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ABSTRACT

This paper examines the feasibility of using commercial out-of-the-box reconfigurable field programmable gate
array (FPGA) technology and the open computing language (OpenCL) framework to create an efficient Sobel
edge-detection implementation, which is considered a fundamental aspect of image and video processing. This
implementation enhances speedup and energy consumption attributes when compared to general single-core pro-
cessors. We created the proposed approach at a high level of abstraction and executed it on a high commodity
Intel FPGA platform (an Intel De5-net device was used). This approach was designed in a manner that allows the
high-level compiler/synthesis tool to manipulate a task-parallelism model. The most promising FPGA and con-
ventional implementations were compared to their single-core CPU software equivalents. For these comparisons,
local-memory, pipelining, loop unrolling, vectorization, internal channel mechanisms, and memory coalescing
were manipulated to provide a much more effective hardware design. The run-time and power consumption at-
tributes were estimated for each implementation, resulting in up to 37-fold improvement of the execution/transfer
time and up to a 53-fold improvement in energy consumption when compared to a specific single-core CPU-based
implementation.
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1 INTRODUCTION

Reconfigurable computing devices, such as FPGAs have become widely utilized in many applic-
ations, including image processing, security, finance, networking, machine learning, pattern
recognition, and scientific computing [1-3]. The use of custom dedicated hardware, such as
the application specific integrated circuit (ASIC), leads to better performance when compared
to general-purpose processors. Nonetheless, the ASIC’s architecture and functionality cannot
be changed. Reconfigurable computing devices, such as FPGAs, are used to achieve a level
of performance comparable to that achieved using dedicated hardware devices (Tessier et al.,
2015). FPGA technology reconstructs fine-grain control logic and the data path characterist-
ics of the underlying hardware before and during the run-time. These processes yield better
matching between the temporal needs and underlying algorithmic structure of the application
under consideration. FPGA technology also promotes software flexibility. FPGAs can be re-
configured many times with a massive number of possible configurations, thus simplifying the
processes of optimizing or modifying the existing design.

FPGAs comprise an immense number of small building blocks that are attached by on-
chip finely-grained hierarchical switching and routing fabric. These building blocks (in Intel
devices) usually incorporate adaptive logic modules (ALMs), SRAM memory, extensive com-
putation blocks or digital signal processing (DSP) blocks, and streaming I/0 ports. FPGAs
can also contain other kinds of blocks, such as phase-lock loops (PLLs), which can be utilized
to adjust the internal clock frequency. The fabricated design on the FPGA platform does not
have fetch and decode instruction steps overhead associated with regular memory instruction-
set for a general processor; this is because the data path and control circuitry are optimized
according to the proposed design.

Moreover, the ALMs, made of at least one lookup table (LUT) each of which is composed
of one or more flip-flop (FF), are spread throughout the FPGA fabric, making the FPGAs very
amenable to temporally parallel (systolic or pipelined) computation that can be employed to
monopolize the loop-level concurrency that exists in diverse applications. In such cases, the
body of the loop is split into executable pieces where each piece is targeted for execution on a
different stage of computational logic created within the FPGA. Data passed among pipelined
stages are stored in discrete and accessible ALM flip-flop resources. Commonly, when it is fully
pipelined, the time needed to pass an item of data from one stage to another in a mere temporal
pipeline is one clock cycle. All stages are concurrently performing their computations but with
various data. In such cases, the number of clock cycles to treat any single item, usually called
pipeline latency, would match the number of stages in the system to treat the body of the loop.
However, if the number of elements in the loop is vast, then the most influential metric is the
initiation interval (II), which is the average number of clock cycles that the system should wait
before the next item is allowed to enter the pipeline.

A custom-created pipeline within an FPGA reveals the low-level structure of an application
effectively. In addition to reducing latency, FPGAs are also widely used to reduce the overall
energy consumption in many applications according to existing studies [5-8]. FPGAs generally
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use less energy when compared to other platforms such as CPUs and graphical processor units
(GPUs), because they carry fine-grain distribution of computation across the integrated circuit
(IC) in ways that improve data locality and computational efficiency while depreciating data
and instruction storage.

