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ABSTRACT
The Discrete Pulse Transform (DPT) makes use of LULU smoothing to decompose a signal into block pulses. The
most recent and effective implementation of the DPT is an algorithm called the Roadmaker’s Pavage, which uses
a graph-based algorithm that produces a hierarchical tree of pulses as its final output, shown to have important
applications in artificial intelligence and pattern recognition. Even though the Roadmaker’s Pavage is an efficient
implementation, the theoretical structure of the DPT results in a slow, deterministic algorithm. This paper
examines the use of the spectral domain of graphs and designing graph filter banks to downsample the algorithm.
We investigate the extent to which this speeds up the algorithm and allows parallel processing. Converting
graph signals to the spectral domain can also be a costly overhead, so methods of estimation for filter banks are
examined, as well as the design of a good filter bank that may be reused without needing recalculation. The
sampled version requires different hyperparameters in order to reconstruct the same textures of the image as the
original algorithm, selected previously either through trial and error (subjective) or grid search (costly) which
prevented studying the results on many images effectively. Here an objective and efficient way of deriving similar
results between the original Roadmaker’s Pavage and our proposed Filtered Roadmaker’s Pavage is provided. The
method makes use of the Ht-index which separates the distribution of information in the graph at scale intervals
by recursively calculating averages on decreasing subsections of the scale data stored. This has enabled empirical
research using benchmark datasets providing improved results. The results of these empirical tests showed that
using the Filtered Roadmaker’s Pavage algorithm consistently runs faster, using less computational resources,
while having a positive SSIM (structural similarity) with low variance. This provides an informative and faster
approximation to the nonlinear DPT, a property which is not standardly achieveable.
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1 INTRODUCTION

The Discrete Pulse Transform (DPT) decomposes a signal into block pulses using LULU smooth-
ers in such a way that the signal can be reconstructed fully (Fabris-Rotelli & Anguelov, 2010).
The LULU smoothers Lk and Uk are applied recursively from k = 1 to K to obtain the DPT,
the sequential decomposition of a signal f (such as an image) into scale levels D1(f), D2(f),
D3(f), ..., DK(f) such that the sum of these gives the original signal f =

∑K
k=1Dk(f). Each

scale level consists of block pulses (connected components) of size k.
This in turn has been used to detect features in signals and extract textures from images by

partial reconstruction of the pulses. Feature and texture extraction has important applications
in artificial intelligence, pattern recognition and computer vision (Laurie & Rohwer, 2007).
Applying LULU operators directly on a signal using first principles until the signal is fully
decomposed results in an operation of O(N3) complexity (Laurie, 2010). To create a more
feasible implementation, a graph based algorithm known as the Roadmaker’s algorithm was
developed, which reduced the computational complexity to O(N) (Laurie & Rohwer, 2006).
The main shortfall of the Roadmaker’s algorithm is that its storage of block pulses requires a
hierarchical tree containing sparse matrices at each node, which makes extraction of the pulses
(and therefore reconstruction of the image) slow as well as storage requirements of the data
structure relatively high. An improvement on this comes in the form of the Roadmaker’s Pav-
age algorithm (Stoltz, 2014). This algorithm is also a graph based implementation, however
the final data structure produced does not require sparse matrix storage at each node. The
decomposition stage of the Roadmaker’s Pavage is still O(N) and does not give an improve-
ment on decomposition time, its advantage comes in the form of an improved resulting data
structure that requires significantly less storage as well as a faster reconstruction and access
time.

It should be noted that although the implementation algorithms of the DPT have reduced to
linear complexity, the algorithms are still computationally slow. This is due to the algorithms
needing to be processed in series, as well as the comparisons and transformations of data struc-
tures required at each step. Hence the true computational times needed is somewhat masked
by the Big-O complexity. There is still a need to reduce to computational time, particularly
for real-time application. The fact that these newer implementations are in the form of graph
structures provides several advantages, especially considering the recent advances in theory
and application of graph sampling and interpolation methods.

The research conducted here makes use of such recent developments in graph sampling
and graph spectral theory to improve the running time and memory requirements of the Road-
maker’s Pavage algorithm by using an approximation of the algorithm and its output. In
addition to this, any advantages that come with graph spectral analysis is now also introduced
to the algorithm. The primary mechanism behind these improvements comes from the use of
graph spectral filters and graph sampling methods. This is the first approximation algorithm
for the DPT and it makes use of graph filtering. The DPT is a unique multi-scale decomposition
and does not have a similar technique to be compared to. However, graph representation of
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images is a relevant topic, see Shekkizhar and Ortega (2020) for example, as well as efficiency
in graph neural networks (Scarselli et al., 2009; Wu et al., 2020).

