
SACJ 32(2) December 2020
Research Article

DDLV: A system for rational preferential
reasoning for Datalog
Michael Harrisona, b

 , Thomas Meyera, b

a Department of Computer Science, University of Cape Town
b Centre for Artificial Intelligence Research, South Africa

ABSTRACT
Datalog is a powerful language that can be used to represent explicit knowledge and compute inferences in
knowledge bases. Datalog cannot, however, represent or reason about contradictory rules. This is a limitation as
contradictions are often present in domains that contain exceptions. In this paper, we extend Datalog to repres-
ent contradictory and defeasible information. We define an approach to efficiently reason about contradictory
information in Datalog and show that it satisfies the KLM requirements for a rational consequence relation. We
introduce DDLV, a defeasible Datalog reasoning system that implements this approach. Finally, we evaluate the
performance of DDLV.
Keywords: datalog, non-monotonic reasoning, preferential reasoning, knowledge representation
Categories: • Computing methodologies ∼ Artificial intelligence • Theory of computation ∼ Logic
Email:
Michael Harrison hrrmic014@myuct.ac.za (CORRESPONDING),
Thomas Meyer tmeyer@cair.org.za

Article history:
Received: 31 May 2020
Accepted: 11 November 2020
Available online: 08 December 2020

1 INTRODUCTION

Datalog (Abiteboul et al., 1995) is a rule-based language that was originally designed as an
effort to integrate efforts from the Artificial Intelligence and Database communities (Ceri et
al., 1989). The aim of Datalog was to provide a deductive database querying language that
extended conjunctive queries with recursion (Abiteboul et al., 1995), thereby allowing a rela-
tion (predicate) to be present in both the head and body of a rule. Datalog was derived from
logic programming (Lloyd, 2012), with a key distinction being that Datalog does not contain
functions.

Datalog has been around since the 1980s, but interest in it waned as there did not seem to be
many compelling uses for it. Datalog has experienced some renewed interest in the past decade
as the world moves towards greater levels of automation in most industries. Some of the
areas where Datalog is currently being used include data integration, declarative networking,
Harrison, M. and Meyer, T. (2020). DDLV: A system for rational preferential reasoning for Datalog. South African
Computer Journal 32(2), 184–217. https://doi.org/10.18489/sacj.v32i2.850

Copyright © the author(s); published under a Creative Commons NonCommercial 4.0 License (CC BY-NC 4.0).
SACJ is a publication of the South African Institute of Computer Scientists and Information Technologists. ISSN
1015-7999 (print) ISSN 2313-7835 (online).

https://orcid.org/0000-0003-3016-8181
https://orcid.org/0000-0003-2204-6969
mailto:hrrmic014@myuct.ac.za
mailto:tmeyer@cair.org.za
https://doi.org/10.18489/sacj.v32i2.850
http://creativecommons.org/licenses/by-nc/4.0/

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 185

program analysis, information extraction, network monitoring, security, and cloud computing
(Huang et al., 2011). Datalog has been used as the core of some very expressive and efficient
Knowledge Representation and Reasoning systems, such as DLV (Leone et al., 2002) and RDFox
(Nenov et al., 2015). DLV is a Disjunctive Logic Programming (DLP) system that uses an
extended Disjunctive Datalog (Eiter & Gottlob, 1997) as its kernel language. DLV is one of the
most successful and widely used DLP engines.

Most of these reasoning systems have limited applicability to real-world problems, though,
as they can usually not reason about inconsistent or contradictory information. Contradictions
often occur in domains that contain exceptions. Many systems cannot handle these contradic-
tions due to the systems being monotonic (Ben-Ari, 2012). Monotonicity is a property of
logical languages that states that previously concluded information cannot be revoked in light
of new, contradictory information. Monotonicity is usually a desirable property for a logical
language to possess. The information concluded in a monotonic system can only ever be added
to and never taken away. Systems capable of dealing with contradictions need to, therefore,
be nonmonotonic. DLV is nonmonotonic, but only in the way that it can represent and reason
about incomplete information. We desire a system that can model rules that will generally
hold true but also permit exceptions without the user having to perform additional knowledge
engineering.

We present a simple example of a case where we would want to be able to represent and
reason about exceptional information:
Example 1. Classical mammal knowledge base

• Mammals don’t lay eggs.
• Platypusses are mammals.
• Platypusses lay eggs.

If we wanted to query the knowledge base in Example 1 to find out if platypusses lay eggs,
traditional Datalog reasoning systems (including DLV) would conclude that platypusses lay
eggs and platypusses don’t lay eggs, thereby returning no possible models (essentially saying
that there can be no platypusses). This is clearly not a desirable result. We would like to
extend Datalog to represent defeasible knowledge. A defeasible rule is a non-classical rule that
typically holds. A defeasible version of Example 1 would be:
Example 2. Defeasible mammal knowledge base

• Mammals typically don’t lay eggs.
• Platypusses are mammals.
• Platypusses typically lay eggs.

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 186

Defeasible rules, unlike classical rules, would not have to hold if they are contradicted by
classical information.

Defeasible reasoning has been successfully applied to the fields of inconsistency manage-
ment (Martinez et al., 2014), planning (Garcia et al., 2007), agent negotiations (Dumas et al.,
2002), business rules (Morgenstern, 1998), contracting (Grosof et al., 1999), and legal reas-
oning (Antoniou et al., 1999). Defeasible versions of Datalog have been utilised in many of
these applications. Most of the previous approaches to defeasible Datalog require additional
information or are not very computationally feasible. An approach that requires no additional
input and is computationally efficient would provide further value in these fields.

A seminal approach to reasoning about defeasible knowledge is the preferential approach,
as defined by Kraus et al. (1990) and Lehmann and Magidor (1992) (often referred to as
the KLM approach). The KLM approach looks at nonmonotonic reasoning from a general and
abstract point of view. The framework defines the requirements that a nonmonotonic inference
procedure should meet in order to be considered a rational consequence relation. The KLM
approach is defined in the propositional logic setting. The KLM approach has been successfully
lifted to Description Logics (Casini & Straccia, 2010) as a way to extend the Description Logic
language ALC with nonmonotonic reasoning capabilities. A practical defeasible reasoning
system (Moodley, 2015) using the KLM approach has even been implemented in the form of
a plugin for Protégé, an ontology engineering program.

The KLM approach’s abstract framework and computational tractability make it an appeal-
ing candidate for application to the Datalog setting. In this paper, we define a defeasible
extension to Datalog. We define an algorithm that performs a defeasible entailment check
for our extended defeasible Datalog language, as well as defining the supporting algorithms
required to perform this kind of reasoning. We show that our approach meets the KLM re-
quirements for a rational consequence relation.