The Sobel edge detection algorithm (see Section 2) is implemented on an FPGA platform
using a De5-net acceleration board from Terasic. This board has adequate resources that can be
utilized effectively to synthesize the user’s code in various complex applications; it consists of
234,770 ALMs, 2,560 RAM blocks, and 256 DSP blocks. A high-speed interface connection or a
peripheral component interconnect express (PCle) connects the target board and the host CPU,
providing the possibility of transferring data very quickly between the computation units. The
initial conventional approach to program these FPGAs is to use hardware description languages
(HDLs) such as very high speed integrated circuit (VHSIC) hardware description language
(VHDL) and Verilog. However, using these languages introduces challenges to designers to be
knowledgeable about the underlying hardware, such as being aware of the developing control
states, hardware circuits, and handling timing issues. All these difficulties make adopting
these languages less preferable, particularly when the design becomes more complicated. The
OpenCL (Xu, 2011) platform was introduced as a simple C-language extension to overcome all
of these issues and simplify the process of programming FPGAs through abstracting most of the
hardware details. OpenCL may also lead to reducing the kernel design time significantly (Hill
et al., 2015a). Generally, OpenCL is a software development tool that supports heterogeneous
computing in which different kinds of computations units exist. The power of OpenCL allows
for distributing tasks among multiple platforms such as CPUs, FPGAs, or GPUs. The OpenCL
platform is based on having one host (CPU) and one or more devices that could be one or more
computation platforms, as shown in Figure 1.

The OpenCL programming model incorporates two programs. The first one is the host pro-
gram that runs on the host machine, usually written in C/C++, and includes responsibilities
such as loading the OpenCL programs, memory management, data movement, and error hand-
ling. The second program is the device code, an OpenCL-based program that can be run on the
available devices. The Intel software development kit (SDK) for OpenCL provides the ability to
implement parallel algorithms on the target device with minimal effort. The device code com-
pilation process is usually lengthy; it can last up to several days according to the complexity
of the user’s code and the number of resources used in the synthesizing process. Consequently,
the device code should be compiled first to generate the final executable design used within
the host code, known as the offline programming model. However, the Intel SDK tools provide
an environment where the host code can be emulated on a similar FPGA platform to verify
results before beginning a time-consuming compilation process. The Intel Compiler creates
pipeline architecture according to the device code and aims to execute complex instructions
in one clock cycle. Figure 2 describes the compilation process flow.
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Figure 1: OpenCL programming model-heterogenous computing environment. The CPU (host) can be
connected to one or more of the available computation platforms (devices).
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Figure 2: Compilation process flow
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Several studies have discussed the optimization process of the Sobel edge detection al-
gorithm on FPGAs, GPUs, and multi-core systems (Abbasi & Abbasi, 2007; Chouchene et al.,
2014; Dore, 2014; Halder et al., 2012; Hill et al., 2015b; Nausheen et al., 2018; Vanishree &
Reddy, 2013; Yasri et al., 2008; You et al., 2017). One study used a GPU (NVIDIA GeForce
310) to get a significant speedup where a data-parallelism model utilizes a large number of
available cores. This study also used an FPGA (Xilinx Virtex-5 device) platform to speed up the
process while implementing the synthesis code in the hardware description language (VHDL).
The results demonstrate the effectiveness of using the FPGA platform to accelerate this applic-
ation compared to the CPU platform (Chouchene et al., 2014). Nausheen (Nausheen et al.,
2018) suggested a new modified hardware implementation of the Sobel edge detection that
reduces the number of resources and space complexity. The algorithm was tested on the Xilinx
Sparta 6 FPGA device to achieve a double clock frequency rate compared to the old design
with approximately two nanoseconds to process each pixel (Halder et al., 2012).

The distinguishing feature of this described work is using the OpenCL abstract language to
optimize the edge operator on the Intel FPGA De5-net device, thus reducing the design com-
plexity, compilation process time, and code portability across different devices/platforms (Hill
et al., 2015a) while achieving significant execution time improvement. Compared to a similar
study utilizing the OpenCL to implement the Sobel operator on a DE1-SoC Intel device (You
et al., 2017), here in this paper there is ten times the performance improvement for the large
image size (1920 x 1080). Moreover, there is more than 26-times performance improvement
compared to using NVIDIA GTX 470 GPU (Dore, 2014). This study’s approach is to create mul-
tiple tasks (threads) and implement them in hardware with very efficient pipeline structures
that communicate using high-speed internal buffers. Such an approach further illustrates the
effectiveness of using FPGAs to reduce energy consumption.

