
SACJ 31(2) December 2019
Research Article

Improving functional density of time-critical
applications using hardware-based dynamic
reconfiguration and bitstream specialisation
Rikus le Roux, George van Schoor, Pieter van Vuuren
School of Electrical, Electronic and Computer Engineering, North-West University, Potchefstroom, South-Africa

ABSTRACT
The dynamic reconfiguration of an FPGA has many advantages, but the overhead from the process reduces the functional
density of applications. Functional density is an indication of the composite benefits a reconfigured application obtains
above its generic counterpart and measures the computational throughput per unit hardware resources. Typically,
only quasi-static applications obtain a functional density advantage by dynamically reconfiguring its parameters.
Contributing to the functional density reduction of applications with tight time constraints is the overhead to generate
a new configuration, and the time it takes to load it onto the device. Normally these applications have to reuse their
hardware numerous times between configurations before obtaining a functional density advantage. The most promising
reconfiguration method to improve functional density with minimal hardware reuse was one that extracts certain
characteristics from the bitstream and then implements a bitstream specialiser that generates new hardware at bit-level
while the device is being reconfigured. While it was shown that this method allows reconfiguration of an application
in real-time, its effect on functional density was not determined. This paper will show that a significant increase in
functional density can be achieved for applications where reconfiguration is required before the next execution cycle of
the application.

Keywords: Reconfiguration, functional density, direct bitstream manipulation, bitstream specialisation

Categories: • Hardware ∼ Reconfigurable logic and FPGAs • Computer systems organization ∼ Other architectures

Email:
Rikus le Roux rikuslr@gmail.com (CORRESPONDING),
George van Schoor george.vanschoor@nwu.ac.za,
Pieter van Vuuren pieter.vanvuuren@nwu.ac.za

Article history:
Received: 14 Jun 2019
Accepted: 18 Oct 2019
Available online: 20 Dec 2019

1 INTRODUCTION

Traditionally, the reconfiguration of an FPGA is not only resource intensive, but the overhead from this
process significantly reduces the functional density. This is especially prominent when the application
has an extremely short execution time and its hardware cannot be reused between reconfigurations.
The two contributors to the reconfiguration overhead are the time it takes to generate new hardware

Le Roux, R.R., Van Schoor, G. and Van Vuuren, P.A. (2019). Improving functional density of time-critical applications using
hardware-based dynamic reconfiguration and bitstream specialisation. South African Computer Journal 31(2), 162–
177. https://doi.org/10.18489/sacj.v31i2.786

Copyright © the author(s); published under a Creative Commons NonCommercial 4.0 License (CC BY-NC 4.0).
SACJ is a publication of the South African Institute of Computer Scientists and Information Technologists. ISSN 1015-7999
(print) ISSN 2313-7835 (online).

mailto:rikuslr@gmail.com
mailto:george.vanschoor@nwu.ac.za
mailto:pieter.vanvuuren@nwu.ac.za
https://doi.org/10.18489/sacj.v31i2.786
http://creativecommons.org/licenses/by-nc/4.0/


Le Roux, R, Van Schoor, G. and Van Vuuren, P.: Improving functional density of time-critical applications 163

and the time it takes to transfer these new configurations from an external memory location to the
device’s configuration memory.

A promising method to reduce both parameters is to use hardware-controlled reconfiguration.
This method involves generating the new hardware beforehand, storing the configuration data in
the FPGA’s block random access memory (BRAM), and using a hardware-based finite state machine
to facilitate the reconfiguration process (le Roux, van Schoor, & van Vuuren, 2015). The problems
with this approach are that the configurations need to be known beforehand, and since the FPGA’s
BRAM is extremely limited, only a small subset of configurations can be stored.

A balance between functional density and modularity can be achieved by bitstream specialisation,
a term used by Bruneel (2011) who proposed different techniques to adapt the configuration of an
FPGA using an additional layer of abstraction (Bruneel & Stroobandt, 2010; Heyse & Stroobandt,
2015). This layer is required since the proprietary nature of an FPGA’s bitstream prevents direct
bitstream manipulation. This unfortunately reduces functional density since it increases reconfiguration
time or throughput. Le Roux, van Schoor and van Vuuren (2019) proposed a specialisation method
for Xilinx® FPGAs that allows the bitstream to be specialized in real-time while it is being transferred
to the FPGA’s configuration logic. It is based on the BRAM-based reconfiguration architecture the
researchers proposed in le Roux, van Schoor, and van Vuuren (2014, 2015), but with an added
hardware specialiser implemented in the FPGA fabric. The authors have shown a significant decrease
in reconfiguration time, which should improve functional density, but this was not investigated.

This paper aims to determine the functional density advantage of le Roux, van Schoor, and
van Vuuren (2019)’s proposed reconfiguration method. It uses a distributed multiply-accumulate
(MAC) as a baseline application, which is then reconfigured using five of the most common techniques
for modifying the circuit. The functional density of each method is then calculated and compared. A
Xilinx® Virtex®-5 XCVFX70T FPGA was used for implementation, since this is the same device le Roux
et al. (2019) used to showcase their bitstream specialiser. In theory any Xilinx® FPGA can be used
by applying the method proposed by le Roux et al. (2019), but the FPGA architectures from other
vendors were not analysed.