Appropriate scales of the multi-scale DPT decomposition are selected using the Ht-index
developed by Jiang (see for example Jiang and Junjun (2013)). The Ht-index is an alternative
fractal measure more appropriate for images and other spatial data. It has been shown to
be useful in image content separation (Fabris-Rotelli & Stein, 2020). This provides a further
improvement in the algorithm in a data-driven approach to selecting scales.

The paper begins with an overview of the suggested algorithm and its components in Sec-
tion 2, and then demonstrates application of the algorithm in Section 3, before concluding in
Section 4.

2 METHODOLOGY

The method used to improve computational speed of the Roadmaker’s Pavage algorithm in-
volves the use of a graph spectral filter bank. The reason behind filtering the signals is in
order to band limit the signal. Band limited graph signals can be interpolated with perfect
reconstruction after sampling under certain conditions (Siheng et al., 2015). The graph filter
bank used makes use of two filters (low-pass and high-pass) to split the original image into its
low and high frequency components. The high and low frequency signals are then passed on
to each pipeline of the bank at which point each signal is operated on independently of the
other. The remaining operations after filtering include:

1. Downsampling the filtered signals
2. Performing the DPT decomposition using Roadmaker’s Pavage on the filtered signals
3. Full or partial reconstruction of the pulses stored within the tree structure
4. Upsampling the reconstructed signal
5. Filtering again the upsampled signals
6. Summing the signals and multiplying them with a constant to obtain the final output

signal.
Hence the algorithm results in two smaller trees containing low frequency and high frequency
pulses. After reconstruction of the desired pulses the signals produced are then upsampled,
filtered again and combined together to obtain the final output signal. Each filter and pipeline
operates completely independent from the other, and extraction of pulses from either tree is
independent from each other. Because of this, the new algorithm has become what is known
as embarrassingly parallel, that is, the job of parallel processing the filter bank and signals is
trivial as the only time the two independent pipelines need to communicate with each other
is at the very end where the two output signals are added together. The Roadmaker’s Pavage
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wedged between filter banks is shown in Figure 1. The individual components of the filter
bank and algorithm are explained next.

Figure 1: A diagram of a filter bank with the Roadmaker’s Pavage algorithm wedged in between each
pipeline

2.1 Roadmaker’s Pavage decomposition and extraction DPTdc and DPTex

The Roadmaker’s Pavage is a graph-based algorithm that results in a tree that contains the
information required to extract the same pulses as defined by the DPT. The algorithm starts by
imposing the image on a rectangular grid graph, known in this context as the Working Graph.
Through a series of edge contractions, comparisons and clusterings, this Working Graph is
eventually transformed into a tree. An example of the pulses extracted from a small 2 × 2
image, as well as the data structures built by the Roadmaker’s Pavage is shown in Figure 2.

(a) (b) (c) (d)

(e) (f)
Figure 2: Examples of a DPT decomposition using the Roadmaker’s Pavage algorithm. Showing (a) the
original 2 × 2 image. (b)-(d) The separate pulses of the image such that (b) + (c) + (d) = (a). (e) The
image imposed on the working graph. (f) The final pulse graph, a directed rooted tree, which is the
result of completion of the Roadmaker’s Pavage. The pulses shown in (b) − (d) can be extracted from
this tree.
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The Working Graph that is initialised is an example of a rectangular grid graph, which is
also a bipartite graph. Even though the final product of the Roadmaker’s Pavage is a tree, the
extracted pulses need to be reshaped into an image with the same dimensions as the original
in order to be meaningful. The reshaped output signal is not contained in a graph, but its
properties and relations still behave as if it was imposed a new grid graph with the same
dimensions as the original working graph. Thus, filtering, sampling and interpolation is based
on this Working Graph structure. The original signal is on a graph of this type and is filtered
and sampled from accordingly, while the output signal is upsampled and filtered as if it were
a signal on a new grid graph. For these reasons the Roadmaker’s Pavage decomposition, as
well as extraction of the desired pulses, is inserted into the middle of the filter bank.

2.2 Graph Spectral Filters H0(Λ) and H1(Λ)

H0(Λ) and H1(Λ) are low and high pass filters respectively. They first convert a graph sig-
nal, x ∈ RN with each xi defined on vertex i, into its graph spectral domain using the
Graph Fourier Transform (GFT). The signal is then converted back to the vertex domain us-
ing the Inverse Graph Fourier Transform (IGFT). The Graph Fourier Transform can be ob-
tained from the eigendecomposition of a graph shift operator (Cheung et al., 2018; Narang
& Ortega, 2012; Sakiyama et al., 2019; Siheng et al., 2015; Tremblay et al., 2018). An ex-
ample of a graph shift operator is the adjacency matrix, A ∈ RN×N where Aij = Aji = 1 if
i ̸= j and vi is adjacent to vj otherwise Aij = 0 (for undirected, unweighted graphs).