The parallelism in this paper was performed by dividing the main task into four sub-tasks
(threads) using the task-parallel model. Thus, to reduce the significant time required to access
the data from global memory, only one task will access these data and send it to other threads
using high-speed internal buffers (channels) in a very short time. This allows all threads to
work together without waiting until one thread finishes its job and passes the whole data to
the next thread. Vectorization data types, such as int8, float8, and int16, are used to increase
the amount of work per clock cycle, so that eight or sixteen operations can be done in one
clock cycle. The optimization report generated by the Intel Compiler is also exploited to
ensure that all loops are pipelined successfully with almost one initiation interval (II). Results
show that the FPGA device can process five pixels every clock cycle compared to 200 clock
cycles and 81 clock cycles needed to process each pixel in the conventional and optimized
CPU implementations.

2 SOBEL EDGE DETECTION OPERATOR

With edge detection, it is possible to reduce the image size significantly while keeping the
most useful information (Asghari & Jalali, 2015), making it a popular technique used to study
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images and extract essential features. Based on a gradient approach, a Sobel operator is con-
structed to calculate the gradient of the target image intensity by having high spatial frequency
values (changes in pixels value or the digital number between adjacent pixels) that distinguish
the edge-regions from non-edge-regions (Liao et al., 2010). Horizontal and vertical masks (3x3
in dimension) are used to calculate the first derivative along the x- and y-axes. Equation 1
describes the two masks. The next step is to find the approximate gradient amplitude gx,y at
each pixel in the 2D image array using the mathematical expression in Equation 2 (Deng et al.,
2011). Finally, the gradient orientation is calculated for each pixel value according to the
expression in Equation 3. The gradient amplitude is compared to a predetermined threshold
value to determine if there is an edge. Various applications and studies widely utilize edge
detection, including driver safety (Liao et al., 2010), license plate detection (Israni & Jain,
2016), facial identification analysis, face detection (Singh et al., 2016), email protection (Wan
& Uehara, 2012), transmission lines monitoring (Zhai et al., 2017), and medical and health
fields (Yusoff et al., 2018).
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The hardware implementation of the Sobel operator is a relatively complicated task compared
to software implementations; several studies suggested architectures to implement the edge
operator (Abbasi & Abbasi, 2007; Vanishree & Reddy, 2013; Yasri et al., 2008). Memory
blocks store the monochromatic image, and these blocks are accessed by a hardware circuit
performed on the FPGA. The convolution kernels can be implemented using a set of buffers
and shift registers, as can the implementation of convolution equations using a set of flip-flops,
adders and comparators units. The finite state machine (FSM) controller can also be created
to control the overall process of the edge detection in which in each state, a set of one or more
operations, can be performed before moving to the next state. Usually, the overall design can
be represented using hardware description languages such as VHDL or Verilog.

3 RELATED WORK

A Sobel edge detection algorithm implementation requires an extensive amount of computa-
tions (millions of operations) and, as mentioned, is used widely in diverse applications. All
these reasons encourage researchers to develop improved implementations to utilize the most
recent machines that have heterogeneous computing environments such as multi-core, multi-
processor, GPUs, and FPGAs. Acceleration devices have promising features if considering the
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FPGA platform, which could be utilized in real-time applications. For example, an Intel Cyc-
lone 1V significantly speedup the process of Hevea leaves disease identification compared to
using software solutions implemented in MATLAB and ran on a general processing computa-
tion element (CPU platform) (Yusoff et al., 2018). FPGAs can be used to implement real-time
edge detection algorithms as they carry high levels of parallelization structures (G. N. Chaple
et al., 2015; G. Chaple & Daruwala, 2014). A similar study that utilized an Intel EP4CE30
FPGA device to optimize an 8-directions Sobel algorithm demonstrated the feasibility of using
this platform in these kinds of problems to improve the overall performance (Xiangxi et al.,
2018). Several studies (Tian et al., 2015; Yasri et al., 2009) confirmed the high-performance
implementation with a high degree of accuracy through employing FPGA devices, while other
studies focused on utilizing GPUs to achieve a high-performance factor by significantly re-
ducing the execution time (Al-Omari et al., 2015; Fredj et al., 2017). Most of these designs
employed the compute unified device architecture (CUDA) as a primary tool to work within a
GPU environment. A more than 900 times speed improvement is achieved when compared to
a general single-core processing element. However, GPUs consume more power compared to
other computation platforms (Firmansyah et al., 2018; Ghosh & Chapman, 2011). The work
described in this study optimizes the Sobel implementation to reduce the execution time and
power consumption significantly.

