to instead find good approximate solutions with the limited computational resources available
and to avoid the curse of dimensionality (Bellman, 1957).

2.2.5 The trade-off between exploration and exploitation
One of the most important and fundamental overarching challenges in RL is the trade-off
between exploration and exploitation. Since the goal is to obtain as much reward as possible,
an agent has to learn to take actions that were previously most effective in producing a reward.
However, to discover these desirable actions, the agent has to try actions that were not tried
before. It has to exploit the knowledge of actions that were already taken, but also explore
new actions that could potentially be better selections in the future. The agent may have to
sacrifice short-term gains to achieve the best long-term reward. Therefore, both exploration
and exploitation are fundamental in the learning process, and exclusive use of either will result
in failure of the task at hand. There are many exploration strategies (Sutton & Barto, 2018),
but a key issue is the scalability to more complex or larger problems. The exploration vs.
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exploitation challenge is affected by many of the other challenges that are discussed in this
section, such as delayed or sparse rewards, and the size of the state or action spaces.

2.2.6 Representation learning
Representation (or feature) learning involves automatically extracting features or understand-
ing the representation of raw input data to perform tasks such as classification or prediction.
It is fundamental not just to RL, but to machine learning and AI in general, even with a con-
ference dedicated to it: International Conference on Learning Representations (ICLR).

One of the clearest challenges that representation learning tries to solve in an RL context is
to effectively reduce the impact of the curse of dimensionality, which results from very large
state and/or action spaces. Ideally an effective representation learning scheme will be able to
extract the most important information from the problem input in a compressed form.

2.2.7 Transfer learning
Transfer learning (Pan & Yang, 2010; Weiss et al., 2016) uses the notion that, as in human
learning, knowledge gained from a previous task can improve the learning in a new (related)
task through the transfer of knowledge that has already been learned. The field of transfer
learning has recently been experiencing growth in RL (Taylor & Stone, 2009) to accelerate
learning and mitigate issues regarding scalability.

2.2.8 Model learning
Model-based RL methods (Section 2.1.8) are important in problems where the agent’s interac-
tions with the environment are expensive. These methods are also significant in the trade-off
between exploration and exploitation, since planning impacts the need for exploration. Model
learning can reduce the interactions with the environment, something which can be limited in
practice, but introduces additional complexities and the possibility of model errors. Another
challenge related to model learning is the problem of planning using an imperfect model,
which is also a difficult challenge that has not received much attention in the literature.

2.2.9 Off-policy learning
Off-policy learning methods (e.g. Q-learning) scale well in comparison to other methods and
the algorithms can (in principle) learn from data without interacting with the environment.
An agent is trained using data collected by other agents (off-policy data) and data it collects
itself to learn generalisable skills.

Disadvantages of off-policy learning methods include greater variance and slow conver-
gence, but are more powerful and general than on-policy learning methods (Sutton & Barto,
2018). Advantages of using off-policy learning is the use of a variety of exploration strategies,
and learning from training data that are generated by unrelated controllers, which includes
manual human control and previously collected data.
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2.2.10 Reinforcement learning in real-world settings
The use of RL in real-world scenarios has been gaining attention due to the success of RL in
artificial domains. In real-world settings, more challenges become apparent for RL. Dulac-
Arnold et al. (2019) provide a list of nine challenges for RL in the real-world, many of which
have been mentioned in this section already. Further challenges not discussed here include
safety constraints, policy explainability and real-time inference. Many of these challenges have
been studied extensively in isolation, but there is a need for research on algorithms (both
in artificial domains and real-world settings) that addresses more than one or all of these
challenges together, since many of the challenges are present in the same problem.

2.2.11 A standard methodology for benchmarking
A diverse range of methodologies is currently common in the literature, which brings into
question the validity of direct comparisons between different approaches. A standard method-
ology for benchmarking is necessary for the research community to compare results in a valid
way and accelerate advancement in a rigorous scientific manner.

3 CONTRIBUTIONS TO REINFORCEMENT LEARNING BENCHMARKING

This section discusses some important reinforcement learning benchmarks currently in use.
The list of contributions is by no means exhaustive, but includes the ones that are most in use
currently in the RL research community.

3.1 OpenAI Gym
Released publicly in April 2016, OpenAI Gym (Brockman et al., 2016) is a toolkit for develop-
ing and comparing reinforcement learning algorithms. It includes a collection of benchmark
problems which is continuing to grow as well as a website where researchers can share their
results and compare algorithm performance. It provides a tool to standardise reporting of
environments in research publications to facilitate the reproducibility of published research.
OpenAI Gym has become very popular since its release, with Brockman et al. (2016) having
over 1300 citations on Google Scholar to date.

3.1.1 Implementation
The OpenAI Gym library is a collection of test problems (environments) with a common in-
terface and makes no assumptions about the structure of an agent. OpenAI Gym currently
supports Linux and OS X running Python 2.7 or 3.5 – 3.7. Windows support is currently ex-
perimental, with limited support for some problem environments. OpenAI Gym is compatible
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with any numerical computation library, such as TensorFlow or Theano. To get started with
OpenAI Gym, visit the documentation site3 or the actively maintained GitHub repository4.

3.1.2 Benchmark tasks
The environments available in the library are diverse, ranging from easy to difficult and include
a variety of data. A brief overview of the different environments is provided here with the full
list and descriptions of environments available on the main site3.

Classic control and toy text: These small-scale problems are a good starting point for
researchers not familiar with the field. The classic control problems include balancing a pole
on a moving cart (Figure 2a), driving a car up a steep hill, swinging a pendulum and more.
The toy text problems include finding a safe path across a grid of ice and water tiles, playing
Roulette, Blackjack and more.

Algorithmic: The objective here is for the agent to learn algorithms such as adding multi-
digit numbers and reversing sequences, purely from examples. The difficulty of the tasks can
be varied by changing the sequence length.

Atari 2600: The Arcade Learning Environment (ALE) (Bellemare et al., 2013) has been inte-
grated into OpenAI Gym in easy-to-install form, where classic Atari 2600 games (see Figure 2b
for an example) can be used for developing agents (see Section 3.2 for a detailed discussion).
For each game there are two versions: a version which takes the RAM as input and a version
which takes the observable screen as the input.