The paper begins by discussing functional density in Section 2. Thereafter an overview of the
bitstream specialisation process is given in Section 3. It then continues to illustrate the functionality
and advantages of the specialiser by reconfiguring a distributed multiply accumulate (MAC) in
Section 4. This reconfiguration method is then compared to the most common reconfiguration
methods, and their implementation discussed in Section 5. The results of this reconfiguration process
are then given in Section 6 and discussed in Section 7. The paper is concluded in Section 8.

2 OVERVIEW OF FUNCTIONAL DENSITY

Functional density (D) (Wirthlin & Hutchings, 1998) was first proposed to measure the composite
benefits of dynamic reconfiguration above its static generic counterpart, and measures the computational
throughput (in operations per second) per unit hardware resources. For the reconfigurable case, this
is defined by Equation 1:

https://doi.org/10.18489/sacj.v31i2.786

https://doi.org/10.18489/sacj.v31i2.786


Le Roux, R, Van Schoor, G. and Van Vuuren, P.: Improving functional density of time-critical applications 164

Dr =
1

Ar(Tr,exec + Trecon f )
(1)

where Dr denotes the reconfiguration functional density, Ar the size of the area to be reconfigured,
Tr,exec the execution time of the reconfigurable implementation, and Trecon f the reconfiguration time.
If the hardware component can be used multiple times before reconfiguration is required, Trecon f can
be amortized over several executions, n, thus increasing the functional density, as seen in Equation 2:

Dr =
1

Ar(Tr,exec +
Trecon f

n )
. (2)

There are thus four ways functional density can be improved:

1. Optimizing the execution time of the application

2. Reducing the area that needs to be reconfigured

3. Minimizing the reconfiguration time

4. Reusing the hardware multiple times between reconfigurations

The highest functional density is obtained if the circuit is static (i.e. not reconfigured) and optimized
for a specific application. Traditionally, if modularity is required, multiple circuits are implemented
in parallel and the output path determined according to certain parameters. This approach increases
the area utilization (Ar) which reduces the functional density. Once the application is reconfigured,
the area utilisation is reduced to the area utilised by the application and the logic required to facilitate
the reconfiguration process. Unfortunately the reconfiguration time (Trecon f ) further reduces the
functional density.

3 OVERVIEW OF THE BITSTREAM SPECIALISATION PROCESS

The specialiser proposed by le Roux et al. (2019) utilises configuration strings derived from extracted
bitstream characteristics. The general idea is that any lookup table (LUT) can be expressed as a truth
table, with each line representing an individual Boolean function. The authors have shown that
the 64-bit parameter used to initialise the LUT can be used in conjunction with the address lines to
determine the output of the truth table. Once the required LUT primitive is identified, the associated
Boolean expression can be derived by using the initialization parameter as an additional address
line for its truth table. Using the BRAM-based hardware controlled reconfiguration architecture, this
Boolean expression is evaluated using the configuration strings. The results are then injected into the
bitstream at the required frame address while the base configuration is loaded from the memory and
transferred to the device’s configuration memory via the internal configuration access port (ICAP).

Figure 1 shows the top level block diagram of the specialiser. The specialisation process is
triggered by a rising edge on ENABLE, whereafter a configuration string is produced on ConfigString,

https://doi.org/10.18489/sacj.v31i2.786

https://doi.org/10.18489/sacj.v31i2.786


Le Roux, R, Van Schoor, G. and Van Vuuren, P.: Improving functional density of time-critical applications 165

Specialiser

INIT_param

ENABLE

SLICE_type

RESET

ConfigString

ConfigReady

Figure 1: Block diagram of the top-level bitstream specialiser initialisation

based on the initialisation parameter (INIT_param) and LUT construct type (SLICE_type). Because of
the asynchronous nature of the specialiser, the ConfigReady pin is used to establish handshaking with
the rest of the hardware.

4 LOOKUP TABLE RECONFIGURATION

To illustrate the functionality and advantages of the specialiser, a fixed-point distributed MAC was
selected and implemented, as shown in Figure 2. Distributed arithmetic performs multiplication
operations using lookup table based schemes (Peled & Liu, 1974; White, 1989). It specifically
targets the sum of products computation, predominately featuring in many important digital signal
processing (DSP) filtering and frequency transformation functions. It can be used to implement
a wide variety of applications, such as signal processing (Lu, Duan, Halak, & Kazmierski, 2019),
filters (Kalaiyarasi & Reddy, 2019; Kumar, Shrivastava, Tiwari, & Mishra, 2019), control systems
(Chan, Moallem, & Wang, 2004, 2007), system-on-chip (SoC) applications (Khawam, Arslan, &
Westall, 2004) and discrete cosine transforms (Pan, Shams, & Bayoumi, 1999; Sowmya & Mathew,
2019; Yu & Swartzlander Jr., 2001). All these implementations utilise lookup tables to store certain
aspects of the computation. This is of particular interest, because le Roux et al. (2019)’s bitstream
specialiser specifically targets LUTs. This implies that the configuration of any of these designs can
be specialised.