We then introduce DDLV, a system that can create, edit, and, critically, query a defeas-
ible Datalog program. We give an overview of the design of DDLV, delve into how DDLV
implements our preferential reasoning approach for defeasible Datalog, and evaluate the per-
formance of the DDLV system.

This paper is an extension of a conference paper, “Rational preferential reasoning for Data-
log” (Harrison & Meyer, 2020), which was presented at the South African Forum for Artificial
Intelligence Research in 2019.

2 LANGUAGE

We will first define vanilla Datalog before we propose our extensions to it. A Datalog program
consists of a set of Datalog rules. Datalog rules are expressions of the form

b1, ..., bn → h1

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 187

where b1, ..., bn and h1 are literals. The left-hand side of the rule is the body and the right-hand
side of the rule is the head1. Traditionally, the head of a Datalog rule contains only one literal
but the body is made up of a conjunction of any finite number of literals. If all the literals in
the body are true in a model of a Datalog program, then the literal in the head is implied and
added to the model. In vanilla Datalog, a literal is just an atom p. An atom is an expression
p(t1, ..., tm), where p is a predicate with arity m and t1, ..., tm are terms. A term can either be a
constant or a variable.

Datalog follows a model-theoretic semantics where the Datalog program is viewed as a set
of first-order sentences that describes the desired answer (Abiteboul et al., 1995). A Datalog
interpretation is an assignment of concrete meaning to all constant and predicate symbols in
the Datalog program (Ceri et al., 1989). A Datalog statement is entailed (denoted |=) by a
Datalog program if that fact is true under every model of the Datalog program.

We define two language extensions to Datalog:
1. A practical defeasible Datalog language that is used in our implemented defeasible Data-

log reasoning.
2. A theoretical defeasible Datalog language enriched with additional operators that is used

purely to prove how our approach meets the KLM requirements for a rational consequence
relation (defined in Section 4).

2.1 Practical defeasible Datalog language
We need to define an extension to Datalog that is capable of expressing defeasible knowledge.
The first essential extension to the language is negation, ¬2. Any literal in the head or body can
now be an atom p or a negated atom ¬p. Negation is necessary in order to be able to express
any contradictory information. Our next extension is disjunction ∨. We include disjunction as a
nice-to-have, purely because our system is built on top of DLV, which uses disjunctive Datalog
as its underlying language. We, therefore, also only allow disjunction in the head between
literals. Our final extension is an essential one — we add a defeasible implication operator ;3.
This operator can be used in place of the traditional classical implication operator→ when we
want to express a defeasible rule.

2.2 Theoretical defeasible Datalog language
We define further extensions to our defeasible Datalog language, purely to express the postu-
lates that characterise the language and in proving that the postulates hold for our approach.

1Datalog is often written with the head on the left and the body on the right, with a full stop at the end
of each rule. :– is also often used to represent the implication operator instead of →. This more traditional
representation is used for the syntax of our implementation.

2− is used to represent negation in our implementation.
3:∼ is used to represent defeasible implication in our implementation.

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 188

We introduce disjunction in the body between literals and conjunction in the head between
literals. The defeasible Datalog rule

b1 ∨ ... ∨ bn → h1

corresponds to the logical sentence
∀x1, ..., xm(b1 ∨ ... ∨ bn → h1)

where x1, ..., xm are all the variables occurring in all the literals of the rule. Similarly, the
defeasible Datalog rule

b1 → h1 ∧ ... ∧ hn

corresponds to the logical sentence
∀x1, ..., xm(b1 → h1 ∧ ... ∧ hn)

where x1, ..., xm are all the variables occurring in all the literals of the rule.
Furthermore, we introduce bottom ⊥, which can be seen as shorthand for p∧¬p. Bodies of

rules are seen as equivalent ≡ if they are modelled by the same interpretations. A defeasible
Datalog rule α ; β is defeasibly entailed (|≈) by a defeasible Datalog program if, knowing α is
true and based on the information contained in the defeasible Datalog program, it would be
sensible to (defeasibly) conclude that β is true. If we have a set of defeasible rules DR, then
DR is a set of classical versions α→ β of all defeasible rules α ; β in DR.

3 A RATIONAL CONSEQUENCE RELATION FOR DEFEASIBLE DATALOG

Kraus, Lehmann, and Magidor studied preferential consequence relations as an approach to
nonmonotonic reasoning (Kraus et al., 1990). Lehmann and Magidor looked at a more restric-
ted class of consequence relations, rational relations (Lehmann, 1995). They argued that any
reasonable nonmonotonic inference procedure should define a rational consequence relation.
Rational relations are those that may be represented by a ranked preferential model. A ranked
model is a preferential model for which there is a modular strict partial order (Lehmann, 1995).

A nonmonotonic inference procedure needs to meet properties known as the KLM pos-
tulates to be considered a rational consequence relation. The original KLM postulates were
defined in propositional logic. These properties have been discussed at length in the literat-
ure. We define defeasible Datalog versions of the KLM postulates that characterise a rational
consequence relation for ranked defeasible Datalog models:

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 189

Reflexivity K |≈ β ; β

Left Logical Equivalence β ≡ γ, K |≈ β ; η
K |≈ γ ; η

Right Weakening K |≈ β ; η, |= η → γ
K |≈ β ; γ

And K |≈ β ; γ, K |≈ β ; η
K |≈ β ; γ ∧ η

Or K |≈ β ; η, K |≈ γ ; η
K |≈ β ∨ γ ; η

Cautious Monotonicity K |≈ β ; γ, K |≈ β ; η
K |≈ β ∧ γ ; η

Rational Monotonicity K |≈ β ; η, K ̸|≈ β ; ¬γ
K |≈ β ∧ γ ; η

K refers to a defeasible Datalog program (knowledge base). The variables to the left of the
implication operators refer to defeasible Datalog bodies and the variables to the right of the
implication operators refer to defeasible Datalog heads. For each postulate, if the statement(s)
above the line hold, then the statement below the line must hold. These defeasible Datalog
versions of the KLM postulates are elaborated upon in Section 5 of this paper.

4 DEFINING RATIONAL CLOSURE FOR DEFEASIBLE DATALOG

In this section, we emulate rational closure (a specific construction given by KLM (Kraus et
al., 1990) that satisfies all the KLM postulates for a rational consequence relation) for our
defeasible Datalog. Our rational closure will rely on a ranking of the defeasible Datalog rules
in a defeasible Datalog program. We need to construct a ranking of our defeasible Datalog
rules based on the exceptionality of each rule. If a rule is assigned a lower ranking, then that
rule is more normal or general. If a rule is assigned a higher ranking, then that rule is more
exceptional or specific. Only once we have this ranking can we perform rational closure to
determine if a rule is defeasibly entailed by our knowledge base.