An alternative shift operator derived from A is the Laplacian Matrix, L (Cheung et al.,
2018; Narang & Ortega, 2012; Sakiyama et al., 2019; Shuman et al., 2011; Tremblay et al.,
2018). This is the difference of a graph’s degree matrix D (whose diagonal entries gives the
number of edges protruding from the corresponding node) and its adjacency matrix. Hence
the Laplacian is defined by L = D−A. Finally, the most important shift operator to be used in
this paper is the symmetric normalised Laplacian, L (Narang & Ortega, 2012; Sakiyama et al.,
2019). The symmetric normalised Laplacian is given by L = D−1

2LD−1
2 = I − D−1

2AD−1
2 ,

with:

Lij =


1 if i = j and deg(vi) ̸= 0

− 1√
deg(vi)deg(vj)

if i ̸= j and vi is adjacent to vj

0 otherwise.
As the name implies, this version of the Laplacian is always symmetric, hence its eigenvector
basis is real and orthogonal (Narang & Ortega, 2012; Tremblay et al., 2018). Some other
important properties of the symmetric normalised Laplacian in the spectral domain include
the fact that its eigenvalues range from 0 to 2 (Narang & Ortega, 2012; Tremblay et al., 2018)
and since the graph used in the Roadmaker’s Pavage is bipartite (described in section 2.4) its
eigenvalues are also symmetric around 1. Now thatL has been defined, its eigendecomposition
is given by
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L = UΛUT ,

where Λ is a diagonal matrix containing the eigenvalues {λ1, λ2, ..., λN} of L and the columns
of U contains the eigenvectors of L . This eigenbasis is orthonormal, hence U−1 = UT .

Definition 1. The Graph Fourier Transform is the projection of a graph’s signal in its vertex
domain to the graph’s spectral domain. For a diagonalisable graph shift operator L = UΛUT on
graph G, the Graph Fourier Transform of graph signal x ∈ RN is given by:

x̂ = UTx

Alternatively it may be defined by its evaluation at each eigenvalue:

∀λk, x̂k = (x,vTk ) =
N∑
i=1

xiuk,i = xTuk

where uk is the eigenvector associated with the kth eigenvalue of L, which is also the kth column of
U (Cheung et al., 2018; Sakiyama et al., 2019; Tremblay et al., 2018).

The GFT is invertible, as Ux̂ =UU−1x = x. With the GFT defined, graph spectral filters
can be constructed.

Definition 2. A Graph Spectral Filter is a function that projects separately on each of the
eigenspaces of L depending on the value of the respective λ. Mathematically, a kernel λ → h(λ),
defines a graph filter H such that H = Uh(Λ)UT .

Hence a filtered signal is defined such that xh = Hx. Several kernels are suitable to define
a filter. The simplest is to use an indicator function that cuts off certain frequencies completely,
such as h(λ) = 1 if λ < w, else h(λ) = 0, where w is the desired cut-off frequency. The filter
used here is a graph quadrature mirror filter (graph-QMF) so that:

1. H0 and H1 are used in both the analysis and synthesis bank of each respective pipeline,
as opposed to different filters used at each end,

2. H0 = H1(2 − λ). Recall that the eigenvectors of L are symmetric around 1 and range
from 0 to 2, and

3. H2
0 (λ) +H2

1 (λ) = c2

where 1/c2 is a constant that scales the final output signal (Narang & Ortega, 2012). For a
simple indicator kernel where w = 1, c2 = 2.

Finally, of note is the fact that exact calculation of these graph filters requires calculation
of the full eigenspectrum as well as the dense eigenvector matrix U of size N2 which can
require more memory space than available for large N . For this reason, Chebyshev polyno-
mials are used to approximate the response of xh = Uh(Λ)UTx. This is because h(λ) can be
approximated as a Kth order polynomial ∑K−1

k=0 akλ
k (Shuman et al., 2011).
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2.3 Scale Selection
In Fabris-Rotelli and Stein (2020) it is shown that the Ht-index is suitable for identifying
structure locations within the scales of the Discrete Pulse Transform. The Ht-index is the
number of repetitions required to obtain the mean-scale as a threshold with the majority (taken
as more than 50%) of scale objects to the left. The full DPT provides a distribution of pulses
at each scale, with the distribution being heavily skewed to the right, with the vast majority
of pulses being of smaller scales. Once this distribution has been obtained by inspecting the
output pulse graph structure, the Ht-index can be found. This is done by repeatedly applying
a mean to the scale distribution, as per the following procedure:

1. Find the mean scale of the pulses, mean1.
2. Determine the number of pulses that are smaller than this mean (nless), and larger than

this mean (nmore).
3. If nless > nmore, repeat this procedure on the pulses to the right of this mean, the tail.