4 SOBEL IMPLEMENTATION ON FPGA TARGET PLATFORM

4.1 Task-Parallel model (single work item)

The device code consists of one or more functions (known as kernels) that should be run on
the objective accelerated device. Generally, these kernels can be manipulated and executed as
a single thread model (also known as a single work item) or as a multiple to a vast number of
threads model (also known as an NDRange model). GPUs usually use the second model as it
holds a large number of processing elements (PEs); the data is shared among these PEs, each of
which executes the same instruction while accessing a different data item (single instruction,
multiple data (SIMD)) [27-29]. FPGAs can be utilized similarly; however, in most cases, the
single work item is the preferred model. FPGAs have a different architecture that can be
adapted to create an effective pipeline structure where data can be shared among multiple
pipelined loop iterations using a high-speed access private memory (Waidyasooriya et al.,
2018). This is a favored model because its data dependencies slow the use of the multiple
threads model, particularly when costly mechanisms, such as a barrier, are used to preserve
dependencies between active threads. Multiple single work items, each of which works on a
separate task, formulate what is known as a task-parallel model. Commonly, these work items
are executed simultaneously, and different work items access different data.

Below is a summary of the differences between the task-parallel model and the data-parallel
model (NDRange model) (Waidyasooriya et al., 2018):

+ In the task-parallel model, only one thread runs throughout the task-execution versus a
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large number of threads (thousands of threads) in the data-parallel model.

« Data is shared between loop-iterations (using private memory) in the task-parallel model,
whereas in the data-parallel model, the data sharing is between threads (using local
(shared) memory).

« In the task-parallel model, loop iterations are pipelined, whereas thread executions are
pipelined in the data-parallel model.

4.2 Sobel optimisation

The input image should have a monochromatic format, where the image sizes vary from the
smallest image size (144 x 256 pixels) to the largest one (3480 x 5760 pixels). The process is
broken into four steps to perform edge detection. In the first two steps, the convolution masks
Gx and Gy are applied to every pixel value along the x- and y-axes. In the last two steps, the
gradient magnitude (an approximate magnitude as in (2)), and direction are estimated, and
the magnitude is compared to a predetermined threshold value to decide whether or not there
is an edge pixel.

The optimization process begins by choosing the appropriate parallel model for the ac-
celerated device, namely, a task-parallel model. Many experiments have been performed to
select among the best possible combinations of optimization procedures, including dividing
the device code into four separate kernels, each of which is executed using a single thread, as
shown in Figure 3. These kernels are Convx, Convy, Magn (x, y), and Dir(x, y). The idea of
the task parallel model is to let multiple threads work on different tasks simultaneously. The
first two kernels are completely independent, and they can run simultaneously. However, the
calculations in the last two kernels depend on the results from the first two kernels. In the
conventional implementation (conventional implementation means that it is similar to the ori-
ginal C program without modifying the code to use any possible optimization techniques), the
output results from the first two kernels should be written back to the global memory before
calling the last two kernels. The first adopted optimization technique uses high-speed chan-
nels (internal local buffers implemented using RAM blocks and registers) to avoid this lengthy
operation as well as avoid copying results back to the global memory and rereading them as
inputs to the last two kernels. In the first two kernels, after calculating the Gx(x,y) and Gy(x,y)
for a pixel located at (x, y), the result will be forwarded to both Magn(x, y) and Dir(x, y) ker-
nels using dedicated channels so that all four kernels can operate together simultaneously as
shown in Figure 4. This process should be performed for all pixels, where multiple pixels are
read in every iteration to magnify memory bandwidth utilization.
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Figure 3: System viewer generated by the Intel compiler. All tasks are running simultaneously, where
local memory and channels are employed to reduce the long global memory access time.
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Figure 4: Task-parallel model where four tasks, Convx(x, y), Convy(x, y), Magn(x, y), and Dir(x, y),

run simultaneously. Data exchange between kernels occurs using dedicated channels to avoid extra
read/write from/to global memory requests.
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For a single work item, techniques such as loop-unrolling (manual loop-unrolling is used
here to increase the amount of work performed in each clock cycle; the loop unrolling pragma
cannot be used as it contradicts the use of a channel mechanism), vectorization, coalesce
memory access and utilizing fast local memory are conventional techniques used to improve
the performance and increase the level of parallelism. All these methods enhance memory
bandwidth and coalesce memory access, as well as increase the amount of work done in every
clock cycle in the created pipeline structure. The files generated by the Intel Compiler can
be examined to create an efficient pipeline structure by solving the dependencies of executed
loops and data, decreasing the initiation interval to the optimal value or the smallest possible
number, and coalescing the memory access. It is essential to mention that there are difficulties
faced with the increase in performance beyond a certain level, including maximum memory
bandwidth and the required time to move data from/to accelerated device.