Firstly, we define an algorithm to determine which defeasible rules in a set of defeasible
rules are exceptional with respect to that set of defeasible rules and an optional set of classical
rules. A defeasible rule is exceptional with respect to a set of defeasible and classical rules
if the body of the rule is not satifisfiable with respect to the set of defeasible and classical
rules. Platypusses would not be satisfiable in Example 2, meaning that the defeasible rule with
platypusses as the body (“Platypusses typically lay eggs”/platypus(X) ; lays_eggs(X)) will be
exceptional with respect to the classical rule and the other defeasible rule in Example 2.

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 190

Algorithm 1: exceptional(SR,DRE)

Input :A set of classical Datalog rules SR and a set of defeasible Datalog rules DRE
Output :DRE ′ ⊆ DRE such that DRE ′ is exceptional w.r.t. SR and DRE

1 DRE ′ := ∅;
2 foreach α ; β ∈ DRE do
3 if SR ∪ DRE |= α→ ⊥ then
4 DRE ′ := DRE ′ ∪ {α ; β};
5 return DRE ′;

Next, we define an algorithm that computes the ranking of a set of defeasible rules. This
algorithm starts by putting all the defeasible rules in rank 0. It then utilises Algorithm 1 to
determine which rules are exceptional to rank 0 and a set of classical rules. The exceptional
rules are moved from rank 0 to rank 1. The same process is then performed to determine which
rules in rank 1 are exceptional relative to rank 1 and the classical rules. Those exceptional rules
will be moved to rank 2. This process is continued until either there are no more exceptional
rules in a rank or all the rules in a rank are exceptional. If all the defeasible rules in a rank are
exceptional, then the defeasible rules are classical rules represented as defeasible rules. These
rules will be moved to the set of classical rules and represented as classical rules.

Returning to Example 2, the two defeasible rules (“Platypusses typically lay eggs”/platypus(X)
; lays_eggs(X) and “Mammals typically don’t lay eggs”/mammal(X) ; ¬lays_eggs(X)) would
start on rank 0. “Platypusses typically lay eggs”/platypus(X) ; lays_eggs(X) would be found
to be exceptional with respect to the other defeasible rules in its current rank (“Mammals
typically don’t lay eggs”/mammal(X) ; ¬lays_eggs(X)) and the classical rules (“Platypusses
are mammals”/platypus(X) → mammal(X)). “Platypusses typically lay eggs”/platypus(X) ;
lays_eggs(X) would, therefore, be moved to rank 1.

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 191

Algorithm 2: computeRanking(SR,DR)
Input :A knowledge base consisting of the set of classical Datalog rules SR and the

set of defeasible Datalog rules DR
Output :The ranking of defeasible rules R and set of classical rules SR

1 DR0 := DR;DR1 := exceptional(SR,DR0);n := 1;R := ∅;
2 while DRn−1 ̸= DRn and DRn ̸= ∅ do
3 n := n+ 1;DRn := exceptional(SR,DRn−1);
4 if DRn ̸= ∅ then
5 SR := SR ∪ DRn;

6 for i = 1 to n− 1 do
7 Ri−1 = DRi−1 \ DRi;
8 Ri := DRi;
9 return R =

∪j≤i
j=0Rj and SR;

Once we have computed the ranking for a defeasible Datalog knowledge base, we can go
about checking if a defeasible rule is defeasibly entailed by the knowledge base. We do this by
checking if the rule is in the rational closure of the knowledge base. Essentially, the rational
closure algorithm considers the portion of the knowledge base for which the queried rule is
not exceptional (using Algorithm 1). The algorithm then checks if the rule classically follows
from this portion of the knowledge base.

Returning to Example 2 again, if we wanted to query that knowledge base to determ-
ine whether it defeasibly entailed the query “Platypusses typically lay eggs”/platypus(X) ;
lays_eggs(X), we would first look at the portion of the knowledge base where the body of
the query is satisfiable. Platypusses are not satisfiable when considering rank 0 (“Mammals
typically don’t lay eggs”/mammal(X) ; ¬lays_eggs(X)), rank 1 (“Platypusses typically lay
eggs”/platypus(X); lays_eggs(X)) and the classical rules (“Platypusses aremammals”/platypus(X)
→ mammal(X)). When considering just rank 1 and the classical rules, though, platypusses are
satisfiable. We will then look at the classical version of the remaining defeasible rules and the
classical rules and determine whether a classical version of our query is classically entailed,
which it is in this case. Our approach can also check for defeasible entailment of classical rules.
To do this, we check if the classical query is classicalally entailed by the classical portion of
the knowledge base. This is worth mentioning but, it is beyond the scope of the paper, so it
shall not be discussed further here.

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 192

Algorithm 3: RationalClosure(K, α ; β)

Input :A knowledge base K that consists of the ranking R of the set of defeasible
rules DR and the set of classical rules SR, and a defeasible query α ; β

Output : True iff α ; β is in the rational closure of the knowledge base consisting of
defeasible rules DR and classical rules SR, False otherwise

1 i := 0;n := number of ranks in R+ 1;
2 while ∪j≤n

j=i

−→
Rj ∪ SR |= α→ ⊥ and i ≤ n do

3 i := i+ 1;
4 return ∪j≤n

j=i

−→
Rj ∪ SR |= α→ β;

5 RATIONAL CLOSURE FOR DEFEASIBLE DATALOG SATISFIES KLM’S RATIONAL
CONSEQUENCE RELATION REQUIREMENTS

As stated in Section 4, a ranking of the defeasible Datalog program must be constructed before
it can be queried. Once a ranking has been computed using Algorithm 2 (which, in turn, makes
use of Algorithm 1), Algorithm 3 can be used to answer defeasible entailment queries on the
defeasible Datalog program. This section gives proofs showing how this approach satisfies
each of the defeasible Datalog versions of the KLM postulates.
Postulate 1 (Reflexivity)

K |≈ β ; β

Reflexivity is satisfied universally by any kind of reasoning that is based on some notion of
consequence (Kraus et al., 1990). Our defeasible entailment check for the given defeasible
rule is eventually reduced to a classical entailment check for a classical version of the rule,
which will always be reflexive.

Proof:

1. In order for RationalClosure(K, β ; β) to terminate, we have to break out of the while
loop on line 2 of Algorithm 3, so we will either have Case 1 where ∪j≤n

j=iβ

−→
Rj ∪SR |= β →

⊥ no longer holds or Case 2 where iβ ≤ n is no longer true.
Case 1:
2. (a) Since ∪j≤n

j=iβ

−→
Rj ∪ SR ̸|= β → ⊥, we must have ∪j≤n

j=iβ

−→
Rj ∪ SR |= β → β by classical

inference.
(b) Line 4 of Algorithm 3 will then return True for RationalClosure(K, β ; β), meaning
K |≈ β ; β for this case.