The Ht-index is determined as one plus the number of times step 2 is true. We discuss a
short example to explain the calculation of the Ht-index. Consider data which has a number
of structures at the following scale (1, 2, 3, 4, 5, 6, 7) with the number of structures at each of
these scales beings (5000, 4000, 3000, 1000, 500, 100, 1) respectively. The mean scale is calculate
as

mean1 =
5000× 1 + . . .+ 1× 7

5000 + . . .+ 1
= 2.14.

The number of structures larger than mean1 is 3000 + . . . + 1 = 4601 = nmore and the number
of structures smaller than mean1 is 5000 + 4000 = 9000 = nless. Since nless > nmore we repeat
this procedure on the tail (3, 4, 5, 6, 7), calculating mean2 = 3.5. Using mean2 on the tail scales,
nmore = 1601 and nless = 3000. Once again nless > nmore so we repeat this procedure on the tail
(4, 5, 6, 7), calculating mean3 = 4.44. Using mean3 on the new reduced tail scales, nmore = 691
and nless = 1000. Once again nless > nmore so we repeat this procedure on the tail (5, 6, 7),
calculating mean4 = 5.17, nless = 500 and nmore = 201. We repeat once again on tail (6, 7),
calculating mean5 = 6.01, nless = 100 and nmore = 1. This toy example thus has an Ht-index of
6. The scale intervals are the scales to the left of the mean at each repetition. In real images
the scales are more meaningful than this simple example, providing objective breaks in the
scale distribution. In Fabris-Rotelli and Stein (2020), these scale intervals are used to reduce
a big data context to the scale intervals containing the information of the image. This concept
is made use of here.

Previously, in de Lancey and Fabris-Rotelli (2019), relatively subjective methods were
used to select scales to compare images. Scales were selected by altering the scale bracket
until a certain similarity was noted visually and then could be verified using MSE or SSIM.
Alternatively a grid-search yielded the most similar two images after finding the best selection
of scales from all possible combinations but this was found to have prohibitive computational
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costs. The use of the Ht-index in Fabris-Rotelli and Stein (2020) provides a new heuristic
that was found to be both computationally efficient and provided similar images. Another
advantage of using the Ht-index is that it selects the result a priori to validation (unlike using
the grid search) as it is based solely on the distribution of the structures being measured, as
opposed to making use of a compared MSE to find a suitable image.

2.4 Upsampling and downsampling operators ↓ S and ↑ S

The operators Sd0, Sd1 and Su0,Su1 are used to downsample and upsample signals, respectively.
Downsampling is done by simply taking only the n < N vertices and corresponding signals
in the graph that are chosen so that RN → Rn. Upsampling increases the dimension of a
sampled signal to the original graph dimensions, imposing the signal on the original vertices
and then fills any missing values with zeroes. The initial graph used in the Roadmaker’s Pavage
algorithm is a grid graph, which is also a bipartite graph. A bipartite graph is a graph that
can be divided into two disjoint and independent sets VBottom and VTop such that every edge
connects a vertex in VBottom to one in VTop, while the vertices within a set are not connected
to each other. Sampling a bipartite graph signal according to these disjoint bipartite sets is
a standard procedure when sampling is required, as the sets will cover a large area of the
graph with approximately equal spacing between both sampled and excluded vertices. This
makes interpolation of an upsampled signal more accurate as each empty excluded node will
have several neighbours used to interpolate its value (Narang & Ortega, 2012; Sakiyama et al.,
2019).

There is however, a major caveat when using bipartite sampling for the Roadmaker’s Pav-
age. By definition, each bipartite set has no connections within itself but the Roadmaker’s
Pavage requires a connected graph in order to perform the required transform and compar-
isons. To remedy this, an adjusted graph is used for sampling. First, vertex indices to be
sampled are chosen in a bipartite manner as usual. Additional diagonal edges are then used to
join nodes together. Finally the two sets are separated from each other as if the graph is still
bipartite, but now each set is connected. Thus the Roadmaker’s Pavage algorithm can proceed
on these sampled graphs. An example of this procedure performed on a small graph with 4
nodes is shown in Figure 3.