5 IMPLEMENTATION

Traditionally, if an application requires a MAC with different outputs, each datapath has to be
implemented in parallel with the output being dependent on the path currently selected. This is
referred to as a static application, because the hardware remains constant for each MAC output.
Depending on the number of datapaths required, this implementation usually yields a high functional
density, because no additional time is added to the execution time.

https://doi.org/10.18489/sacj.v31i2.786

https://doi.org/10.18489/sacj.v31i2.786


Le Roux, R, Van Schoor, G. and Van Vuuren, P.: Improving functional density of time-critical applications 166

DA_MAC

x1(15:-16)

x2(15:-16)

x3(15:-16)

y(15:-16)

RESET

SoftRST

RAM32X8S

INIT_00

INIT_01

INIT_02

INIT_03

INIT_04

INIT_05

INIT_06

INIT_07

+

x+yx
y

>>1

x1b

x2b

x3b

x4b
x4(15:-16)

CLK

Figure 2: Block diagram representation of a multiply-accumulate implemented using distributed arithmetic

5.1 Base design: Static implementation
A MAC with nine possible datapaths was selected as the base design. Since it is not reconfigured, it
is also referred to as a static, or generic, application. To cater for different outputs, each datapath
has to be implemented in parallel, with a switch selecting the required path. This is shown in
Figure 3. Even though many more datapaths could exist in practise, it is impossible to cater for each
configuration. For this reason, only eight alternative paths were selected for comparison. However,
keep in mind that some of the reconfiguration methods could allow for an indefinite number of
configurations. The total area utilization of this application is 813 LUTs. This includes additional
logic for the configuration selector and clock management.

5.2 Reconfiguration methods
Using this static implementation as a comparison base, the distributed arithmetic MAC shown in
Figure 2 was implemented and reconfigured using different techniques to provide different outputs,
and their functional densities compared. The reconfiguration methods used are:

1. Configuration swapping with run-time FPGA toolflow: Uses module-based reconfiguration to
swap between configurations. In this implementation, the different configurations are stored in
CompactFlash and the MAC reconfigured by swapping these configurations with the one
currently on the device. This works fine for a small number of configurations, but for
implementations with a larger set of configurations, these have to be generated at run-time
using the Xilinx® tool flow. is also discussed for this implementation.

2. Configuration swapping with software specialiser: Generating new configurations at run-time
adds significant overhead to the reconfiguration process. To mitigate this, the specialiser shown
in Section 3 was implemented in software and added to the aforementioned configuration

https://doi.org/10.18489/sacj.v31i2.786

https://doi.org/10.18489/sacj.v31i2.786


Le Roux, R, Van Schoor, G. and Van Vuuren, P.: Improving functional density of time-critical applications 167

DA_MAC_8

ConfigSelect

DA_MAC_7

DA_MAC_6

DA_MAC_5

DA_MAC_4

DA_MAC_3

DA_MAC_2

DA_MAC_1

DA_MAC_0
(base)

X1(15:-16)

X2(15:-16)

X3(15:-16)

X4(15:-16)

CLK

RESET

X1(15:-16)

X2(15:-16)

X3(15:-16)

X4(15:-16)

CLK

RESET

X1(15:-16)

X2(15:-16)

X3(15:-16)

X4(15:-16)

CLK

RESET

X1(15:-16)

X2(15:-16)

X3(15:-16)

X4(15:-16)

CLK

RESET

X1(15:-16)

X2(15:-16)

X3(15:-16)

X4(15:-16)

CLK

RESET

X1(15:-16)

X2(15:-16)

X3(15:-16)

X4(15:-16)

CLK

RESET

X1(15:-16)

X2(15:-16)

X3(15:-16)

X4(15:-16)

CLK

RESET

X1(15:-16)

X2(15:-16)

X3(15:-16)

X4(15:-16)

CLK

RESET

X1(15:-16)

X2(15:-16)

X3(15:-16)

X4(15:-16)

CLK

RESET

y(15:-16)

y = 70

y = 224

y = 119

y = 263

y = 103

y = 228

y = 32

y = 64

y = 93

Figure 3: Architecture of the parallel static multiply-accumulate

swapping method. In this instance, instead of using the FPGA toolflow during run-time to
generate new configurations, the software specialiser is used.

3. CLB bit toggle: This implementation uses a Xilinx® reconfiguration method by allowing direct
manipulation of bits inside a CLB using an embedded processor. Like the previous implementation,
this reduces configuration overhead by not having to transfer an entire bitstream to the
configuration memory.

4. Shift registers: In this implementation the shift register functionality of modern Xilinx® FPGA’s
LUTs are used to adapt their configuration. In this setup, the configuration of a LUT can be
changed by simply shifting a new value into the shift register lookup table (SRL).

5. Hardware-based reconfiguration: In this implementation, the bitstream specialiser of Section 3
is implemented in the FPGA fabric, along with the necessary circuitry to manage the reconfiguration
process. Not only does this technique provide reconfiguration with the least amount of
overhead, it also allows the reconfiguration logic to be clocked at frequencies above the 100
MHz recommended by Xilinx®.

To maintain uniformity between the different reconfiguration methods, each process was clocked at
100 MHz, except for the last design, which was also clocked at 200 and 300 MHz respectively to
illustrate the increase in functional density at higher clock speeds. For designs with an embedded
PowerPC® (such as the second reconfiguration method above), the processor bus was clocked at 200
MHz. These processors also have instruction and data cache built into the silicon of the hard processor,
which, when enabled, provides a performance increase without compromising the area utilization or

https://doi.org/10.18489/sacj.v31i2.786

https://doi.org/10.18489/sacj.v31i2.786


Le Roux, R, Van Schoor, G. and Van Vuuren, P.: Improving functional density of time-critical applications 168

timing Fletcher, 2005. As such, the cache was enabled for each design with an embedded PowerPC®

to provide a best case comparison.