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 193

Case 2:
3. (a) Since iβ > n, we will only be dealing with the classical portion of the Datalog

program. SR |= β → β will hold by classical inference.
(b) Line 4 of Algorithm 3 will then return True for RationalClosure(K, β ; β), meaning
K |≈ β ; β for this case.

Postulate 2 (Left Logical Equivalence)
β ≡ γ, K |≈ β ; η

K |≈ γ ; η

Left Logical Equivalence expresses the requirement that logically equivalent formulas have
exactly the same consequences (Kraus et al., 1990). Since β ≡ γ, Algorithm 3 will consider the
same portion of the knowledge base for both β and γ where they are not exceptional. Since
K |≈ β ; η, we know that β → η holds for this portion of the knowledge base. Since β ≡ γ
and we are considering the same portion of the knowledge base, γ → η will hold. Algorithm 3
will, therefore, return True when checking K |≈ γ ; η.

Proof:

1. Given K |≈ β ; η, RationalClosure(K, β ; η) returns True.
2. In order for RationalClosure(K, β ; η) to terminate, we have to break out of the while

loop on line 2 of Algorithm 3, so we either have Case 1 where ∪j≤n
j=iβ

−→
Rj ∪ SR |= β → ⊥

no longer holds or Case 2 where iβ ≤ n is no longer true.
Case 1:
3. (a) Since β ≡ γ, RationalClosure(K, γ ; η) must give ∪j≤n

j=iγ

−→
Rj ∪ SR ̸|= γ → ⊥ where

iγ = iβ for which ∪j≤n
j=iβ

−→
Rj ∪ SR ̸|= β → ⊥ in RationalClosure(K, β ; η).

(b) Given K |≈ β ; η, ∪j≤n
j=iβ

−→
Rj ∪ SR |= β → η must hold on line 4 of Algorithm

refalg3 in RationalClosure(K, β ; η).
(c) ∪j≤n

j=iβ

−→
Rj ∪ SR ≡

∪j≤n
j=iγ

−→
Rj ∪ SR and β ≡ γ, therefore ∪j≤n

j=iγ

−→
Rj ∪ SR |= γ → η must

hold on line 4 of Algorithm
refalg3, thus returning True for RationalClosure(K, γ ; η), meaning K |≈ γ ; η
for this case.

Case 2:

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 194

4. (a) If iβ > n, then ∪j≤n
j=iβ

−→
Rj ≡ ∅.

(b) If ∪j≤n
j=iβ

−→
Rj = ∅ and given K |≈ β ; η, then SR |= β → η must hold on line 4 of

Algorithm
refalg3.

(c) Since β ≡ γ, RationalClosure(K, γ ; η) must not have any number iγ for which∪j≤n
j=iγ

−→
Rj ∪ SR ̸|= γ → ⊥ and iγ ≤ n, therefore iγ > n.

(d) If iγ > n, then ∪j≤n
j=iγ

−→
Rj = ∅.

(e) If SR |= β → η and β ≡ γ, then SR |= γ → η must hold on line 4 of Algorithm
refalg3, thus returning True for RationalClosure(K, γ ; η), meaning K |≈ γ ; η
for this case.

Postulate 3 (Right Weakening)
K |≈ β ; η, |= η → γ

K |≈ β ; γ

Right Weakening implies that we may replace logically equivalent formulas in the head of
the rule (Kraus et al., 1990). The portion of the knowledge base that Algorithm
refalg3 considers for both K |≈ β ; η and K |≈ β ; γ is the same due to exceptionality
being determined by the body of a rule and these two rules have the same body. We know
that β → η holds for this portion of the knowledge base and we know that |= η → γ. Due to
transitivity of classical implication, we know that β → γ will also hold for this portion of the
knowledge base, so Algorithm 3 will return True when checking K |≈ β ; γ.

Proof:

1. Given K |≈ β ; η, RationalClosure(K, β ; η) returns True.
2. In order for RationalClosure(K, β ; η) to terminate, we have to break out of the while

loop on line 2 of Algorithm 3, so we either have Case 1 where ∪j≤n
j=iβ

−→
Rj ∪ SR |= β → ⊥

no longer holds or Case 2 where iβ ≤ n is no longer true.
Case 1:
3. (a) Given K |≈ β ; η, ∪j≤n

j=iβ

−→
Rj ∪ SR |= β → η must hold on line 4 of Algorithm 3 in

RationalClosure(K, β ; η).
(b) With∪j≤n

j=iβ

−→
Rj∪SR |= β → η and given |= η → γ, we will get∪j≤n

j=iβ

−→
Rj∪SR |= β → γ

due to the transitivity of classical Datalog implication.

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 195

(c) Thus,∪j≤n
j=iβ

−→
Rj∪SR |= β → γ will hold on line 4 of Algorithm 3 in RationalClosure(K,

β ; γ) and cause RationalClosure(K, β ; γ) to return True, meaning K |≈ β ; γ
for this case.

Case 2:
4. (a) If iβ > n, then ∪j≤n

j=iβ

−→
Rj ≡ ∅.

(b) If ∪j≤n
j=iβ

−→
Rj ≡ ∅ and given K |≈ β ; η, then SR |= β → η.

(c) With SR |= β → η and given |= η → γ, we will get SR |= β → γ due to the
transitivity of classical Datalog implication.

(d) Thus, SR |= β → γ will hold on line 4 of Algorithm 3 in RationalClosure(K, β ; γ)
and cause RationalClosure(K, β ; γ) to return True, meaning K |≈ β ; γ for this
case.

Postulate 4 (And)
K |≈ β ; γ, K |≈ β ; η

K |≈ β ; γ ∧ η

And expresses the fact that the conjunction of two plausible consequences is also a plausible
consequence (Kraus et al., 1990). The portion of the knowledge base that Algorithm 3 con-
siders for K |≈ β ; γ, K |≈ β ; η, and K |≈ β ; γ ∧ η is the same due to exceptionality being
determined by the body of a rule and all of these rules having the same body. For this portion
of the knowledge base, we know that both β → γ and β → η. Due to classical conjunction
introduction, β → γ ∧ η must also hold for this portion of the knowledge base. Algorithm 3
will, therefore, return True when checking K |≈ β ; γ ∧ η.

Proof:

1. Given K |≈ β ; γ and K |≈ β ; η, RationalClosure(K, β ; γ) and RationalClosure(K,
β ; η) both return True.

2. In order for RationalClosure(K, β ; γ) and RationalClosure(K, β ; η) to terminate, we
have to break out of the while loop on line 2 of Algorithm 3, so we either have Case 1
where ∪j≤n

j=iβ

−→
Rj ∪SR |= β → ⊥ no longer holds or Case 2 where iβ ≤ n is no longer true.

Case 1:
3. (a) Given K |≈ β ; γ, ∪j≤n

j=iβ

−→
Rj ∪ SR |= β → γ must hold on line 4 of Algorithm 3 in

RationalClosure(K, β ; γ).