3 APPLICATION

In this section comparisons are made between the original Roadmakers Pavage algorithm
and the proposed Roadmaker’s Pavage used in conjunction with a filter bank. First, a more
subjective but illustrative example is shown using an image of Chelsea the cat. Afterwards, by
selecting scales using the Ht-index (described in Section 2.3), results of a simulation are shown
that produce more objective results. This is done with a more meaningful and mathematically
derived scale selection algorithm via the Ht-index approach of Fabris-Rotelli and Stein (2020).
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(a) (b)

(c) (d)
Figure 3: An example of bipartite graph sampling with added edges The graphs are coloured according
to their disjoint bipartite sets: VBottom in blue and VTop in red. Shown: (a) original toy graph, (b)
disconnected graph after bipartite sampling, (c) graph with added diagonal edges, (d) two connected
graphs after sampling using indices as if bipartite.

The original image was decomposed into pulses using both methods. In the case of the
sampled and filtered algorithm, it was found that the entire high frequency pipeline could be
discarded for the cost of a small decrease in mean-squared-error and extraction accuracy of
smaller features. This meant that only one line of filters and samplers was required in this
instance as well as only a single tree data structure.

The image was then reconstructed both fully and partially in both cases. Partial reconstruc-
tion included extraction of only the smallest textures in the image, extraction of a mid-range
of pulse sizes giving a smoothed image and extraction of the largest pulses giving the large
features present in the image. The full and partial reconstruction of the image can be seen in
Figure 4 while the equivalent reconstructions can be seen in Figure 5.

The machine used to test these applications had an Intel Core i7-7700HQ CPU running at
2.8 GHz (HQ means a quad core optimised for mobility and high performance). The RAM on
this machine was 16GB. The operating system installed was Windows 10 Professional at 64
Bits. The same hardware and software was used for all trials. The system was rebooted and
reset between each trial to ensure previous trials did not bias future ones. The hardware was
never strained (e.g. CPU usage never at 100% and RAM never full) to ensure that hardware
restrictions did not bias algorithm performance.

The original image has 135300 pixels. The root-mean-squared-error between the fully re-
constructed original image and the interpolated fully reconstructed image from the filtered
Roadmaker’s Pavage was 1.47. The original algorithm has an RMSE of zero as it perfectly
reconstructs the original image. The error introduced by the filtered algorithm can be justi-
fied by the noticeable decrease in computational time and storage requirements. The original
algorithm required 87 CPU seconds to decompose, approximately 5.5 CPU seconds to recon-
struct the signals and needed a tree with 170777 nodes to store the information. The filtered
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(a) (b)

(c) (d)
Figure 4: An image of Chelsea decomposed and reconstructed using the Roadmaker’s Pavage. Shown
in: (a) original image, (b) smallest textures extracted, (c) smooth image extracted, (d) largest features
extracted.

Table 1: Summary of application findings.
Measurement Original Algorithm Proposed Algorithm
Pulse Graph size (number of nodes) 170777 89234
Decomposition Time (in CPU seconds) 87.0 27.5
Reconstruction Time (in CPU seconds) 5.5 2.5
RMSE against original image 0.00 1.47

algorithm needed only 27.5 CPU seconds to decompose the signal, approximately 2.5 CPU
seconds to reconstruct and a tree with 89234 nodes for storage. A summary of these findings
is given in Table 1.

For a more objective second method, a simulation along with scale selection methods and
SSIM measurement were used. The SSIM has proven to be a useful image comparison tool
(Sara et al., 2019). In order to do this, the Berkeley Segmentation Dataset and Benchmark (BSD
300) dataset1 is used to test and compare both the original DPT and the new filtered algorithm.
For each image in this dataset, the image is sent to both the original DPT and the Filtered DPT
algorithms. Each algorithm then performs its decomposition stage independently of the other.
Once the decomposition stage is complete, scale intervals are selected using the Ht-index. The

1https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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(a) (b)

(c) (d)
Figure 5: An image of Chelsea decomposed and reconstructed using the Roadmaker’s Pavage via a graph
bank that has been upsampled, filtered and interpolated after the pulses were reconstructed. Shown in:
(a) interpolation of all pulses reconstructed, (b) interpolation of smallest textures, (c) interpolation of
smooth image, (d) interpolation of largest features.
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first 3 intervals are selected from the original decomposition, as well as the first 3 intervals of
both the low filtered decomposition and high filtered decomposition. Notably, some images
of the database are too simple and had less than 3 scale intervals after being processed in one
or more of the algorithms2. These images were left out of the final comparison and only valid
images with 3 intervals were used. This resulted in a final sample size of 253 of the 300 images
in the database. Once these scale intervals were obtained, each valid image is reconstructed
3 times per algorithm (for each of the first three scale intervals). Filtered reconstructions are
summed for each interval. Then for each of these Ht-Index defined partial reconstructions, the
results were recorded. These results included the SSIM (structural similarity) (Z et al., 2004),
an index related to the MSE, between the image reconstructed by the original algorithm and
by the filtered algorithm, as well as CPU time, to see if there is a increase in efficiency by using
the filtered algorithm.