MuJoCo: These robot simulation tasks use the MuJoCo proprietary software physics en-
gine (Todorov et al., 2012), but free trial and postgraduate student licences are available. The
problems include 3D robot walking or standing up tasks, 2D robots running, hopping, swim-
ming or walking (see Figure 2c for an example), balancing two poles vertically on top of each
other on a moving cart, and repositioning the end of a two-link robotic arm to a given spot.

Box2D: These are continuous control tasks in the Box2D simulator, which is a free open
source 2-dimensional physics simulator engine. Problems include training a bipedal robot
(Figure 2d) to walk (even on rough terrain), racing a car around a track and navigating a
lunar lander to its landing pad.

Roboschool: Most of these problems are the same as in MuJoCo, but use the open-source
software physics engine, Bullet. Additional tasks include teaching a 3D humanoid robot to
walk as fast as possible (see Figure 2e) as well as a continuous control version of Atari Pong.

Robotics: Released in 2018, these environments are used to train models which work on
physical robots. It includes four environments using the Fetch5 research platform and four
environments using the ShadowHand6 robot. These manipulation tasks are significantly more
difficult than the MuJoCo continuous control environments. The tasks for the Fetch robot are

3https://gym.openai.com
4https://github.com/openai/gym
5https://fetchrobotics.com/
6https://www.shadowrobot.com/products/dexterous-hand/
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to move the end-effector to a desired goal position, hitting a puck across a long table such that
it slides and comes to rest on the desired goal, moving a box by pushing it until it reaches a
desired goal position, and picking up a box from a table using its gripper and moving it to a
desired goal above the table. The tasks for the ShadowHand are reaching with its thumb and
a selected finger until they meet at a desired goal position above the palm, manipulating a
block (see Figure 2f), an egg, and a pen, until the object achieves a desired goal position and
rotation.

Alongside these new robotics environments, OpenAI also released code for Hindsight Ex-
perience Replay (HER), a reinforcement learning algorithm that can learn from failure. Their
results show that HER can learn successful policies on most of the new robotics problems from
only sparse rewards. A set of requests for research has also been released7 in order to encour-
age and facilitate research in this area, with a few ideas of ways to improve HER specifically.

3.2 The Arcade Learning Environment
The Atari 2600 gaming console was released in September 1977, with over 565 games devel-
oped for it over many different genres. The games are considerably simpler than modern era
video games. However, the Atari 2600 games are still challenging and provide interesting
tasks for human players.

The Arcade Learning Environment (ALE) (Bellemare et al., 2013) is an object-oriented
software framework allowing researchers to develop AI agents for the original Atari 2600
games. It is a platform to empirically assess and evaluate AI agents designed for general
competency. ALE allows interfacing through the Atari 2600 emulator Stella and enables the
separation of designing an AI agent and the details of emulation. There are currently over 50
game environments supported in the ALE.

The ALE has received a lot of attention since its release in 2013 (over 1200 citations on
Google Scholar to date), perhaps the most note-worthy being the success of Deep Q-networks
(DQN), which was the first algorithm to achieve human-level control performance in many of
the Atari 2600 games (Mnih et al., 2015).

3.2.1 Implementation
The Stella emulator interfaces with the Atari 2600 games by receiving joystick movements and
sending screen and/or RAM information to the user. For the reinforcement learning context,
ALE has a game-handling layer to provide the accumulated score and a signal for whether the
game has ended. The default observation of a single game screen or frame is made up of a two-
dimensional array of 7-bit pixels, 160 pixels wide by 210 pixels high. The joystick controller
defines 18 discrete actions, which makes up the action space of the problem. Only some
actions are needed to play a game and the game-handling layer also provides the minimum
set of actions needed to play any particular game. The simulator generates 60 frames per

7https://openai.com/blog/ingredients-for-robotics-research/
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(a) A screenshot of the classic con-
trol task Cart-Pole, with the objec-
tive to keep the pole balanced by
moving the cart.

(b) A screenshot of the Atari 2600
game Breakout.

(c) A screenshot of the MuJoCo
simulator, where a four-legged 3D
robot has to learn to walk.

(d) A screenshot of the Box2D sim-
ulator, where a bipedal robot has
to learn to walk.

(e) A screenshot of the 3D hu-
manoid robot learning to walk as
fast as possible in the Roboschool
simulator.

(f) A screenshot of the Shadow-
Hand robot manipulating a block.

Figure 2: Some examples of the environments used in OpenAI Gym.

second in real-time and up to 6000 frames per second at full speed. The reward the agent
receives depends on each game, but is generally the score difference between frames. A game
episode starts when the first frame is shown and ends when the goal of the game has been
achieved or after a predefined number of frames. The ALE therefore offers access to a variety
of games through one common interface.

The ALE also has the functionality of saving and restoring the current state of the emula-
tor. This functionality allows the investigation of topics including planning and model-based
reinforcement learning.
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ALE is free, open-source software8, including the source code for the agents used in asso-
ciated research studies (Bellemare et al., 2013). ALE is written in C++, but there are many
interfaces available that allow the interaction with ALE in other programming languages, with
detail provided in (Bellemare et al., 2013).

Due to the increase in popularity and importance in the AI literature, another paper was
published in 2018 by some of the original proposers of the ALE (Machado et al., 2018), pro-
viding a broad overview of how the ALE is used by researchers, highlighting overlooked issues
and discussing propositions for maximising the future use of the testbed. Concerns are raised
at how agents are evaluated in the ALE and new benchmark results are provided.

In addition, a new version of the ALE was introduced in 2018 (Machado et al., 2018), which
supports multiple game modes and includes so called sticky actions, providing some form of
stochasticity to the controller. When sticky actions are used, there is a possibility that the
action requested by the agent is not executed, but instead the agent’s previous action is used,
emulating a sticky controller. The probability that an action will be sticky can be specified
using a pre-set control parameter. The original ALE is fully deterministic and consequently it
is possible for an agent to memorise a good action sequence, instead of learning how to make
good decisions. Introducing sticky actions therefore increases the robustness of the policy that
the agent has to learn.