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 196

(b) Given K |≈ β ; η, ∪j≤n
j=iβ

−→
Rj ∪ SR |= β → η must hold on line 4 of Algorithm 3 in

RationalClosure(K, β ; η).
(c) If we have∪j≤n

j=iβ

−→
Rj∪SR |= β → γ and∪j≤n

j=iβ

−→
Rj∪SR |= β → η, then∪j≤n

j=iβ

−→
Rj∪SR |=

β → γ ∧ η must hold due to classical conjunction introduction.
(d) If we have∪j≤n

j=iβ

−→
Rj∪SR |= β → γ∧η on line 4 of Algorithm 3, then RationalClosure(K,

β ; γ ∧ η) will return True, meaning K |≈ β ; γ ∧ η for this case.
Case 2:
4. (a) If iβ > n, then ∪j≤n

j=iβ

−→
Rj = ∅.

(b) If ∪j≤n
j=iβ

−→
Rj = ∅ and given K |≈ β ; γ, then SR |= β → γ must hold on line 4 of

Algorithm 3 in RationalClosure(K, β ; γ).
(c) If ∪j≤n

j=iβ

−→
Rj = ∅ and given K |≈ β ; η, then SR |= β → η must hold on line 4 of

Algorithm 3 in RationalClosure(K, β ; η).
(d) If we have SR |= β → γ and SR |= β → η, then SR |= β → γ ∧ η must hold due to

classical conjunction introduction.
(e) If we have SR |= β → γ ∧ η on line 4 of Algorithm 3, then RationalClosure(K,

β ; γ ∧ η) will return True, meaning K |≈ β ; γ ∧ η for this case.

Postulate 5 (Or)
K |≈ β ; η, K |≈ γ ; η

K |≈ β ∨ γ ; η

Or states that any formula that is, separately, a plausible consequence of two different for-
mulas, should also be a plausible consequence of their disjunction (Kraus et al., 1990). For
K |≈ β ; η, Algorithm 3 considers the portion of the knowledge base where β is not excep-
tional; η classically follows for this portion of the knowledge base. For K |≈ γ ; η, Algorithm
3 considers the portion of the knowledge base where γ is not exceptional; η classically follows
for this portion of the knowledge base. When Algorithm 3 checks if K |≈ β ∨ γ ; η, it will
consider the largest portion of the knowledge base where at least one of β or γ is no longer
exceptional. We know that at the point where at least one of β or γ is no longer exceptional,
η classically follows for this portion of the knowledge base. So we know that β ∨ γ → η for
this portion of the knowledge base. Algorithm 3 will, therefore, return True when checking
K |≈ β ∨ γ ; η.

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 197

Proof:

1. Given K |≈ β ; η and K |≈ γ ; η, RationalClosure(K, β ; η) and RationalClosure(K,
γ ; η) both return True.

2. In order for both RationalClosure(K, β ; η) and RationalClosure(K, γ ; η) to terminate,
both calls to Algorithm 3 need to break out of the while loop on line 2, so we can
have 4 different cases. For Case 1 RationalClosure(K, β ; η) reaches a point where∪j≤n

j=iβ

−→
Rj ∪ SR |= β → ⊥ no longer holds and RationalClosure(K, γ ; η) reaches a point

where ∪j≤n
j=iγ

−→
Rj ∪ SR |= γ → ⊥ no longer holds. For Case 2 RationalClosure(K, β ; η)

reaches a point where iβ ≤ n is no longer true and RationalClosure(K, γ ; η) reaches a
point where∪j≤n

j=iγ

−→
Rj∪SR |= γ → ⊥ no longer holds. For Case 3 RationalClosure(K, β ;

η) reaches a point where∪j≤n
j=iβ

−→
Rj∪SR |= β → ⊥ no longer holds and RationalClosure(K,

γ ; η) reaches a point where iγ ≤ n is no longer true. For Case 4 RationalClosure(K,
β ; η) reaches a point where iβ ≤ n is no longer true and RationalClosure(K, γ ; η)
reaches a point where iγ ≤ n is no longer true.

Case 1:
3. (a) Given K |≈ β ; η, we know that ∪j≤n

j=iβ

−→
Rj ∪ SR |= β → η holds on line 4 of

Algorithm 3 in RationalClosure(K, β ; η).
(b) GivenK |≈ γ ; η, we know that∪j≤n

j=iγ

−→
Rj∪SR |= γ → η holds on line 4 of Algorithm

3 in RationalClosure(K, γ ; η).
(c) We now have 3 subcases. We have Case 1a where iβ < iγ. We have Case 1b where

iβ > iγ. We have Case 1c where iβ = iγ.
Case 1a:
(d) i. Since iβ < iγ, RationalClosure(K, β ∨ γ ; η) will break out of the while loop

on line 2 of Algorithm 3 at a point when ∪j≤n
j=iβ

−→
Rj ∪SR |= β ∨ γ → ⊥ no longer

holds.
ii. Since we know that∪j≤n

j=iβ

−→
Rj∪SR |= β → η holds, we then know that∪j≤n

j=iβ

−→
Rj∪

SR |= β ∨ γ → η must hold on line 4 of Algorithm 3, thus returning True for
RationalClosure(K, β ∨ γ ; η), meaning K |≈ β ∨ γ ; η for this case.

Case 1b:
(e) i. Since iβ > iγ, RationalClosure(K, β∨γ ; η) will break out of the while loop on

line 2 of Algorithm 3 at the point when ∪j≤n
j=iγ

−→
Rj ∪ SR |= β ∨ γ → ⊥ no longer

holds.

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 198

ii. Since we know that∪j≤n
j=iγ

−→
Rj∪SR |= γ → η holds, we then know that∪j≤n

j=iγ

−→
Rj∪

SR |= β ∨ γ → η must hold on line 4 of Algorithm 3, thus returning True for
RationalClosure(K, β ∨ γ ; η), meaning K |≈ β ∨ γ ; η for this case.

Case 1c:
(f) i. Since iβ = iγ, we will have ∪j≤n

j=iβ

−→
Rj ≡

∪j≤n
j=iγ

−→
Rj, so RationalClosure(K, β ∨ γ ;

η) will break out of the while loop on line 2 of Algorithm 3 at a point when
both ∪j≤n

j=iβ

−→
Rj ∪ SR |= β ∨ γ → ⊥ and ∪j≤n

j=iγ

−→
Rj ∪ SR |= β ∨ γ → ⊥ no longer

hold.
ii. Since we know that ∪j≤n

j=iβ

−→
Rj ∪ SR |= β → η and ∪j≤n

j=iγ

−→
Rj ∪ SR |= γ → η both

hold, we know that both∪j≤n
j=iβ

−→
Rj∪SR |= β∨γ → η and∪j≤n

j=iγ

−→
Rj∪SR |= β∨γ →

ηmust hold on line 4 of Algorithm 3, thus returning True for RationalClosure(K,
β ∨ γ ; η), meaning K |≈ β ∨ γ ; η for this case.