These results are shown in Figures 6 to 9. In Figure 6 the distribution of the Ht-index is
shown. The Ht-index gives an indication of the complexity of the image, with a larger index
indicating the presence of more intricate textures within the image. It is therefore an expec-
ted result that the Ht-index for scale distributions found after low-pass filtering are on average
simpler than those in the original image (as a low-pass filter behaves as a form of smoothing or
simplification of an image). Figure 7 shows the distributions of CPU-times for the reconstruc-
tion phase of the simulations. This statistic highlights the entire purpose of this algorithm, as
without a reduction of computation resources, this approximation algorithm of the DPT would
serve no purpose. In comparison to the original Roadmakers Pavage algorithm, the filtered
algorithm uses far less computational time. The low-frequency pipeline of the algorithm uses
even less time that the high-frequency pipeline. This is to be expected once again due to the
smoothing nature of a low-pass filter. The second boxplot of Figure 7 shows the fraction of
CPU time required for decomposition, showing that most decompositions take less than half
the time when compared with the original algorithm. Figure 8 shows reconstruction times for
each interval as selected by the calculated Ht-structure and index. Once again these results are
consistent. Each partial reconstruction is much faster using the filtered algorithms. There are
exceptions for high-frequency reconstructions of the third interval, where some outliers take
longer than the original algorithm. This can be explained by a more complex structure of high-
frequency components resulting from images with complex textures. However, even in these
scenarios there is considerable gain in efficiency when considering the average decomposition
time, and reconstruction time for other intervals.

Figure 9 shows the SSIM index for original reconstructions and filtered algorithm recon-
structions. The purpose behind this index in these simulations is to show that a certain level
of similarity can be retained even after filtering and having a different structure and distribu-
tion of scales. The SSIM index ranges from −1, meaning that the images compared have no
similarity, to 1, indicating the images compared are identical. SSIM uses a set of tiles from
each image being compared as a window.

2Note that a larger Ht-index is indicative of larger complexity.
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Figure 6: Two box-plots showing the distributions of (a) the Ht-indices of the scales resulting from each
algorithm and (b) the difference between Ht-indices per image for each algorithm.
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Figure 7: Two box-plots showing the distributions of (a) CPU-time to decompose an image for each
algorithm and (b) the fraction of time that each filtered algorithm took compared to the original per
image.
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Figure 8: Box-plots showing the distributions of (a) CPU-time to reconstruct only the first fractal of an
image for each algorithm, (b) the fraction of time that each filtered algorithm took compared to the
original for the first fractal of each image, (c,d) the same statistics for the second fractals, and (e,f) the
third fractal.
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Figure 9: A box-plot showing the distributions of SSIM for each image for the first, second and third
fractals, as reconstructed by combining the low-pass and high-pass output of the filtered algorithm

The SSIM results here are from a very precise SSIM that used a tile-size of only 7 pixels.
This in turn means that even small differences results in a highly penalised SSIM. Despite this
very strict SSIM the filtered algorithm performed consistently well, having a positive SSIM for
every image for each of the 3 fractals reconstructed.

The results presented are the first approximation algorithm for the DPT. Previous non-
approximated implementations have not yielded any significant computational improvement.
The construction of the Roadmaker’s Pavage in Fabris-Rotelli and Stoltz (2012) introduced an
improved storage of the extracted DPT resulting in better availability of the content for post-
analysis but no significant algorithmic improvement. This paper provides the first algorithmic
improvement to the original Roadmaker’s algorithm of Laurie and Rohwer (2006).

4 CONCLUSION

This paper has shown that an approximation of the Discrete Pulse Transform can be obtained
using the Roadmaker’s Pavage algorithm in conjunction with graph spectral filtering and
sampling, a notable achievement for a nonlinear operation. A minor loss of accuracy comes
with the benefits of noticeably shorter computational time and storage requirements. Depend-
ing on the level of precision required and the size of the features needed, the high pass filters
can be discarded if not necessary for the task. Even if the high frequencies are still needed,
this approximate algorithm can now be calculated with two independent channels and thus
can be parallel processed.