The serial code is written in a conventional C++ language and targets a CPU-based plat-
form; the code was then compiled using a g++ compiler, with and without an O3 compiler
optimization argument. O3 is a level of compiler optimization that lets the compiler improve
the code performance through applying a set of optimization techniques such as instruction
reordering and scheduling, loop unrolling, prefetching, pipelining and other general optimiza-
tions; however, this usually increases the compilation time (Medeiros et al., 2018). The target
machine has an Intel Xeon E5 @ 2.9 GHz processor, with 48 GB of RAM installed. Similar
code was compiled using the Intel FPGA compiler to run on the Terasic De5-net acceleration
card. However, this code has been altered to create an efficient pipeline structure, and the
main task is divided into subtasks to exploit the concept of the task-parallel model. This study
uses various grayscale-image sizes, each of which is a 2D array of pixels. The sizes are 144 x
256, 240 x 426, 360 x 480, 480 x 640, 720 x 1280, 1080 x 1920, 1440 x 2560, 2160 x 3860,
and 3480 x 5760.

This study considers four cases:

1. serial implementation—the conventional code compiled with just the default compiler
argument settings, without passing any optimization arguments

2. optimized serial implementation—the same as the first case, but compiled with optimiz-
ation arguments turned on using O3

3. conventional FPGA implementation—similar to serial implementation but run on a FPGA
platform

4. optimized FPGA implementation—the design is altered to utilize the architecture bene-
fits, and a combination of optimization mechanisms are used to improve the overall
performance.

https://doi.org/10.18489/sacj.v32i1.749
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5 RESULTS DISCUSSION

The Terasic De5-net FPGA accelerator device implements the Sobel operator using the OpenCL
framework; the Intel Compiler is then used to compile and synthesize the proposed code to the
equivalent hardware circuit. Table 1 shows the FPGA resource utilization; these resources are
adaptive look-up tables (ALUTS), flip-flops, memory RAM blocks, and DSP blocks. The table
shows the amount and percentage of the utilized resources compared to the total available
resources. Techniques used to optimize the design lead to an increase in the amount of resource
usage; the exception is the number of RAM blocks used, where reducing the interaction of
global memory leads to reduced RAM usage. Normally, more resources can be used to increase
performance; however, this may lead to increased design complexity and critical path delay
(latency) (Zheng et al., 2014). It is also not possible to expand the resource usage beyond
certain percentages as this introduces the challenge of providing routing channels between
connected elements/blocks (Asghar & Parvez, 2015; Vanderbauwhede & Benkrid, 2013).

Table 1: Terasic De5-net FPGA resource utilisation

\ Used qty \ Percentage usage
Resource Optimised Conventional Optimised Conventional
ALUTs 148496 78633 32 17
FFs 143776 101043 15 11
RAMs 740 2265 29 88
DSPs 144 15 56 6

It is worth mentioning that there is an overhead of using OpenCL to program the FPGAs over
using hardware description languages such as VHDL in terms of resource usage. Using VHDL
or Verilog can save many resources; the compilation report for an empty kernel code indicates
that there are 40,650 ALUTSs (9%), 52,976 FFs (6%), and 283 RAM blocks (11%) reserved and
not available for use. The proposed design is operated on the target FPGA device at a 265
MHz clock frequency. The sample-input gray-scale image, shown in Figure 5 (a), is processed
by the Sobel operator to produce the output image that contains all edges detected, as shown
in Figure 5 (b).

https://doi.org/10.18489/sacj.v32i1.749
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Figure 5: Sobel image detection result: (a) grey-scale image; (b) output image (contains edges)
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6 PERFORMANCE EVALUATION