Case 2:
4. (a) Since iβ > n and iγ ≤ n, it must be that iγ < iβ, so RationalClosure(K, β ∨ γ ;

η) will break out of the while loop on line 2 of Algorithm 3 at the point when∪j≤n
j=iγ

−→
Rj ∪ SR |= β ∨ γ → ⊥ no longer holds.

(b) GivenK |≈ γ ; η, we know that∪j≤n
j=iγ

−→
Rj∪SR |= γ → η holds on line 4 of Algorithm

3 in RationalClosure(K, γ ; η).
(c) Since ∪j≤n

j=iγ

−→
Rj ∪ SR |= γ → η, then ∪j≤n

j=iγ

−→
Rj ∪ SR |= β ∨ γ → η must hold on line

4 of Algorithm 3, thus returning True for RationalClosure(K, β ∨ γ ; η), meaning
K |≈ β ∨ γ ; η for this case.

Case 3:
5. (a) Since iγ > n and iβ ≤ n, it must be that iβ < iγ, so RationalClosure(K, β ∨ γ ;

η) will break out of the while loop on line 2 of Algorithm 3 at the point when∪j≤n
j=iβ

−→
Rj ∪ SR |= β ∨ γ → ⊥ no longer holds.

(b) Given K |≈ β ; η, we know that ∪j≤n
j=iβ

−→
Rj ∪ SR |= β → η holds on line 4 of

Algorithm 3 in RationalClosure(K, β ; η).
(c) Since ∪j≤n

j=iβ

−→
Rj ∪ SR |= β → η, then ∪j≤n

j=iβ

−→
Rj ∪ SR |= β ∨ γ → η must hold on line

4 of Algorithm 3, thus returning True for RationalClosure(K, β ∨ γ ; η), meaning
K |≈ β ∨ γ ; η for this case.

Case 4:
6. (a) Since iβ > n, then ∪j≤n

j=iβ

−→
Rj = ∅.

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 199

(b) If ∪j≤n
j=iβ

−→
Rj = ∅ and given K |≈ β ; η, then SR |= β → η holds on line 4 of

Algorithm 3.
(c) Since iγ > n, then ∪j≤n

j=iγ

−→
Rj = ∅.

(d) If∪j≤n
j=iγ

−→
Rj = ∅ and givenK |≈ γ ; η, then SR |= γ → η holds on line 4 of Algorithm

3.
(e) Therefore SR |= β ∨ γ → η also holds on line 4 of Algorithm 3, thus returning True

for RationalClosure(K, β ∨ γ ; η), meaning K |≈ β ∨ γ ; η for this case.

Postulate 6 (Cautious Monotonicity)
K |≈ β ; γ, K |≈ β ; η

K |≈ β ∧ γ ; η

Cautious Monotonicity expresses that learning a new fact that could have been plausibly
concluded should not invalidate previous conclusions (Kraus et al., 1990). For K |≈ β ; γ
and K |≈ β ; η, Algorithm 3 considers the portion of the knowledge base where β is not
exceptional. We know that β → γ and β → η for this portion of the knowledge base. Since
β → γ, we know that β∧γ will not be exceptional for this same portion of the knowledge base.
Algorithm 3 will, therefore, consider this same portion of the knowledge base when checking
K |≈ β ∧ γ ; η. Since β → η for this portion of the knowledge base, β ∧ γ → η will also
hold for this portion of the knowledge base due to classical monotonicity. Algorithm 3 will,
therefore, return True when checking K |≈ β ∧ γ ; η.

Proof:

1. GivenK |≈ β ; γ andK |≈ β ; η, RationalClosure(R ofK, β ; γ) and RationalClosure(R
of K, β ; η) both return True.

2. In order for RationalClosure(R of K, β ; γ) and RationalClosure(R of K, β ; η) to
terminate, both calls to Algorithm 3 have to break out of the while loop on line 2, so
we either have Case 1 where ∪j≤n

j=iβ

−→
Rj ∪ SR |= β → ⊥ no longer holds or Case 2 where

iβ ≤ n is no longer true.
Case 1:
3. (a) Given K |≈ β ; γ, we know that ∪j≤n

j=iβ

−→
Rj ∪ SR |= β → γ must hold on line 4 of

Algorithm 3 in RationalClosure(R of K, β ; γ).
(b) Given K |≈ β ; η, we know that ∪j≤n

j=iβ

−→
Rj ∪ SR |= β → η must hold on line 4 of

Algorithm 3 in RationalClosure(R of K, β ; η).

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 200

(c) Since we have∪j≤n
j=iβ

−→
Rj∪SR |= β → γ, we equivalently have∪j≤n

j=iβ

−→
Rj∪SR |= ¬(β∧

¬γ). Therefore ∪j≤n
j=iβ

−→
Rj ∪ SR |= β ∧ ¬γ cannot hold, so the equivalent ∪j≤n

j=iβ

−→
Rj ∪

SR |= β ∧ γ → ⊥ will not hold on line 2 of Algorithm 3 in RationalClosure(R of K,
β ∧ γ ; η).

(d) Since ∪j≤n
j=iβ

−→
Rj ∪ SR |= β → η, then ∪j≤n

j=iβ

−→
Rj ∪ SR |= β ∧ γ → η must hold by

classical monotonicity on line 4 of Algorithm 3.
(e) Since ∪j≤n

j=iβ

−→
Rj ∪ SR |= β ∧ γ → η, then RationalClosure(R of K, β ∧ γ ; η) must

return True, meaning K |≈ β ∧ γ ; η for this case.
Case 2:
4. (a) Since iβ > n, then ∪j≤n

j=iβ

−→
Rj = ∅.

(b) If ∪j≤n
j=iβ

−→
Rj = ∅ and given K |≈ β ; γ, then SR |= β → γ holds on line 4 of

Algorithm 3.
(c) If ∪j≤n

j=iβ

−→
Rj = ∅ and given K |≈ β ; η, then SR |= β → η holds on line 4 of

Algorithm 3.
(d) Since SR |= β → γ, we equivalently have SR |= ¬(β∧¬γ). Therefore, SR |= β∧¬γ

cannot hold, so the equivalent SR |= β∧γ → ⊥ does not hold on line 4 of Algorithm
3 in RationalClosure(R of K, β ∧ γ ; η).

(e) Since SR |= β → η, then SR |= β ∧ γ → η must hold by classical monotonicity on
line 4 of Algorithm 3.

(f) Since SR |= β ∧ γ → η, then RationalClosure(R of K, β ∧ γ ; η) must return True,
meaning K |≈ β ∧ γ ; η for this case.