Originally the ALE only allowed agents to play games in their default mode and difficulty.
In the latest version of the ALE (Machado et al., 2018) it is possible to select among different
game modes and difficulty levels for single player games, where each mode-difficulty pair is
referred to as a flavour. Changes in the mode and difficulty of the games can impact game
dynamics and introduce new actions.

3.2.2 Published benchmark results
Bellemare et al. (2013) provide performance results on the ALE tasks using an augmented ver-
sion of the SARSA(λ) algorithm (Sutton & Barto, 2018), where linear function approximation
is used. For comparison, the performance results of a non-expert human player and three base-
line agents (Random, Const and Perturb) are also provided. A set of games is used for training
and parameter tuning, and another set for testing. The ALE can also be used to study planning
techniques. Benchmark results for two traditional search methods (Breadth-first search and
UCT: Upper Confidence Bounds Applied to Trees) are provided, as well as the performance
results of the best learning agent and the best baseline policy.

Machado et al. (2018) provide benchmark results for 60 Atari 2600 games with sticky
actions for DQN and SARSA(λ) + Blob-PROST (Liang et al., 2016) (an algorithm that includes
a feature representation which enables SARSA(λ) to achieve performance that is comparable
to that of DQN).

8http://arcadelearningenvironment.org
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3.3 Continuous control: rllab
The Arcade Learning Environment (Section 3.2) is a popular benchmark to evaluate algorithms
which are designed for tasks with discrete actions. Duan et al. (2016) present a benchmark of
31 continuous control tasks, ranging in difficulty, and also implement a range of RL algorithms
on the tasks.

The benchmark as well as the implementations of the algorithms are available at the rllab
GitHub repository9, however this repository is no longer under development but is currently
actively maintained at the garage GitHub repository10, which includes many improvements.
The documentation11 for garage is a work in progress and the available documentation is
currently limited. Both rllab and garage are fully compatible with OpenAI Gym and only
support Python 3.5 and higher.

Other RL benchmarks for continuous control have also been proposed, but many are not
in use anymore. Duan et al. (2016) provide a comprehensive list of benchmarks containing
low-dimensional tasks as well as a wide range of tasks with high-dimensional continuous state
and action spaces. They also discuss previously proposed benchmarks for high-dimensional
control tasks do not include such a variety of tasks as in rllab. Where relevant, we mention
some of these benchmarks in the next section that have additional interesting tasks.

3.3.1 Benchmark tasks
There are four categories for the rllab continuous control tasks: basic, locomotion, partially
observable and hierarchical tasks.

Basic tasks: These five tasks are widely analysed in the reinforcement learning and control
literature. Some of these tasks can also be found in the “Classic control” section of OpenAI
Gym (Section 3.1). The tasks are cart-pole balancing, cart-pole swing up, mountain car, ac-
robot swing up and double inverted pendulum balancing (which can be found in OpenAI Gym
Roboschool). A related benchmark involving a 20 link pole balancing task is proposed as part
of the Tdlearn package (Dann et al., 2014).

Locomotion tasks: Six locomotion tasks of varying dynamics and difficulty are imple-
mented with the goal to move forward as quickly as possible. These tasks are challenging due
to high degrees of freedom as well as the need for a lot of exploration, since getting stuck
at a local optima (such as staying at the origin or diving forward slowly) can happen easily
when the agent acts greedily. These tasks are: Swimmer, Hopper, Walker, Half-Cheetah, Ant,
Simple Humanoid and Full Humanoid.

Other environments with related locomotion tasks include dotRL (Papis & Wawrzyński,
2013) with a variable segment octopus arm (Woolley & Stanley, 2010), PyBrain (Schaul et al.,
2010), and SkyAI (Yamaguchi & Ogasawara, 2010) with humanoid robot tasks like jumping,
crawling and turning.

9https://github.com/rll/rllab
10https://github.com/rlworkgroup/garage
11https://garage.readthedocs.io/en/latest/
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Partially observable tasks: Realistic agents often do not have access to perfect state in-
formation due to limitations in sensory input. To address this, three variations of partially
observable tasks are implemented for each of the five basic tasks mentioned above. This leads
to 15 additional tasks. The three variations are limited sensors (only positional information
is provided, no velocity), noisy observations and delayed actions (Gaussian noise is added to
simulate sensor noise, and a time delay is added between taking an action and an action be-
ing executed) and system identification (the underlying physical model parameters vary across
different episodes). These variations are not currently available in OpenAI Gym.

Hierarchical tasks: In many real-world situations higher level decisions can reuse lower
level skills, for example a robot learning to navigate a maze can reuse learned locomotion skills.
Here tasks are proposed where low-level motor controls and high-level decisions are needed,
which operate on different time scales and a natural hierarchy exists in order to learn the task
most efficiently. The tasks are as follows. Locomotion and food collection: where the swimmer
or the ant robot operates in a finite region and the goal is to collect food and avoid bombs.
Locomotion and maze: the swimmer or the ant robot has the objective to reach a specific goal
location in a fixed maze environment. These tasks are not currently available in OpenAI Gym.

3.3.2 Published benchmark results
Duan et al. (Duan et al., 2016) provide performance results on the rllab tasks. The algorithms
implemented are mainly gradient-based policy search methods, but two gradient-free meth-
ods are included for comparison. Almost all of the algorithms are batch algorithms and one
algorithm is an online algorithm. The batch algorithms are REINFORCE (Williams, 1992),
truncated natural policy gradient (TNPG) (Duan et al., 2016), reward-weighted regression
(RWR) (Peters & Schaal, 2007), relative entropy policy search (REPS) (Peters et al., 2010),
trust region policy optimization (TRPO) (Schulman et al., 2015), cross entropy method (CEM)
(Rubinstein, 1999) and covariance matrix adaptation evolution strategy (CMA-ES) (Hansen &
Ostermeier, 2001). The online algorithm used is deep deterministic policy gradient (DDPG)
(Lillicrap et al., 2015). Direct applications of the batch-based algorithms to recurrent policies
are implemented with minor modifications.