Simulations were conducted on the BSD300 dataset to find the distribution and consistency
of these findings. Use of the Ht-Index and the SSIM allowed for an objective measure of
accuracy and meaningful selections of reconstructions from images. Across different scale
intervals as defined by the Ht-index structure, the new filtered algorithm performs well and
consistently, having a positive SSIM with low variance. This sampling approach for the DPT
should be further tested for accuracy in areas the DPT has been applied such as segmentation
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(Fabris-Rotelli & Greeff, 2012), feature detection (Fabris-Rotelli, 2011) and its effectiveness
when considering leakage (Fabris-Rotelli & Stoltz, 2012).

ACKNOWLEDGEMENTS

This work is based upon research supported by the South Africa National Research Foundation
and South Africa Medical Research Council (South Africa DST-NRF-SAMRC SARChI Research
Chair in Biostatistics, Grant number 114613). Opinions expressed and conclusions arrived at
are those of the author and are not necessarily to be attributed to the NRF.

References

Cheung, G., Magli, E., Tanaka, Y. & Ng, M. (2018). Graph spectral image processing. Proceed-
ings of the IEEE, 106(5), 907–930. https://doi.org/10.1109/JPROC.2018.2799702

de Lancey, M. & Fabris-Rotelli, I. (2019). Effective graph sampling of a nonlinear image trans-
form. Proceedings of FAIR 2019, 2540, 185–195. http://ceur-ws.org/Vol-2540/

Fabris-Rotelli, I. (2011). The Discrete Pulse Transform for images with entropy-based feature
detection. In P. Robinson & A. Nel (Eds.), Proceedings of the 22nd Annual Symposium of
the Pattern Recognition Association of South Africa 2011 (pp. 43–48). http://www.prasa.
org/proceedings/2011/prasa2011-08.pdf

Fabris-Rotelli, I. & Anguelov, R. (2010). LULU operators and Discrete Pulse Transform for mul-
tidimensional arrays. IEEE Transactions on Image Processing, 19(11), 3012–3023. https:
//doi.org/10.1109/TIP.2010.2050639

Fabris-Rotelli, I. & Greeff, J. (2012). The application of the iterated conditional modes to fea-
ture vectors of the Discrete Pulse Transform of images. In A. De Waal (Ed.), Proceedings
of the 23nd Annual Symposium of the Pattern Recognition Association of South Africa 2012
(pp. 149–156). https://researchspace.csir.co.za/dspace/bitstream/handle/10204/
6409/De%20Waal_2012.pdf?sequence=1#page=158

Fabris-Rotelli, I. & Stein, A. (2020). Use of fractals to measure anisotropy in point patterns
extracted with the DPT of an image. Spatial Statistics, Accepted. https://doi.org/10.
1016/j.spasta.2020.100452

Fabris-Rotelli, I. & Stoltz, G. (2012). On the leakage problem with the Discrete Pulse Transform
decomposition. In A. De Waal (Ed.), Proceedings of the 23rd Annual Symposium of the Pat-
tern Recognition Association of South Africa 2012 (pp. 179–186). http://researchspace.
csir . co . za / dspace / bitstream / handle / 10204 / 6409 / De % 20Waal _ 2012 . pdf ?
sequence=1&isAllowed=y#page=188

Jiang, B. & Junjun, Y. (2013). Ht-index for quantifying the fractal or scaling structure of geo-
graphic features. Annals of the Association of American Geographers, 104. https://doi.
org/10.1080/00045608.2013.834239

https://doi.org/10.18489/sacj.v32i2.849

https://doi.org/10.1109/JPROC.2018.2799702
http://ceur-ws.org/Vol-2540/
http://www.prasa.org/proceedings/2011/prasa2011-08.pdf
http://www.prasa.org/proceedings/2011/prasa2011-08.pdf
https://doi.org/10.1109/TIP.2010.2050639
https://doi.org/10.1109/TIP.2010.2050639
https://researchspace.csir.co.za/dspace/bitstream/handle/10204/6409/De%20Waal_2012.pdf?sequence=1#page=158
https://researchspace.csir.co.za/dspace/bitstream/handle/10204/6409/De%20Waal_2012.pdf?sequence=1#page=158
https://doi.org/10.1016/j.spasta.2020.100452
https://doi.org/10.1016/j.spasta.2020.100452
http://researchspace.csir.co.za/dspace/bitstream/handle/10204/6409/De%20Waal_2012.pdf?sequence=1&isAllowed=y#page=188
http://researchspace.csir.co.za/dspace/bitstream/handle/10204/6409/De%20Waal_2012.pdf?sequence=1&isAllowed=y#page=188
http://researchspace.csir.co.za/dspace/bitstream/handle/10204/6409/De%20Waal_2012.pdf?sequence=1&isAllowed=y#page=188
https://doi.org/10.1080/00045608.2013.834239
https://doi.org/10.1080/00045608.2013.834239
https://doi.org/10.18489/sacj.v32i2.849