Postulate 7 (Rational Monotonicity)
K |≈ β ; η, K ̸|≈ β ; ¬γ

K |≈ β ∧ γ ; η

Rational Monotonicity expresses the fact that only the negation that only additional inform-
ation that negates a previously drawn plausible conclusion should force us to withdraw that
plausible conclusion (Kraus et al., 1990). For K |≈ β ; η and K ̸|≈ β ; ¬γ, Algorithm 3 con-
siders the portion of the knowledge base where β is not exceptional. We know that β → η and
that is is not the case that β → ¬γ for this portion of the knowledge base. We, therefore, know
that β∧γ will not be exceptional for this same portion of the knowledge base. Algorithm 3 will,
therefore, consider this same portion of the knowledge base when checking K |≈ β ∧ γ ; η.
Since β → η for this portion of the knowledge base, β ∧ γ → η will also hold for this portion

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 201

of the knowledge base due to classical monotonicity. Algorithm 3 will, therefore, return True
when checking K |≈ β ∧ γ ; η.

Proof:

1. Given K |≈ β ; η, RationalClosure(R of K, β ; η) returns True.
2. Given K ̸|≈ β ; ¬γ, RationalClosure(R of K, β ; ¬γ) returns False.
3. In order for RationalClosure(R of K, β ; η) and RationalClosure(R of K, β ; ¬γ) to

terminate, both calls to Algorithm 3 have to break out of the while loop on line 2, so
we either have Case 1 where ∪j≤n

j=iβ

−→
Rj ∪ SR |= β → ⊥ no longer holds or Case 2 where

iβ ≤ n is no longer true.
Case 1:
4. (a) Given K |≈ β ; η, we know that ∪j≤n

j=iβ

−→
Rj ∪ SR |= β → η must hold on line 4 of

Algorithm 3 in RationalClosure(R of K, β ; η).
(b) Given K ̸|≈ β ; ¬γ, we know that ∪j≤n

j=iβ

−→
Rj ∪ SR |= β → ¬γ does not hold on line

4 of Algorithm 3 in RationalClosure(R of K, β ; η).
(c) In order to have K |≈ β ∧ γ ; η, RationalClosure(R of K, β ∧ γ ; η) must return

True.
(d) Since∪j≤n

j=iβ

−→
Rj∪SR ̸|= β → ⊥, we will have∪j≤n

j=iβ

−→
Rj∪SR ̸|= β∧γ → ⊥ by classical

monotonicity.
(e) Since we have ∪j≤n

j=iβ

−→
Rj ∪SR ̸|= β∧γ → ⊥, RationalClosure(R of K, β∧γ ; η) will

progress out of its while loop on line 2 of Algorithm 3.
(f) Since∪j≤n

j=iβ

−→
Rj∪SR |= β → η and∪j≤n

j=iβ

−→
Rj∪SR ̸|= β → ¬γ, we can have∪j≤n

j=iβ

−→
Rj∪

SR |= β ∧ γ → η by classical monotonicity.
(g) By having ∪j≤n

j=iβ

−→
Rj ∪ SR |= β ∧ γ → η on line 4 of Algorithm 3, RationalClosure(R

of K, β ∧ γ ; η) will return True, thereby giving K |≈ β ∧ γ ; η for this case.
Case 2:
5. (a) Since iβ > n, then ∪j≤n

j=iβ

−→
Rj = ∅.

(b) If ∪j≤n
j=iβ

−→
Rj = ∅ and given K |≈ β ; η, then SR |= β → η.

(c) If ∪j≤n
j=iβ

−→
Rj = ∅ and given K ̸|≈ β ; ¬γ, then SR ̸|= β → ¬γ.

(d) Since there is no number iβ ≤ n such that ∪j≤n
j=iβ

−→
Rj ∪SR ̸|= β → ⊥, there will be no

number iβ ≤ n such that ∪j≤n
j=iβ

−→
Rj ∪SR ̸|= β ∧ γ → ⊥ due to classical monotonicity.

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 202

(e) Since there is no number iβ ≤ n such that ∪j≤n
j=iβ

−→
Rj ∪SR ̸|= β∧γ → ⊥, we will have

iβ > n, so RationalClosure(R of K, β ∧ γ ; η) will progress out of its while loop on
line 2 of Algorithm 3.

(f) Since SR |= β → η and SR ̸|= β → ¬γ, we can have SR |= β ∧ γ → η by classical
monotonicity.

(g) By having SR |= β ∧ γ → η on line 4 of Algorithm 3, RationalClosure(R of K,
β ∧ γ ; η) will return True, thereby giving K |≈ β ∧ γ ; η for this case.

6 DDLV: DEFEASIBLE DLV

We now introduce DDLV. DDLV is a system that performs preferential reasoning for defeas-
ible Datalog programs. The defeasible Datalog language for defeasible Datalog programs is
defined in Section 2.1 of this paper. Defeasible Datalog programs can be edited in DDLV for
convenience, but its main feature is the capability to query whether or not a defeasible Data-
log rule is entailed by a defeasible Datalog program. DDLV achieves this by implementing the
algortithms defined in Section 4 of this paper. DDLV is written in Java and uses the DLV Wrap-
per (Ricca, 2003) to interact with DLV programatically. DLV is used to perform the classical
Datalog entailment checks that are required in our algorithms. The source code for DDLV is
freely available online4, along with instructions on how to install, run, and use DDLV.

Figure 1 gives a simplified view of the architecture of DDLV. A model-view-controller
(MVC) design pattern was used. All the computation is performed by the classes in the models
package. The ”views” package currently contains a single class that provides a command-line
interface (CLI) for the user to interact with the system. The controllers package also cur-
rently contains a single class that handles the input from the CLI, requests the appropriate
functions from the models, and calls on the CLI to give the appropriate output. The system
uses this design package to allow all of the computational components to be contained and
provides the capability for additional views (input and output interfaces) and their respective
controllers to be added in a modular fashion if and when desired.

The raw defeasible Datalog program is stored as a DDLVProgram. A DDLVProgram is made
up of StrictRules and DefeasibleRules. The RankedModel class contains most of the crucial
functionality. A RankedModel takes a DDLVProgram as input and creates a ranking using imple-
mentations of Algorithm 1 and Algorithm 2. The RankedModel class also contains the function-
ality to then check if a defeasible Datalog rule is defeasibly entailed by the DDLVProgram using
an implementation of Algorithm 3.