5.2.1 Method 1: Configuration swapping with run-time FPGA toolflow
The first reconfigurable implementation assumes that the datapaths are, just like in the static
implementation, known beforehand. The difference is that only one datapath is implemented at a
time and in order to switch paths, the device has to be reconfigured. Therefore, all eight alternate
configurations were generated beforehand and stored in external memory. When a different datapath
is required, the specific section of the FPGA is reconfigured with the matching configuration. Two types
of reconfiguration are available; module-based and difference-based (Eto, 2007; Kshirsagar & Sharma,
2011). The former configures an entire section of the device and requires larger configurations to be
stored in memory. The latter reconfigures only the portion of the device that differs and therefore
typically requires smaller configurations. An additional benefit is that a smaller configuration
requires less time to be transferred from the external memory-space and will result in shortened
reconfiguration time. For these reasons difference-based reconfiguration was selected to implement
this first reconfiguration method.

The architecture used is shown in Figure 4 and requires a total of 2008 LUTs to implement this
design. As can be seen, a PowerPC® 440 is used to facilitate the reconfiguration process. This is a
hard-core processor embedded into the FPGA fabric, and uses no LUTs for its implementation. If
a MicroBlaze™ soft-core processor, which is implemented using FPGA fabric, is used in lieu of the
PowerPC® processor, an additional 600 LUTs are required. As such, the embedded PowerPC® was
used for all implementations to reduce the area utilisation.

This implementation only works for a small number of configurations (because of the external
memory requirements). This means that for applications requiring larger configuration sets, only a
subset can be stored. The solution would then be to generate the required configurations at run-time
using the conventional FPGA tool flow, however, this will either add a significant overhead in terms of
time, or result in non-optimal configurations. For instance, running this process on an Intel® Core™ i7
M620 clocked at 2.67 GHz, with 4.00 GiB RAM and hyper-threading enabled in the toolset, requires
an average of 521 seconds to generate the full configuration. If difference-based reconfiguration is
used, this time can be reduced to 81 seconds, which is still significant for an application executing in
real-time.

5.2.2 Method 2: Configuration swapping with software specialiser
The second reconfiguration method aims to alleviate this time-overhead by adding the bitstream
specialiser proposed in Section 3 in software to the PowerPC®. As such, it uses a similar architecture
shown in Figure 3, with the exception of the specialiser that is implemented in software.

5.2.3 Method 3: CLB bit toggle
Both the aforementioned reconfiguration implementations require a configuration to be transferred
across a bus from the external memory-space to the configuration memory. As such, both these

https://doi.org/10.18489/sacj.v31i2.786

https://doi.org/10.18489/sacj.v31i2.786


Le Roux, R, Van Schoor, G. and Van Vuuren, P.: Improving functional density of time-critical applications 169

Bitstreams

CompactFlash card

PowerPC 440

Distributed MAC

Output

P
LB

 c
o

n
tr

o
lle

r

BRAM

UART

Push 
Buttons

DIP 
switches

Compact
Flash

HWICAP

Reconfig
Done

XPS timer

Configuration 
memory

X1(15:-16)

X2(15:-16)

X3(15:-16)

X4(15:-16)

CLK

RESET

Digital clock 
manager

FPGA

Figure 4: Architecture of the distributed MAC reconfigured using configuration swapping

implementations have additional overhead. In order to mitigate this, the Xilinx® predefined functions
XHwIcap_SetClbBits and XHwIcap_GetClbBits were used to toggle the configuration of the LUTS. The
result is an extremely fast adaptation of the LUT configuration, but this method is only capable of
targeting specific LUTs. The resulting architecture requires 1562 LUTs to implement and is shown in
Figure 5.

5.2.4 Method 4: Shift registers
A similar approach to toggling the CLB-bits, is using shift registers to change the configuration of the
LUTs (Davidson, Abouelella, Bruneel, & Stroobandt, 2012; Glette, Torresen, & Hovin, 2009; Heyse,
Farisi, Bruneel, & Stroobandt, 2012). In this architecture, the configuration bits are arranged as a
shift register and shifted into the SRL as a new truth table. The result is a significant improvement
in reconfiguration time with no unnecessary overhead. An added benefit is that this reconfiguration
method also allows multiple LUTs to be reconfigured in parallel.

5.2.5 Method 5: Hardware-based reconfiguration
The final implementation utilises the hardware controlled reconfiguration controller discussed in
Section 3 to facilitate the reconfiguration process. This controller is implemented in the FPGA fabric
to form the high-level architecture shown in Figure 6. When new MAC constants are required, the
specialisation process is triggered and new LUT values calculated. These new values are then sent

https://doi.org/10.18489/sacj.v31i2.786

https://doi.org/10.18489/sacj.v31i2.786


Le Roux, R, Van Schoor, G. and Van Vuuren, P.: Improving functional density of time-critical applications 170

Distributed MAC

Output

P
LB

 c
o

n
tr

o
lle

r

BRAM

UART

Push 
Buttons

DIP 
switches

HWICAP

Reconfig
Done

XPS timer

Configuration 
memory

X1(15:-16)

X2(15:-16)

X3(15:-16)

X4(15:-16)

CLK

RESET

Digital clock 
manager

FPGA

XHwIcap_SetClbBits
XHwIcap_GetClbBits

PowerPC 440

Figure 5: Architecture of the distributed MAC reconfigured using Set/GetClbBits

to the Reconfiguration controller, which is responsible for injecting these values into the bitstream
read from the block RAM, and transferring it to the configuration memory via the ICAP. The primary
advantage of this architecture is that it is not only possible to reconfigure with the least amount of
overhead, but it is also possible to generate configurations for any number of constants.