Of the implemented algorithms, TNPG, TRPO and DDPG were effective in training deep
neural network policies. However, all algorithms performed poorly on the hierarchical tasks,
which suggest that new algorithms should be developed for automatic discovery and exploita-
tion of the tasks’ hierarchical structure.

Recently a new class of reinforcement learning algorithms called proximal policy optimisa-
tion (PPO) (Schulman et al., 2017) was released by OpenAI. PPO’s performance is comparable
or better than state-of-the-art approaches to solving 3D locomotion, robotic tasks (similar to
the tasks in the benchmark discussed above) and also Atari 2600, but it is simpler to imple-
ment and tune. OpenAI has adopted PPO as its go-to RL algorithm, since it strikes a balance
between ease of implementation, sample complexity, and ease of tuning.
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3.4 RoboCup Keepaway Soccer
RoboCup (Kitano et al., 1997) simulated soccer has been used as the basis for successful inter-
national competitions and research challenges since 1997. Keepaway is a subtask of RoboCup
that was put forth as a testbed for machine learning in 2001 (Stone & Sutton, 2001). It has
since been used for research on temporal difference reinforcement learning with function ap-
proximation (Stone, Sutton, & Kuhlmann, 2005), evolutionary learning (Pietro et al., 2002),
relational reinforcement learning (Walker et al., 2004), behaviour transfer (Cheng et al., 2018;
Didi & Nitschke, 2016a, 2016b, 2018; Nitschke & Didi, 2017; Schwab et al., 2018; Taylor &
Stone, 2005), batch reinforcement learning (Riedmiller et al., 2009) and hierarchical reinforce-
ment learning (Bai & Russell, 2017).

In Keepaway, one team (the keepers) tries to maintain possession of the ball within a
limited region, while the opposing team (the takers) attempts to gain possession (Stone &
Sutton, 2001). The episode ends whenever the takers take possession of the ball or the ball
leaves the region. The players are then reset for another episode with the keepers being given
possession of the ball again. Task parameters include the size of the region, the number of
keepers, and the number of takers. Figure 3 shows an example episode with 3 keepers and 2
takers (called 3v2) playing in a 20m× 20m region (Stone & Sutton, 2001).

Figure 3: A screen shot from a 3v2 keepaway
episode in a 20m× 20m region from Stone and Sut-
ton (2001).

In 2005 Stone, Kuhlmann, et al. (2005) el-
evated the Keepaway testbed to a benchmark
problem for machine learning and provided
infrastructure to easily implement the stan-
dardised task.

An advantage of the Keepaway subtask is
that it allows for direct comparison of dif-
ferent machine learning algorithms. It is
also good for benchmarking machine learn-
ing since the task is simple enough to be
solved successfully, but complex enough that
straightforward solutions are not sufficient.

3.4.1 Implementation
A standardized Keepaway player framework
is implemented in C++ and the source code
is available for public use at an online repos-
itory12. The repository provides implementa-
tion for all aspects of the Keepaway problem
except the learning algorithm itself. It also
contains a step-by-step tutorial of how to use

12http://www.cs.utexas.edu/~AustinVilla/sim/keepaway/
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the code, with the goal of allowing researchers who are not experts in the RoboCup simulated
soccer domain to easily become familiar with the domain.

3.4.2 Standardised task
Robocup simulated soccer (and therefore also Keepaway) is a fully distributed, multiagent
domain with both teammates and adversaries (Stone, 2000). The environment is partially
observable for each agent and the agents also have noisy sensors and actuators. Therefore,
the agents do not perceive the world exactly as it is, nor can they affect the world exactly as
intended. The perception and action cycles of the agent are asynchronous, therefore perceptual
input does not trigger actions as is traditional in AI. Communication opportunities are limited,
and the agents must make their decisions in real-time. These domain characteristics all result
in simulated robotic soccer being a realistic and challenging domain (Stone, 2000).

The size of the Keepaway region, the number of keepers, and the number of takers can
easily be varied to change the task. Stone, Kuhlmann, et al. (2005) provide a framework with
a standard interface to the learner in terms of macro-actions, states, and rewards.

3.4.3 Published benchmark results
Stone, Kuhlmann, et al. (2005) performed an empirical study for learning Keepaway by train-
ing the keepers using episodic SMDP SARSA(λ) (Stone, Sutton, & Kuhlmann, 2005; Sutton &
Barto, 2018), with three different function approximators: CMAC function approximation (Al-
bus, 1975, 1981), Radial Basis Function (RBF) (Sutton & Barto, 2018) networks (a novel exten-
sion to CMACs (Stone, Kuhlmann, et al., 2005)), and neural network function approximation.
The RBF network performed comparably to the CMAC method. The Keepaway benchmark
structure allows for these results to be quantitatively compared to other learning algorithms
to test the relative benefits of different techniques.

3.4.4 Half Field Offense: An extension to Keepaway
Half Field Offense (HFO) (Hausknecht et al., 2016; Kalyanakrishnan et al., 2007) is an exten-
sion of Keepaway, which is played on half of the soccer field with more players on each team.
The task was originally introduced in Kalyanakrishnan et al. (2007), but no code was made
publicly available. In Hausknecht et al. (2016) the HFO environment was released publicly
(open-source)13, however this repository is not currently being maintained.

Success in HFO means that the offensive players have to keep possession of the ball (the
same as in Keepaway), learn to pass or dribble to get closer to the goal and shoot when possible.
Agents can also play defence where they have to prevent goals from being scored. HFO also
supports multi-agents which could be controlled manually or automatically.

In the same way as the Keepaway environment (Stone, Kuhlmann, et al., 2005), the HFO
environment allows ease of use in developing and deploying agents in different game scenarios,

13https://github.com/LARG/HFO
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with C++ and Python interfaces. The performance of three benchmark agents are compared
in (Hausknecht et al., 2016), namely a random agent, a handcoded agent and a SARSA agent.

A similar platform to the Arcade Learning Environment (Section 3.2), the HFO environ-
ment places less emphasis on generality (the main goal of the ALE) and more emphasis on
cooperation and multiagent learning.