The purpose of this study is to implement the Sobel edge detection algorithm to run on the
FPGA platform (Terasic De5-net device) in order to improve speedup and energy consumption
attributes compared to using a general single-core processor. Input data to this operator is
a grayscale image with a 2D array of pixels. Experimentally, we examined several images
with different sizes and recorded the execution time and the power consumption in every test.
For verification purpose, we repeated each experiment with a specific input image size two
hundred times and calculated the execution time by averaging the results. Power or energy
consumption is also profiled in each iteration of the experiment; the total power consump-
tion is the sum of the static, leakage, and dynamic power dissipation (Wiltgen et al., 2013).
Static power consumption is measured while the device is idle, and this mainly depends on
the voltage supply. Finally, dynamic power consumption for a given application is measured
by averaging the power reading values while the application is running. Traditionally, the
dynamic power consumption is a result of charging/discharging capacitors and therefore de-
pends mainly on the frequency of operation, capacitance value, and the supply voltage (Silva
et al., 2018).

The Kill A Watt EZ P4460 power meter device was used to measure the dynamic power
consumption, as many studies, such as Bartram et al. (2010), employ this device. For the
FPGA platform, the Power Analyzer tool available within the Intel Quartus software can be
used to profile full power consumption details; many studies adopted this tool when it was
necessary to profile the energy or power dissipation (Cromar et al., 2009; Hossain et al., 2011;
Shah et al., 2012). Although the static power consumption in a CPU-based platform is higher
than in the FPGA-based platform, the focus in this study is to analyze the dynamic power
consumption, which is considered here for comparison purposes.

6.1 Execution Time analysis

According to the integrated FPGA programming model that uses the OpenCL framework, the
data should be transferred from the host to the device through a PCle connection, and results
should be sent back to the host after completing the algorithm’s execution. The overall time is
the summation of both the execution time and the data transfer time. As a result, the perform-
ance bottleneck is not only the device-global memory access time but also the required time
to transfer data between host and device. We measured data transfer time experimentally by
running a large number of tests (one hundred times). Table 2 shows the average values in mil-
liseconds. Table 3 lists the execution time profiled for each case. The second column displays
the conventional execution time, the third column displays the optimized implementation,
and the fourth column displays the average number of nanoseconds required to process each
pixel; each pixel needs approximately between 0.7 to 0.8 nanoseconds for the large image size.
This means five pixels can be processed every clock cycle, as shown in the fifth column. We
measured the execution time experimentally and considered the possibility of a small margin
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of error in this case. Table 4 lists the overall FPGA time results, which include both phases.

Table 2: Terasic De5-net FPGA: Average data transfer time (in ms) for different image sizes (in pixels)

Image size Overall transfer time (ms)

144 x 256 0.07
240 x 426 0.19
360 x 480 0.30
480 x 640 0.47
720 x 1280 1.16
1080 x 1920 2.23
1440 x 2560 3.95
2160 x 3860 8.50
3480 x 5760 22.4

Table 3: Terasic De5-net FPGA, Sobel operator: Average execution time for different image sizes (in
pixels)

\ Execution time \

Image size Conventional Optimised Optimised Optimised
design (ms) design (ms) design per pixel  design pixels per
(ns) clock

144 x 256 0.70 0.16 4.34 0.9
240x 426 1.75 0.21 2.05 1.8
360 x 480 2.90 0.24 1.39 2.7
480x 640 5.10 0.33 1.07 3.5
720x 1280 15.35 0.80 0.87 4.3
1080 x 1920 33.90 1.50 0.72 5.2
1440 x 2560 59.95 2.90 0.79 4.8
2160 x 3860 138.0 6.00 0.72 5.2
3480 x 5760 363.5 16.0 0.80 4.7
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Table 4: Terasic De5-net FPGA, Sobel operator: Overall processing time (in ms) for different image
sizes (in pixels)

Image size Conventional design Optimised design

144 x 256 0.77 0.23
240 x 426 1.94 0.40
360 x 480 3.20 0.54
480 x 640 5.57 0.80
720 x 1280 16.51 1.96
1080 x 1920 36.13 3.73
1440 x 2560 63.9 6.85
2160 x 3860 146.5 14.50
3480 x 5760 385.9 38.40
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We also profiled the overall execution time for a single-core CPU-based platform; Table 5
lists both the conventional and the optimized serial implementation results. The average num-
ber of nanoseconds required to process each pixel is approximately 28 nanoseconds, as shown
in the fourth column. Figure 6 shows the gained speedup factor normalized to the conven-
tional single-core execution time. As per Tables 4, 5, and 6, observations indicate that it is
possible to gain a speedup factor of up to 88 times without holding data transfer time, and
up to 37 times when considering the transfer time. Also, the performance speedup gained by
optimized FPGA implementation is 36-fold and 25-fold when compared to optimized single-
core and conventional FPGA implementations, respectively. Moreover, if we consider the data
transfer time between host and device, then 15-fold and 11-fold enhancements are achieved,
respectively.