6 RESULTS

The MAC was implemented on a Xilinx® ML507 development board (Xilinx Inc., 2011), whereafter
the specialisation time (i.e. the time it takes to generate new hardware) and the reconfiguration time
(i.e. the time it takes to load the new hardware on the device) were measured using an oscilloscope.
The output of each reconfiguration process was verified using an “if"-statement to compare the
predicted output with the actual result. If the two values match, an LED on the development board is
illuminated. Conversely, the LED is off when the values are mismatched. Because the reconfiguration
process temporarily causes these two values to differ, the reconfiguration time can be measured from
the time the active LED turns off and back on again. The specialisation response was measured by
illuminating a second LED once the reconfiguration process is triggered and turning it off once a
new configuration is ready and being transferred to the device.

The rigidity of the timing results was determined using a command line batch tool, or the
PowerPC® XPS timer. In some cases the reconfiguration time can also be calculated by using the ICAP
clock frequency and the size of the configuration time. The results are given in Figures 7a to 7d for

https://doi.org/10.18489/sacj.v31i2.786

https://doi.org/10.18489/sacj.v31i2.786


Le Roux, R, Van Schoor, G. and Van Vuuren, P.: Improving functional density of time-critical applications 171

IC
A

P

CLK

CE

WRITE

I[31:0]

O[31:0]

BUSY

C
o

n
figu

ratio
n

 
m

em
o

ry

Reconfiguration 
controller

Bitstream

B
lo

ck
 R

A
M

Bitstream 
specializer

ADDRESS

CONFIGURATION 
DATA

Sp
e

ci
al

iz
at

io
n

 
cr

it
er

ia

INIT_param

ENABLE

LUT type

LUT_baseAddress

C
o

n
fi

gS
tr

in
g

Reconfiguration 
trigger

CLK

RST

DCM
Reset

CLK_BUF

C
o

n
fi

gR
ea

d
y

SLICE_type

Sp
ec

ia
liz

er
R

ST

Distributed 
arithmetic 
multiply-

accumulate

CLK

RESET

X
1

X
2

X
3

� = �����

�

���

Figure 6: Architecture of the MAC reconfigured with hardware-based reconfiguration

the conventional reconfiguration methods, and Figures 7e and 7f for the proposed hardware-based
reconfiguration. Using this information the functional density of each of the designs can be calculated
and compared to the static design.

The execution time of the static design can be calculated from the number of clock cycles it takes
to complete a single MAC-instruction and the clock period. In this instance, 35 clock cycles are
required to process one instruction. Clocking the application at 100 MHz yields an execution time of
350 ns. Because the static design requires 813 LUTs to be implemented, the functional density can
be calculated using Equation 3, with Te the execution time of the application and A the utilized area:

Dstat ic =
1

ATe
=

1
813(350× 10−9)

= 3514 operations/s (3)

Table 1 shows a summary of the functional density for each implementation, and Figure 8 illustrates
the functional density of each design as a function of the average number of executions between
hardware changes.

7 DISCUSSION

The static implementation with multiple datapaths yields the best functional density, because no
additional overhead is required to switch between paths. However, this comes at the cost of an
increase in area utilisation to accommodate each parallel datapath.

When an embedded PowerPC® is added to facilitate the reconfiguration process, the functional
density is immediately reduced by the significant amount of resources required to implement these
designs. Despite having decent configuration times, the time required to generate new hardware

https://doi.org/10.18489/sacj.v31i2.786

https://doi.org/10.18489/sacj.v31i2.786


Le Roux, R, Van Schoor, G. and Van Vuuren, P.: Improving functional density of time-critical applications 172

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−3

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time [s]

V
ol

ta
ge

 [V
] 545 µs

(a) Reconfiguration response of the
configuration swapped design.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time [s]

V
o

lt
a

g
e

 [
V

] 1.079 ms398 µs

Specialisation
response

Reconfiguration
response

(b) Specialisation and reconfiguration
response of the configuration swapped
design with specialiser.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time [s]

V
ol

ta
ge

 [V
] 7.26 µs

(c) Reconfiguration response of the CLB
bit toggle functions.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-6

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Time [s]

V
o
lt
a

g
e

 [
V

]

320 ns

(d) Reconfiguration response of the SRL
reconfiguration method.

0 1 2 3 4 5 6 7 8 9

x 10
−8

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time [s]

V
ol

ta
ge

 [V
]

Reconfiguration
trigger

Specialisation
completed

2.1 ns

(e) Specialisation response of the
hardware-based reconfiguration.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−5

−1

0

1

2

3

4

5

Time [s]

V
ol

ta
ge

 [V
] 3.491 µs

(f) Reconfiguration response of the
hardware-based reconfiguration.