3.5 Microsoft TextWorld
Recently, researchers from the Microsoft Research Montreal Lab released an open source
project called TextWorld (Côté et al., 2018), which attempts to train reinforcement learning
agents using text-based games.

In a time where AI agents are mastering complex multi-player games such as Dota 2 and
StarCraft II, it might seem unusual to do research on text-based games. Text-based games can
play a similar role to multi-player graphic environments which train agents to learn spatial and
time-based planning, in advancing conversational skills such as affordance extraction (iden-
tifying which verbs are applicable to a given object), memory and planning, exploration etc.
Another powerful motivation for the interest in text-based games is that language abstracts
away complex physical processes, such as a robot trying not to fall over due to gravity. Text-
based games require language understanding and successful play requires skills like long-term
memory and planning, exploration (trial and error), common sense, and learning with these
challenges.

TextWorld is a sandbox environment which enables users to handcraft or automatically
generate new games. These games are complex and interactive simulations where text is used
to describe the game state and players enter text commands to progress though the game. Nat-
ural language is used to describe the state of the world, to accept actions from the player, and
to report subsequent changes in the environment. The games are played through a command
line terminal and are turn-based, i.e. the simulator describes the state of the game through
text and then a player enters a text command to change its state in some desirable way.

3.5.1 Implementation
In Figure 4 an example game is shown in order to illustrate the command structure of a typical
text-based game generated by TextWorld.

TextWorld enables interactive play-through of text-based games and, unlike other text-
based environments such as TextPlayer14 and PyFiction15, enables users to handcraft games
or to construct games automatically. The TextWorld logic engine automatically builds game
worlds, populates them with objects and obstacles, and generates quests that define a goal
state and how to reach it (Côté et al., 2018). TextWorld requires Python 3 and currently only
supports Linux and macOS systems. The code and documentation are available publicly16 and

14https://github.com/danielricks/textplayer
15https://github.com/MikulasZelinka/pyfiction
16http://aka.ms/textworld
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the learning environment is described in full detail in Section 3 of (Côté et al., 2018), including
descriptions of the two main components of the Python framework: a game generator and
a game engine. To interact with TextWorld, the framework provides a simple application
programming interface (API) which is inspired by OpenAI Gym.

Figure 4: An example game generated by TextWorld to il-
lustrate the command structure of a game.

In an RL context, TextWorld games
can be seen as partially observable
Markov decision processes. The envi-
ronment state at any turn t contains
a complete description of the game
state, but much of this is hidden from
the agent. Once an agent has issued
a command (of at least one word),
the environment transitions to a next
state with a certain probability. Since
the interpreter in parser-based games
can accept any sequence of charac-
ters (of any length), but only a frac-
tion thereof is recognised, the result-
ing action space is very large. There-
fore, two simplifying assumptions are
made in Côté et al. (2018): the com-
mands are sequences of at most L
words taken from a fixed vocabulary
V and the commands have to follow
a specific structure: a verb, a noun
phrase and an adverb phrase. The ac-
tion space of the agent is therefore the
set of all permissible commands from
the fixed vocabulary V followed by a
certain special token (“enter”) that sig-
nifies the end of the command.

The agent’s observation(s) at any time in the game is the text information perceived by the
agent. A probability function takes in the environment state and selects what information to
show the agent based on the command entered. The agent receives points based on completion
of (sub)quests and reaching new locations (exploring). This score could be used as the reward
signal if it is available, otherwise positive reward signals can be assigned when the agent
finishes the game. The agent’s policy maps the state of the environment at any time and
words generated in the command so far to the next word, which needs to be added to the
command to maximise the reward received.
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3.5.2 Benchmark tasks
TextWorld was introduced with two different sets of benchmark tasks (Côté et al., 2018) and
a third task was added in the form of a competition that was available until 31 May 2019.

Task 1: A preliminary set of 50 hand-authored benchmark games are described in the
original TextWorld paper (Côté et al., 2018). These games were manually analysed to ensure
validity.

Task 2: This benchmark task is inspired by a treasure hunter task which takes place in a
3D environment (Parisotto & Salakhutdinov, 2017) and was adapted for TextWorld. The agent
is randomly placed in a randomly generated map of rooms with two objects on the map. The
goal object (the object which the agent should locate) is randomly selected and is mentioned
in the welcome message. In order to navigate the map and locate the goal object, the agent
may need to complete other tasks, for example finding a key to unlock a cabinet.

This task assesses the agent’s skills of affordance extraction, efficient navigation and mem-
ory. There are different levels for the benchmark, ranging from level 1 to 30, with different
difficulty modes, number of rooms and quest length.

Task 3: The TextWorld environment is still very new: TextWorld was only released to
the public in July 2018. A competition – First TextWorld Problems: A Reinforcement and
Language Learning Challenge16, which ran until 31 May 2019, was launched by Microsoft
Research Montreal to challenge researchers to develop agents that can solve these text-based
games. The challenge is gathering ingredients to cook a recipe.

Agents must determine the necessary ingredients from a recipe book, explore the house to
gather ingredients, and return to the kitchen to cook up a delicious meal.

3.5.3 Published benchmark results
Côté et al. (2018) evaluate three baseline agents on the benchmark set in Task 1: BYU, Golovin
and Simple. The BYU17 agent (Fulda et al., 2017) utilises a variant of Q-learning (Watkins
& Dayan, 1992) where word embeddings are trained to be aware of verb-noun affordances.
The agent won the IEEE CIG Text-based adventure AI Competition in 2016. The Golovin18
agent (Kostka et al., 2017) was developed specifically for classic text-based games and uses
a language model pre-trained on fantasy books to extract important keywords from scene
descriptions. The Simple19 agent uniformly samples a command from a predefined set at
every step. Results indicated that all three baseline agents achieved low scores in the games.
This indicates that there is significant scope for algorithms to improve on these results.

Côté et al. (2018) also provide average performance results of three agents (BYU, Golovin
and a random agent) on 100 treasure hunter games (task 2) at different levels of difficulty.
On difficulty level 1 the Golovin agents had the best average score, but the Random agent
completed the game in the least number of steps. As the level of difficulty increase, the Random

17https://github.com/danielricks/BYU-Agent-2016
18https://github.com/Kostero/text_rpg_ai
19https://github.com/Microsoft/TextWorld/tree/master/notebooks
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agent achieved the best score and also completed the game in the least number of steps. These
results can be used as a baseline for evaluating improved algorithms.