Table 5: Single-core CPU-based platform, Sobel operator: Overall processing time (in ms) for different
image sizes (in pixels)

Image size Conventional design Optimised design Optimised FPGA per pixel (ns)

144 x 256 2.51 1.07 29.0
240 x 426 6.8 2.95 28.9
360 x 480 11.71 5.0 28.9
480 x 640 21 8.83 28.7
720x 1280 62 25.10 27.3
1080 x 1920 133 55.0 26.5
1440 x 2560 240 98.0 26.6
2160 x 3860 527 214.0 25.7
3480 x 5760 1390 558.0 27.8
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Figure 6: Execution time speedup factor regarding the conventional single-core Sobel operator imple-
mentation. FPGA-Native (Conventional) Exec and FPGA Optimized Exec do not consider the image
data transfer time between host and device.
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6.2 Power and energy analysis

Here, we consider the dynamic power energy or power consumption, which is a result of rais-
ing the power level while the target application (Sobel edge operator) is running. The Power
Analyzer tool is used to profile the power consumption on the FPGA device, while the Kill A
Watt EZ P4460 device is used to profile the power consumption on the CPU-based platform.
According to the experiments, the average dynamic power consumption when the Terasic
De5-net FPGA is used is 7.687 W and approximately 31 W when the Intel Xeon E5 processor
is used. We estimate the average consumed energy per image size through multiplying the
average execution time by the average dynamic power consumption while the computation
platform is running the proposed edge detection operator. The plan was to compare the en-
ergy consumption factor and show how the use of Intel FPGA acceleration devices significantly
reduces energy consumption when compared to a general single-core processor (CPU-based
platform).

Table 6 shows the average energy consumed (in Joules) per image sizes in three imple-
mentation cases:

1. optimized FPGA on Terasic De5-net device;
2. conventional CPU with default compiler optimization

3. optimized CPU through using an O3-compiler argument

Table 6: Energy consumption in Joules per image size

Image size Conventional single-core Optimised single-core =~ Optimised FPGA

144 x 256 0.078 0.033 0.003
240 x 426 0.363 0.155 0.011
360 x 480 0.363 0.155 0.011
480 x 640 0.651 0.274 0.017
720 x 1280 1.922 0.778 0.042
1080 x 1920 4.123 1.705 0.081
1440 x 2560 7.440 3.03 0.145
2160 x 3860 16.337 6.634 0.310
3480 x 5760 43.090 17.298 0.817

A point to consider is how to calculate the energy while the FPGA runs the operator. We
highlight two cases:

1. data transfer between CPU and FPGA—hence, both platforms are considered to calculate
the consumed energy

2. running the algorithm with FPGA—in this case, the Terasic De5-net is only considered
in energy profiling.
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Terasic De5-net FPGA - Energy Improvement compared to single-core implementations.
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Figure 7: Total energy improvements when using the Terasic De5-net FPGA device. The energy im-
provement factor is normalized to the conventional and optimized implementations on the single-core
processing element.

Figure 7 summarizes the energy improvement factor gained by using the Intel FPGA technology
over using a regular single-core computation platform. As per the values in Figure 7, there is
up to 21 times improvement compared to the optimized single-core design and up to 53 times
compared to the conventional design. As per the values in Table 6, the improvement factor
increases as the image size increases.

7 CONCLUSIONS

This study uses the Intel FPGA technology to demonstrate the feasibility of using this platform
to improve the runtime and the energy consumption factors when running a common edge
detection algorithm. We modified the proposed edge detection implementation according
to the FPGA platform in which the task-parallel model is used to break the main task into
multiple, simultaneously running subtasks, while the use of channels reduces the memory
access time significantly. Other optimizations techniques are also used to reduce the initiation
interval and to create an efficient pipeline structure to maximize the overall performance. The
OpenCL framework is used to create an optimized design with a high level of abstraction such
that it reduces the complexity of the hardware solutions. Our results demonstrate significant
improvements in terms of running time and energy consumption, achieved by using the Intel
FPGA technology.
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