Figure 7: Oscillograms of the measured specialisation and/or reconfiguration response of the different
reconfiguration methods

https://doi.org/10.18489/sacj.v31i2.786

https://doi.org/10.18489/sacj.v31i2.786


Le Roux, R, Van Schoor, G. and Van Vuuren, P.: Improving functional density of time-critical applications 173

Table 1: Functional density for each of the designs

Nr. Implementation Area (A)

[#LUTs]

Execution time

(Te)

Generation

time (Tgen)

Configuration time

(Tcon f )

Functional

density (D)1

Generic (Static) multiply-accumulate 813 350 ns 0 0 3,514.00

1 Configuration swapping (run-time) 1,685 350 ns 80.6 s 544.97 µs 7.36× 10−6

2 Configuration swapping (with software specialiser) 1,589 350 ns 398.00 µs 1.08 ms 425.86× 10−3

3 CLB bit toggle reconfiguration 1,562 350 ns 78.22 s 7.26 ms 8.18× 10−6

4 SRL reconfiguration 177 350 ns 21.16 s 320 ns 267.00× 10−6

5 Dynamic reconfiguration (100 MHz) 362 350 ns 2.10 ns 3.49 µs 718.73

6.1 Dynamic reconfiguration (200 MHz) 362 350 ns 2.10 ns 1.76 µs 1,311.00

6.2 Dynamic reconfiguration (300 MHz) 362 350 ns 2.10 ns 1.17 µs 1,814.00

1 In operations per second per unit hardware resources

10
0

10
2

10
4

10
6

10
8

10
10

10
12

0

2000

4000

6000

8000

10000

12000

14000

16000

Number of executions (n)

F
u
n
ct

io
n
a
l d

e
n
s
ity

 [
O

p
e
ra

tio
n
s
/L

U
T

]

 

 

Generic
Runtime
Software specializer
CLB bit toggle
SRL
Hardware based @100MHz
Hardware based @200MHz
Hardware based @300MHz

Figure 8: Illustration of functional density as a function of the number of executions

https://doi.org/10.18489/sacj.v31i2.786

https://doi.org/10.18489/sacj.v31i2.786


Le Roux, R, Van Schoor, G. and Van Vuuren, P.: Improving functional density of time-critical applications 174

for these implementations is, in most cases, significantly longer. The only exception is when
configuration swapping is used in conjunction with the software specialiser. However, this is still
significantly less than the functional density of the static design and the dynamic reconfiguration
implementations. In this latter case, both the generation and configuration times are comparable to
the static implementation. Unfortunately, the overhead induced by the reconfiguration process still
results in a lower functional density than their static counterpart.

The main reason behind this is because the hardware has to be reused a minimum number of times
before reconfiguration becomes feasible. By reusing the hardware multiple times, the overhead of the
reconfiguration is amortised over each iteration and a break-even point is reached. This is defined
by Equation 4, with Tgen the time to generate new hardware, Tcon f the time to configure the device,
Tr,exec the execution time of the application, Ts,exec the execution time of the static implementation,
As the static area and Ar the reconfigurable area:

n=
Ar(Tcon f + Tgen)

AsTs,exec − Ar Tr,exec
. (4)

As seen in Figure 8, none of the conventional reconfiguration methods are able to reach this break-
point, because of the fast execution time of the MAC. The only conventional reconfiguration method
capable of reaching the break-even point, and eventually exceeding the static implementation’s
functional density, is the SRL reconfiguration method. The overhead from the other conventional
techniques is simply too large to improve the functional density.

Conversely, the hardware-based reconfiguration yields a significant improvement over the other
reconfiguration techniques. Even though it does not obtain the same functional density as the SRL
reconfiguration after multiple hardware reuse, it only requires the hardware to be changed once
every eight execution cycles when clocked at 100 MHz to obtain a functional density advantage.
This can be improved even further by clocking the design at higher frequencies. At 200 MHz only
four execution cycles are required and at 300 MHz this is reduced to 2.7.

It is worth noting that each graph in the figure is relative. For this study, the MAC was bound by
nine datapaths in the static implementation. To expand on the number of datapaths more hardware
has to be added in parallel, which will increase the functional density, because of an increase in area.
For example, if another nine datapaths are required, the area would increase to about 1,600 LUTs—
halving the functional density. The same applies to the reconfigurable designs. In this particular
study, only the constants of the MAC are reconfigured. If the reconfiguration processes are adapted
to change the architecture of the MAC as well, the area would again influence the functional density
of each design.

8 CONCLUSION

The work presented in this paper used the proposed hardware-based reconfiguration method of le
Roux et al. (2019) to improve the functional density of an application that is typically not reconfigured.
These applications in general have strict time constraints and short execution times, which give them

https://doi.org/10.18489/sacj.v31i2.786

https://doi.org/10.18489/sacj.v31i2.786


Le Roux, R, Van Schoor, G. and Van Vuuren, P.: Improving functional density of time-critical applications 175

excellent functional densities. As a representative application, a distributed MAC was selected as a
baseline, static application, which was then reconfigured using different techniques.

The results showed that the static application yielded the highest functional density, which was
immediately reduced once the application was reconfigured. This can be attributed to the overhead
involved in the process. This is particularly true for the configuration swapping methods that use the
conventional Xilinx® toolflow, due to their long hardware specialisation and reconfiguration times.
None of these methods ever reach a break-even point where the overhead is amortised over multiple
executions.