It is evident that there is still enormous scope for research in the environment of text-
based games, and that the generative functionality of the TextWorld sandbox environment is
a significant contribution in the endeavour of researchers trying to solve these problems.

3.6 Summary
For the reader’s convenience a summary of the discussed frameworks and algorithms that were
shown to be effective are presented in Table 1. It should be noted that since the field moves at a
rapid pace, the current state of the art will change (it may also be problem instance dependent
within the benchmark class), however the listed algorithms can serve as a reasonable baseline
for future research.
Framework Benchmark class Recent effective RL algorithm(s)
OpenAI Gym Algorithmic UREX (Nachum et al., 2017)

Box2D REINFORCE (Ha, 2019)
Classic control TNPG and TRPO (Duan et al., 2016)
MuJoCo PPO (Schulman et al., 2017)
Roboschool PPO (Schulman et al., 2017)
Robotics HER (Andrychowicz et al., 2017)7
Toy text BIRL (Cundy & Filan, 2018)

The ALE Atari 2600

A2C, ACER and PPO (Schulman et al.,
2017); A3C (Mnih et al., 2016); Dis-
tribution DQN, Dueling DDQN, Prior-
itized DDQN and Rainbow (Hessel et
al., 2018) 20

Garage Basic tasks TNPG and TRPO (Duan et al., 2016)
Locomotion tasks PPO (Schulman et al., 2017)
Partially observable tasks TNPG and TRPO (Duan et al., 2016)
Hierarchical tasks HIRO (Nachum et al., 2018)

Keepaway soccer Keepaway
Episodic SMDP SARSA(λ) (Stone, Sut-
ton, & Kuhlmann, 2005; Sutton &
Barto, 2018)

Half-Field Offence SARSA (Hausknecht et al., 2016)
TextWorld Original tasks 1, 2 and 3 BYU and Golovin (Côté et al., 2018)

Generalisation tasks GATA (Adhikari et al., 2020)

Table 1: A summary of recent algorithms that performed well in different benchmark sets.
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4 DISCUSSION

This section focuses on the ways that the different RL benchmarks discussed in Section 3 deal
with or facilitate research in addressing the challenges for RL discussed in Section 2.2.

4.1 Partially observable environment
In many of the benchmark tasks, such as the classic control tasks in OpenAI Gym, the agent
is provided with full information of the environment. The environment in TextWorld games,
however, is partially observable since only local information and the player’s inventory are
available. The agent might also not be able to distinguish between some states based on obser-
vations if only the latest observation is taken into account, i.e. knowledge of past observations
are important. In TextWorld games the environment might provide the same feedback for dif-
ferent commands and some important information about certain aspects of the environment
might not be available by a single observation. Additionally, the agent might encounter obser-
vations that are time-sensitive, such as only being rewarded when it first examines a clue but
not any other time. Controlling the partial observability of the state is also part of TextWorld’s
generative functionality. This is done by augmenting the agent’s observations, where the agent
can be provided with a list of present objects or even all game state information can be pro-
vided.

The partially observable tasks introduced in rllab (see Section 3.3.1), provide environments
to investigate agents developed for dealing with environments where not all the information
is known.

In RoboCup, a player can by default only observe objects in a 90-degree cone in front of
them. In works from Kuhlmann and Stone (2003) and Stone, Sutton, and Kuhlmann (2005)
it was shown that it is possible for learning to occur in this limited vision scenario, however
players do not perform at an adequate level. For this reason, players in the standardised
Keepaway task (Stone, Kuhlmann, et al., 2005) operate with 360-vision.

4.2 Delayed or sparse rewards
The tasks in the ALE and TextWorld are interesting when considering reward structure. In the
ALE, reward or feedback may only be seen after thousands of actions. In TextWorld, the agent
has to generate a sequence of actions before any change in the environment might occur or a
reward is received. This results in sparse and delayed rewards in the games, in cases where
an agent could receive a positive reward only after many steps when following an optimal
strategy. In Keepaway, there is immediate reward, since the learners receive a positive reward
after each action they execute.

20A table summarising the best performance per game can be found at https://github.com/cshenton/
atari-leaderboard.
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4.3 Unspecified or multi-objective reward functions
In HFO (Section 3.4.4) success not only includes maintaining possession of the ball (the main
objective in Keepaway), but the offense players also need to learn to pass or dribble to move
towards the goal and shoot when an angle is open. Moreover, success is only evaluated based
on a scored goal at the end of an episode, which is rare initially. This aspect of HFO could serve
as an ideal environment for investigation into the challenge of problems with multi-objectives.

Due to the definition of a quest in TextWorld, i.e. a sequence of actions where each action
depends on the outcomes of the previous action, quests in TextWorld are limited to simple
quests. However, in text adventure games, quests are often more complicated, involving mul-
tiple sub-quests. Côté et al. (2018) remark that this limitation could be overcome by treating
a quest as a directed graph of dependent actions rather than a linear chain. If this can be
incorporated in TextWorld in the future, the platform can also be used to study problems with
multi-objectives and rewards of varying difficulty.

4.4 Size of the state and action spaces
The benchmark tasks that are considered in this paper are ideal to investigate how the size
of the state and/or action space challenge can be addressed. The tasks considered all have
continuous or large discrete state spaces.

In the ALE the number of states in the games are very large and in TextWorld the state space
is combinatorially enormous; since the number of possible states increases exponentially with
the number of rooms and objects (Côté et al., 2018). In most of the tasks in OpenAI Gym, rllab,
and in Keepaway, the state space is continuous. In Keepaway, the size of the Keepaway region
can be varied along with the number of keepers and takers. This allows for investigation into
a problem with various difficulties due to the size of the state space.

In TextWorld, the action space is large and sparse because the set of all possible word strings
is much larger than the subset of valid commands. TextWorld’s generative functionality also
allows control over the size of the state space, i.e. the number of rooms, objects and commands.
Different problem difficulties can therefore arise in terms of the size of the state space and this
can aid in the investigation of algorithm behaviour with increasing state and action spaces.