de Lancey, M. and Fabris-Rotelli I. : Ht-index evaluation of the DPT 140

Laurie, D. (2010). The roadmaker’s algorithm for the Discrete Pulse Transform. IEEE Trans-
actions on Image Processing, 20(2), 361–371. https ://doi .org/10 .1109/TIP .2010.
2057255

Laurie, D. & Rohwer, C. (2006). Fast implementationof the Discrete Pulse Transform. In G.
Psihoyios, T. Simos & C. Tsitouras (Eds.), International conference of numerical analysis
and applied mathematics 2006 (pp. 484–487).

Laurie, D. & Rohwer, C. (2007). The Discrete Pulse Transform. SIAM Journal on Mathematical
Analysis, 38(3). https://doi.org/10.1137/040620862

Narang, S. & Ortega, A. (2012). Perfect reconstruction two-channel wavelet filter banks for
graph structured data. IEEE Transactions on Signal Processing, 60(6), 2786–2799. https:
//doi.org/10.1109/TSP.2012.2188718

Sakiyama, A., Watanabe, K., Tanaka, Y. & Ortega, A. (2019). Two-channel critically sampled
graph filter banks with spectral domain sampling. IEEE Transactions on Signal Processing,
67(6), 1447–1460. https://doi.org/10.1109/TSP.2019.2892033

Sara, U., Akter, M. & Uddin, M. (2019). Image quality assessment through FSIM, SSIM, MSE
and PSNR - comparative study. Journal of Computer and Communications, 7(3), 8–18.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. &Monfardini, G. (2009). The graph neural
network model. IEEE Transactions on Neural Networks, 20(1), 61–80.

Shekkizhar, S. & Ortega, A. (2020). Efficient graph construction for image representation. arXiv
preprint arXiv:2002.06662.

Shuman, D., Vandergheynst, P. & Frossard, P. (2011). Chebyshev polynomial approximation
for distributed signal processing. International Conference on Distributed Computing in
Sensor Systems and Workshops (DCOSS) (2011). https ://doi .org/10.1109/DCOSS.
2011.5982158

Siheng, C., Varma, R., Sandryhaila, A. & Kovačević, J. (2015). Discrete signal processing on
graphs: Sampling theory. IEEE Transactions on Signal Processing, 63(24), 6510–6523.
https://doi.org/10.1109/TSP.2015.2469645

Stoltz, G. (2014). Roadmaker’s pavage, pulse reformation framework and image segmentation in
the Discrete Pulse Transform (Master’s thesis). University of Pretoria. http://hdl.handle.
net/2263/43255

Tremblay, N., Gonçalves, P. & Borgnat, P. (2018). Design of graph filters and filterbanks. Co-
operative and graph signal processing (pp. 299–324). Academic press. https://doi.org/
10.1016/B978-0-12-813677-5.00011-0

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C. & Philip, S. Y. (2020). A comprehensive survey
on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems.

Z, W., AC, B., HR, S. & EP, S. (2004). Image quality assessment: From error visibility to struc-
tural similarity. IEEE Transactions on Image Processing, 13(4), 600–612. https://doi.org/
10.1109/TIP.2003.819861

https://doi.org/10.18489/sacj.v32i2.849

https://doi.org/10.1109/TIP.2010.2057255
https://doi.org/10.1109/TIP.2010.2057255
https://doi.org/10.1137/040620862
https://doi.org/10.1109/TSP.2012.2188718
https://doi.org/10.1109/TSP.2012.2188718
https://doi.org/10.1109/TSP.2019.2892033
https://doi.org/10.1109/DCOSS.2011.5982158
https://doi.org/10.1109/DCOSS.2011.5982158
https://doi.org/10.1109/TSP.2015.2469645
http://hdl.handle.net/2263/43255
http://hdl.handle.net/2263/43255
https://doi.org/10.1016/B978-0-12-813677-5.00011-0
https://doi.org/10.1016/B978-0-12-813677-5.00011-0
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.18489/sacj.v32i2.849

	Introduction
	Methodology
	Roadmaker's Pavage decomposition and extraction DPTdc and DPTex
	Graph Spectral Filters H0() and H1()
	Scale Selection
	Upsampling and downsampling operators S and S

	Application
	Conclusion