Only the hardware based and SRL reconfiguration methods reach break-even points and exceed
the functional density of the static application. Even though the SRL reconfiguration initially reduces
the functional density significantly, this method eventually quadruples the functional density of the
static application. However, this point is only reached if the hardware is reused 109 times between
reconfigurations. Even though the hardware-based reconfiguration method does not obtain the same
functional density advantage as the SRL reconfiguration, it improves on the break-even point by
requiring hardware to be reused only eight times when clocked at the Xilinx® recommended 100
MHz. This result is significant since it is an indication that hardware-based reconfiguration could
provide a functional density advantage to a real-time application.

The latest 7-series FPGAs from Xilinx® have a significantly higher performance than the Virtex-
5 FPGA this study was based on. Since this will affect the functional density, le Roux et al.’s
reconfiguration method and its effect on functional density for these devices need to be investigated.

9 ACKNOWLEDGEMENTS

This research was done under the Technology and Human Resources for Industry Programme (THRIP)
and Oppenheimer Memorial Trust Grant (Ref. 19328/01).

References

Bruneel, K. (2011). Efficient circuit specialization for dynamic reconfiguration of FPGAs (Doctoral
dissertation, PhD thesis, Ghent University). Retrieved from http://www.iwls.org/iwls2013/
invited/bruneel.pdf

Bruneel, K., & Stroobandt, D. (2010). TROUTE: A reconfigurability-aware FPGA router. In P. Sirisuk,
F. Morgan, T. El-Ghazawi, & H. Amano (Eds.), Reconfigurable Computing: Architectures, Tools
and Applications (pp. 207–218). https://doi.org/10.1007/978-3-642-12133-3_20

Chan, Y. F., Moallem, M., & Wang, W. (2004). Efficient implementation of PID control algorithm
using FPGA technology. In 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat.
No.04CH37601) (Vol. 5, pp. 4885–4890). https://doi.org/10.1109/CDC.2004.1429572

Chan, Y. F., Moallem, M., & Wang, W. (2007). Design and implementation of modular FPGA-based
PID controllers. IEEE transactions on industrial electronics, 54(4), 1898–1906. https://doi.org/
10.1109/TIE.2007.898283

https://doi.org/10.18489/sacj.v31i2.786

http://www.iwls.org/iwls2013/invited/bruneel.pdf
http://www.iwls.org/iwls2013/invited/bruneel.pdf
https://doi.org/10.1007/978-3-642-12133-3_20
https://doi.org/10.1109/CDC.2004.1429572
https://doi.org/10.1109/TIE.2007.898283
https://doi.org/10.1109/TIE.2007.898283
https://doi.org/10.18489/sacj.v31i2.786


Le Roux, R, Van Schoor, G. and Van Vuuren, P.: Improving functional density of time-critical applications 176

Davidson, T., Abouelella, F., Bruneel, K., & Stroobandt, D. (2012). Dynamic circuit specialisation for
key-based encryption algorithms and DNA alignment. International journal of reconfigurable
computing, 2012, 1–13. https://doi.org/10.1155/2012/716984

Eto, E. (2007). Difference-based partial reconfiguration (tech. rep. No. XAPP290 (v2.0)). Xilinx Inc.
Fletcher, B. H. (2005). FPGA embedded processors: Revealing true system performance. In Embedded

Systems Conference San Francisco 2005 (p. 18). ETP-367. Memec.
Glette, K., Torresen, J., & Hovin, M. (2009). Intermediate level FPGA reconfiguration for an online

EHW pattern recognition system. In 2009 NASA/ESA Conference on Adaptive Hardware and
Systems (pp. 19–26). https://doi.org/10.1109/AHS.2009.46

Heyse, K., Farisi, B. A., Bruneel, K., & Stroobandt, D. (2012). Automating reconfiguration chain
generation for SRL-based run-time reconfiguration. In O. C. S. Choy, R. C. C. Cheung, P. Athanas,
& K. Sano (Eds.), Reconfigurable Computing: Architectures, Tools and Applications (pp. 1–12).
https://doi.org/10.1007/978-3-642-28365-9_1

Heyse, K., & Stroobandt, D. (2015). Avoiding transitional effects in dynamic circuit specialisation on
FPGAs. In Proceedings of the 52nd Annual Design Automation Conference (159:1–159:6). DAC
’15. https://doi.org/10.1145/2744769.2744802

Kalaiyarasi, D., & Reddy, T. K. (2019). Design and implementation of least mean square adaptive FIR
filter using offset binary coding based distributed arithmetic. Microprocessors and microsystems,
102884. https://doi.org/10.1016/j.micpro.2019.102884

Khawam, S., Arslan, T., & Westall, F. (2004). Synthesizable reconfigurable array targeting distributed
arithmetic for system-on-chip applications. In 18th International Parallel and Distributed
Processing Symposium, 2004. Proceedings. (pp. 150–158). https://doi.org/10.1109/IPDPS.
2004.1303136

Kshirsagar, R. V., & Sharma, S. (2011). Difference based partial reconfiguration. International journal
of advances in engineering & technology, 1(2), 194–197.