4.5 The trade-off between exploration and exploitation
In the ALE the challenge of exploration vs. exploitation is difficult due to the large state
spaces of games and delayed reward. Simple agents sometimes even learn that staying put
is the best policy, since exploration can in some cases lead to negative rewards. Recently
there has been some effort to address the exploration problem in the ALE, but these efforts are
mostly successful only in individual games.

Exploration is fundamental to TextWorld games as solving them can not be done by learn-
ing a purely exploitative or reactive agent. The agent must use directed exploration as its
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strategy, where it collects information about objects it encounters along the way. This in-
formation will provide knowledge about the goal of the game and provide insight into the
environment and what might be useful later in the game. Due to this, exploration by curiosity
driven agents might fair well in these types of problems.

Overall, there is still much work to be done to try and overcome this difficult challenge.
Machado et al. (2018) suggest a few approaches for the ALE, such as agents capable of explor-
ing in a more abstract manner (akin to humans) and agents not exploring joystick movements,
but rather exploring object configurations and game levels. Agents with some form of intrin-
sic motivation might also be needed in order to continue playing even though achieving any
reward might seem impossible.

4.6 Representation learning
The original goal of the ALE was to develop agents capable of generalising over many games
making it desirable to automatically learn representations instead of hand crafting features.
Deep Q-Networks (DQN) (Mnih et al., 2015) and DQN-like approaches are currently the best
overall performing methods, despite high sample complexity. However, additional tuning is
often required to obtain better performance (Islam et al., 2017), which suggest that there is
still work to be done to improve performance by learning better representation in the ALE.
Other different approaches and directions for representation learning that have been used in
the literature are also mentioned in Machado et al. (2018) and should still be explored more
in the ALE.

4.7 Transfer learning
Regarding the ALE, many of the Atari 2600 games have similar game dynamics and knowledge
transfer should reduce the number of samples that are required to learn to play games that
are similar. Even more challenging would be determining how to use general video game
experience and share that knowledge across games that are not necessarily similar. Current
approaches in the literature that apply transfer learning in the ALE are restricted to only a
limited subset of games that share similarities and the approaches are based on using neural
networks to perform transfer, combining representations and policy transfer. Machado et al.
(2018) point out that it might be interesting to determine whether transferring each of these
entities independently could be helpful. To help with the topic of transfer learning in the
ALE, the new version includes different game modes and difficulty settings called flavours
(see Section 3.2), which introduces many new environments that are very similar.

Some of the tasks in rllab and environments in OpenAI Gym have been used in studying
the transferring of system dynamics from simulation to robots (Held et al., 2017; Peng et al.,
2018; Wulfmeier et al., 2017). These simulation tasks are an ideal way to safely study the
transferring of policies for robotic domains.

Transfer learning has also been studied in the Keepaway soccer domain (Taylor & Stone,
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2005), which is a fitting setting since the number of players as well as the size of the action
and state spaces can differ.

TextWorld’s generative functionality (described in full in Côté et al. (2018)) allows for
control of the size and the partial observability of the state space, and therefore a large number
of games with shared characteristics can be generated. This could be used for studying transfer
learning in text-based games, since agents can be trained on simpler tasks and behaviour
transferred to harder problems.

4.8 Model learning
Planning and model learning in complex domains are challenging problems and little research
has been conducted on this topic compared to traditional RL techniques to learn policies or
value functions.

In the ALE, the Stella emulator provides a generative model that can be used in planning
and the agent has an exact model of the environment. However, there has not been any
success with planning using a learned generative model in the ALE, which is a challenging
task since errors start to compound after only a few time steps. A few relatively successful
approaches (Chiappa et al., 2017; Oh et al., 2015) are available, but the models are slower
than the emulator. A challenging open problem is to learn a fast and accurate model for the
ALE. On the other hand, related to this, is the problem of planning using an imperfect model.

On tasks in OpenAI Gym and rllab some research has also been conducted in model learning
(Nagabandi et al., 2018; Wang et al., 2019), but the main focus in the literature is on model-
free learning techniques. Therefore there is still scope for substantial research to address this
problem.

Wang et al. (2019) attempted to address the lack of a standardised benchmarking frame-
work for model-based RL. They benchmarked 11 model-based RL algorithms and four model-
free RL algorithms across 18 environments from OpenAI Gym and have shared the code in an
online repository21. They evaluated the efficiency, performance and robustness of three differ-
ent categories of model-based RL algorithms (Dyna style algorithms, policy search with back-
propagation through time and shooting algorithms) and four model-free algorithms (TRPO,
PPO, TD3, and SAC – refer to Section 2.1.8 for these algorithms). They also propose three
key research challenges for model-based methods, namely the dynamics bottleneck, the plan-
ning horizon dilemma, and the early termination dilemma and show that even with substantial
benchmarking, there is no clear consistent best model-based RL algorithm. This again suggests
that there is substantial scope and many opportunities for further research in model-based RL
methods.

21http://www.cs.toronto.edu/~tingwuwang/mbrl.html
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4.9 Off-policy learning
Deep neural networks have become extremely popular in modern RL literature, and the break-
through work of Mnih et al. (2013; 2015) demonstrates DQN having human-level performance
on Atari 2600 games. However, when using deep neural networks for function approximation
for off-policy algorithms, new and complex challenges arise, such as instability and slow con-
vergence. While discussing off-policy methods using function approximation, Sutton and Barto
(2018) conclude the following: “The potential for off-policy learning remains tantalizing, the
best way to achieve it still a mystery.” Nevertheless, off-policy learning has become an active
research field in RL.

The use of off-policy learning algorithms in the ALE in current literature varies with most
approaches using experience replay and target networks. This is an attempt at reducing diver-
gence in off-policy learning, but these methods are very complex. New proposed algorithms
such as GQ(λ) (Maei & Sutton, 2010) are theoretically sound, but there is still a need for a
thorough empirical evaluation or demonstration of these theoretically sound off-policy learn-
ing RL algorithms. Other contributions of using off-policy learning in the ALE includes double
Q-learning (van Hasselt et al., 2016) and Q(λ) with off-policy corrections (Harutyunyan et al.,
2016).