Kumar, P., Shrivastava, P. C., Tiwari, M., & Mishra, G. R. (2019). High-throughput, area-efficient
architecture of 2-D block FIR filter using distributed arithmetic algorithm. Circuits, systems,
and signal processing, 38(3), 1099–1113. https://doi.org/10.1007/s00034-018-0897-2

le Roux, R., van Schoor, G., & van Vuuren, P. (2014). A survey on reducing reconfiguration cost:
reconfigurable PID control as a special case. IFAC Proceedings Volumes, 47(3), 1320–1330. 19th
IFAC World Congress. https://doi.org/10.3182/20140824-6-ZA-1003.01544

le Roux, R., van Schoor, G., & van Vuuren, P. (2015). Block RAM-based architecture for real-time
reconfiguration using Xilinx® FPGAs. South African computer journal, 56(1). https://doi.org/
10.18489/sacj.v56i1.252

le Roux, R., van Schoor, G., & van Vuuren, P. (2019). Parsing and analysis of a Xilinx FPGA bitstream
for generating new hardware by direct bit manipulation in real-time. South African computer
journal. https://doi.org/10.18489/sacj.v31i1.620

Lu, Y., Duan, S., Halak, B., & Kazmierski, T. J. (2019). A cost-efficient error-resilient approach
to distributed arithmetic for signal processing. Microelectronics reliability, 93, 16–21. https:
//doi.org/10.1016/j.microrel.2018.12.007

https://doi.org/10.18489/sacj.v31i2.786

https://doi.org/10.1155/2012/716984
https://doi.org/10.1109/AHS.2009.46
https://doi.org/10.1007/978-3-642-28365-9_1
https://doi.org/10.1145/2744769.2744802
https://doi.org/10.1016/j.micpro.2019.102884
https://doi.org/10.1109/IPDPS.2004.1303136
https://doi.org/10.1109/IPDPS.2004.1303136
https://doi.org/10.1007/s00034-018-0897-2
https://doi.org/10.3182/20140824-6-ZA-1003.01544
https://doi.org/10.18489/sacj.v56i1.252
https://doi.org/10.18489/sacj.v56i1.252
https://doi.org/10.18489/sacj.v31i1.620
https://doi.org/10.1016/j.microrel.2018.12.007
https://doi.org/10.1016/j.microrel.2018.12.007
https://doi.org/10.18489/sacj.v31i2.786


Le Roux, R, Van Schoor, G. and Van Vuuren, P.: Improving functional density of time-critical applications 177

Pan, W., Shams, A., & Bayoumi, M. A. (1999). NEDA: A new distributed arithmetic architecture and
its application to one dimensional discrete cosine transform. In 1999 IEEE Workshop on Signal
Processing Systems. SiPS 99. Design and Implementation (Cat. No.99TH8461) (pp. 159–168).
https://doi.org/10.1109/SIPS.1999.822321

Peled, A., & Liu, B. (1974). A new hardware realization of digital filters. IEEE transactions on acoustics,
speech, and signal processing, 22(6), 456–462. https://doi.org/10.1109/TASSP.1974.
1162619

Sowmya, K. B., & Mathew, J. A. (2019). Adept-disseminated arithmetic-based discrete cosine
transform. In A. Abraham, P. Dutta, J. K. Mandal, A. Bhattacharya, & S. Dutta (Eds.), Emerging
Technologies in Data Mining and Information Security (pp. 379–384). https://doi.org/10.
1007/978-981-13-1951-8_34

White, S. A. (1989). Applications of distributed arithmetic to digital signal processing: a tutorial
review. IEEE ASSP magazine, 6(3), 4–19. https://doi.org/10.1109/53.29648

Wirthlin, M. J., & Hutchings, B. L. (1998). Improving functional density using run-time circuit
reconfiguration. IEEE transactions on very large scale integration (VLSI) systems, 6(2), 247–256.
https://doi.org/10.1109/92.678880

Xilinx Inc. (2011). ML505/ML506?ML507 evaluation platform (User guide No. XAPP347 (v3.1.2)).
Xilinx Inc. Retrieved from https://www.xilinx.com/support/documentation/boards_and_
kits/ug347.pdf

Yu, S., & Swartzlander Jr., E. E. (2001). DCT implementation with distributed arithmetic. IEEE
transactions on computers, 50(9), 985–991. https://doi.org/10.1109/12.954513

https://doi.org/10.18489/sacj.v31i2.786

https://doi.org/10.1109/SIPS.1999.822321
https://doi.org/10.1109/TASSP.1974.1162619
https://doi.org/10.1109/TASSP.1974.1162619
https://doi.org/10.1007/978-981-13-1951-8_34
https://doi.org/10.1007/978-981-13-1951-8_34
https://doi.org/10.1109/53.29648
https://doi.org/10.1109/92.678880
https://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
https://doi.org/10.1109/12.954513
https://doi.org/10.18489/sacj.v31i2.786

	Introduction
	Overview of functional density
	Overview of the bitstream specialisation process
	Lookup table reconfiguration
	Implementation
	Base design: Static implementation
	Reconfiguration methods
	Method 1: Configuration swapping with run-time FPGA toolflow
	Method 2: Configuration swapping with software specialiser
	Method 3: CLB bit toggle
	Method 4: Shift registers
	Method 5: Hardware-based reconfiguration


	Results
	Discussion
	Conclusion
	Acknowledgements