Some of the tasks in rllab and OpenAI Gym have also been used in studying off-policy algo-
rithms, for example introducing the soft actor-critic (SAC) algorithm (Haarnoja et al., 2018)
and using the robotics environments from OpenAI Gym to learn grasping (Quillen et al., 2018).
This area of research is still new and there is significant scope for further research in this do-
main.

4.10 Reinforcement learning in real-world settings
The robotics environments in the OpenAI Gym toolkit can be used to train models which work
on physical robots. This can be used to develop agents to safely execute realistic tasks. A
request for research from OpenAI7 indicates that work in this area is an active research field
with promising results.

The Keepaway and HFO soccer tasks are ideal settings to study multi-agent RL (Buşoniu
et al., 2008), an important research area for real-world problems since humans act in an
environment where objectives are shared with others.

Challenges for RL that are unique to TextWorld games are related to natural language
understanding: observation modality, understanding the parser feedback, common-sense rea-
soning and affordance extraction, and language acquisition. These challenges are explained
in more detail in Côté et al. (2018). Natural language understanding is an important aspect
of artificial intelligence, in order for communication to take place between humans and AI.
TextWorld can be used to address many of the challenges described in Section 2.2 in simpler
settings and to focus on testing and debugging agents on subsets of these challenges.

In addition to the frameworks covered in this survey, there are two further contributions
that are focused on multi-agent and distributed RL. The MAgent research platform (Zheng et
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al., 2018) facilitates research in many-agent RL, specifically in artificial collective intelligence.
The platform aims at supporting RL research that scales up from hundreds to millions of agents
and is maintained in an online repository22. MAgent also provides a visual interface presenting
the state of the environment and agents.

A research team from Stanford has introduced the open-source framework SURREAL (Scalable
Robotic REinforcementlearning ALgorithms) and the SURREAL Robotics Suite (Fan et al.,
2018), to facilitate research in RL in robotics and distributed RL. SURREAL eliminates the
need for global synchronization and improves scalability by decoupling a distributed RL algo-
rithm into four components. The four-layer computing infrastructure can easily be deployed
on commercial cloud providers or personal computers, and is also fully replicable from scratch,
contributing to the reproducibility of results. The Robotics Suite is developed in the MuJoCo
physics engine and provides OpenAI gym-style interfaces in Python. Detailed API documen-
tation and tutorials on importing new robots and the creation of new environments and tasks
are also provided, furthering the contribution to research in this field. The Robotics Suite is
actively maintained in an online repository23. The different robotics tasks include block lifting
and stacking, bimanual peg-in-hole placing and bimanual lifting, bin picking, and nut-and-peg
assembly. Variants of PPO and DDPG called SURREAL-PPO and SURREAL-DDPG were devel-
oped and examined on the Robotics Suite tasks, and experiments indicate that these SURREAL
algorithms can achieve good results.

4.11 A standard methodology for benchmarking
The ALE consists of games with similar structure in terms of of inputs, action movements, etc.
This makes the ALE an ideal benchmark for comparative studies. A standard methodology is
however needed and this is proposed by Machado et al. (2018):

• Episode termination can be standardised by using the game over signal than lives lost.
• Hyperparameter tuning needs to be consistently applied on the training set only.
• Training time should be consistently applied across different problems.
• There is a need for standard ways of reporting learning performance.
These same principles apply to groups of similar tasks in OpenAI Gym and rllab, and to

TextWorld and Keepaway soccer.

4.12 Trends in benchmarking of RL
It is clear from Section 3 that the number of well thought-out frameworks designed for RL
benchmarks has rapidly expanded in recent years, with a general move to fully open source

22https://github.com/geek-ai/MAgent
23https://github.com/SurrealAI/surreal
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implementations being evident. A notable example is OpenAI Gym re-implementing, to an
extent, open source variants of the benchmarks previously provided in the MuJoCo simulation
environment. The move to fully open source implementations has had two primary benefits:
reproducibility and accessibility.

The variety of RL frameworks and benchmark sets may present a challenge to a novice
in the field, as there is no clear standard benchmark set or framework to use. This is not a
surprising situation as the array of RL application areas has become relatively diverse and so
different types of problems and their corresponding challenges will naturally be more interest-
ing to certain sub-communities within the field.

One aspect of modern RL benchmarks that is relatively striking is the increase in problem
complexity. While it is not immediately clear how to precisely define problem difficulty, it is
clear that more and more problem features that are challenging for RL algorithms are being
included in proposed benchmarks. Many established benchmark sets have been explicitly
expanded to increase the challenge of a given problem instance. Some notable examples
include the addition of sticky actions in the ALE and the addition of the partially observable
variants of rllab’s continuous control tasks.

It is also clear that the advancements made in the field of deep learning has allowed for
certain types of RL tasks to be more readily solvable. Two notable examples are the use of
convolution neural networks (Lecun et al., 1998) to assist in the vision problem present in
Atari 2600 games of the ALE, and the use of modern neutral network based approaches to
natural language processing in Microsoft’s TextWorld.

5 CONCLUSION

This paper provides a survey of some of the most used and recent contributions to RL bench-
marking. A number of benchmarking frameworks are described in terms of their characteris-
tics, technical implementation details and the tasks provided. A summary is also provided of
published results on the performance of algorithms used to solve these benchmark tasks. Chal-
lenges that occur when solving RL problems are also discussed, including the various ways the
different benchmarking tasks address or facilitate research in addressing these challenges.

The survey reveals that there has been substantial progress in the endeavour of standard-
ising benchmarking tasks for RL. The research community has started to acknowledge the im-
portance of reproducible results and research has been published to encourage the community
to address this problem. However, there is still a lot to be done in ensuring the reproducibility
of results for fair comparison.

There are many approaches when solving RL problems and proper benchmarks are impor-
tant when comparing old and new approaches. This survey indicates that the tasks currently
used for benchmarking RL encompass a wide range of problems and can even be used to
develop algorithms for training agents in real-world systems such as robots.
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