Figure 2 is a simplified sequence diagram that shows how a user would typically interact
with the DDLV system. As can be seen, when the user opens the application, the user has
the choice to either load an existing DDLV program (which would be stored as a text file) or

4https://github.com/MindfulMichaelJames/DDLV

https://doi.org/10.18489/sacj.v32i2.850

https://github.com/MindfulMichaelJames/DDLV
https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 203

Figure 1: A simplified class diagram of the DDLV system

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 204

to create a new DDLV program. Once the user has either created or loaded a program, the
system presents the option to either view, edit, or query the program. By choosing to view the
program, the user will initially be presented with the ranks of the RankedModel of the current
DDLVProgram. The user can then select a rank and be shown all the rules in the selected rank.
By choosing to edit the program, the user will be presented with the option to either add a new
rule, edit an existing rule, or remove an existing rule. When choosing to edit or remove a rule,
the user is able to navigate to the desired rule in the same way as when viewing the program.
By choosing to query the program, the user is able to enter either a classical or defeasible
Datalog rule. The system will then return whether the rule is entailed by the program or not.

7 IMPLEMENTING RATIONAL CLOSURE IN DDLV

DDLV uses implementations of Algorithm 1 and Algorithm 2 to create a RankedModel (which
represents a defeasible Datalog ranking construction) of a DDLVProgram (which represents a
defeasible Datalog program). This ranking is computed when a defeasible Datalog program
is loaded into DDLV or edited in DDLV. Algorithm 1 is implemented using two functions,
isExceptional and getExceptionalRank. The pseudocode for these functions is given below.

The isExceptional function takes a rule and a program as arguments. DLV is invoked to
perform a classical entailment check to determine if the rule is exceptional with respect to the
program. DDLV uses DLV (Leone et al., 2002) to perform these classical Datalog entailment
checks in co-NP. One of the greatest appeals to the KLM approach is its computational tractab-
ility and that is largely because the preferential reasoning process can be reduced to classical
reasoning. This feature allows us to leverage the years of development that has been put into
DLV to make it a highly efficient Datalog reasoning system.

The getExceptionalRank function constructs a program by combining a classical repres-
entation of a rank (a set of defeasible rules) and all the classical rules in the whole DDLV
program. Note that all the defeasible rules in the DDLV program are initially set as rank 0.
getExceptionalRank then creates a function call to isExceptional for each of the rules in
the defeasible rank and passes the respective rule and the constructed program in as argu-
ments. All of these calls to isExceptional are then executed concurrently. Each execution
of isExceptional either returns the rule that was passed to it if the rule is exceptional with
respect to the program that was passed to it or returns nothing if the rule is not exceptional.
getExceptionalRank then returns the set of the results of all of the isExceptional executions.

Implementing Algorithm 1
function ISEXCEPTIONAL(currentRule, currentProgram)

inputProgram← currentProgram
inputProgram← inputProgram ∪ grounded body of currentRule
dlvInvocation← new DLV Invocation
Set inputProgam as the input for dlvInvocation
Set number of models for dlvInvocation to 1

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 205

Figure 2: A simplified sequence diagram of user interaction with the DDLV system

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 206

Run dlvInvocation
if dlvInvocation does not compute any models then
return currentRule

else
return null

end function

Require: strictRules
Require: defeasibleRanks← {0 : allDefeasibleRules}

function GETEXCEPTIONALRANK()
currentProgram← strict representation of defeasibleRules at rank ∪

strictRules
exceptionalRankFutures list← isExceptional(rule, currentProgram)

for each rule in defeasibleRanks at rank

return results of all isExceptional calls in exceptionalRankFutures

end function

Algorithm 2 is implemented by the computeRanking function. The first step in the computeRanking
function is to call getExceptionalRank on rank 0, which initially contains all the defeasible
rules in the whole DDLV program. The result of this call to getExceptionalRank is the set of
all the defeasible rules that are exceptional to rank 0. These rules are put into rank 1.

If rank 1 is equal to rank 0 (all the rules are exceptional), then the rules are actually what
we call hidden classical rules. These are rules that are represented as defeasible rules but
actually convey strict information. In this case, the function will jump to its end where it
will remove all of these hidden classical rules form the defeasible rules and add them to the
classical rules.

If rank 1 is not equal to rank 0, all the rules that are in rank 1 are moved out of rank
0. This process is then repeated by calling getExceptionalRank on rank 1 to obtain rank 2,
and so on. The process will terminate when the exceptional rank that is obtained is either
empty (contains no rules) or is equal to the rank that it is exceptional to (the rank below
it). If the most exceptional rank is empty then we have no more exceptional rules and the
ranking process is complete. The empty rank is simply removed from the ranking. If the most
exceptional rank is equal to the rank below it, then we have the same case as mentioned earlier
with hidden classical rules. These rules are moved to the set of classical rules and removed
from the ranking.

Taking an asynchronous approach to the getExceptionalRank function by making all of
its calls to the isExceptional function concurrently allows the computeRanking function to
reach completion much quicker than a sequential approach would allow.

Implementing Algorithm 2
function COMPUTERANKING

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 207

counter ← 1
defeasibleRanks at counter ← getExceptionalRank(counter − 1)
if defeasibleRanks at (counter − 1) ̸= defeasibleRanks at counter then
defeasibleRanks at (counter − 1)← defeasibleRanks at (counter − 1)\

defeasibleRanks at counter
while defeasibleRanks.get(counter − 1) ̸= defeasibleRanks.get(counter) ∧

defeasibleRanks.get(counter).getRules().size() > 0 do
counter ← counter + 1
defeasibleRanks at counter ← getExceptionalRank(counter − 1)
if defeasibleRanks.get(counter − 1) ̸= defeasibleRanks.get(counter) then

defeasibleRanks at (counter − 1)← defeasibleRanks at (counter − 1)\
defeasibleRanks at counter

if number of rules in defeasibleRanks at counter = 0 then
Remove defeasibleRanks at counter from defeasibleRanks

else
Remove defeasibleRanks at counter from defeasibleRanks
forall rule ∈ defeasibleRanks at (counter − 1) do

strictRules← strictRules ∪ strict representation of rule

Remove defeasibleRanks at (counter − 1) from defeasibleRanks

end function

Algorithm 3 is implemented by the rationalClosure function. DDLV uses this function to
perform a defeasible entailment check. The function takes in a defeasible rule as an argument.
The function checks if this rule is defeasibly entailed by the defeasible Datalog program.

This function initialises a counter to 0. While the value of the counter is less than the
number of defeasible ranks, the function uses classical entailment calls to DLV to check if the
query rule is exceptional with respect to all the defeasible rules contained in the rank at the
value of the counter and all the more exceptional ranks (including the classical rules). When
the function gets to a subset of the defeasible rules for which the query rule is no longer
exceptional, it uses DLV to check whether the head of the query rule is classically entailed
by this subset of rules. If the DLV check returns true, then the query rule is in the rational
closure of the defeasible Datalog program and it is, therefore, defeasibly entailed. If the DLV
check returns false, then the query rule is not in the rational closure of the defeasible Datalog
program and it is, therefore, not entailed.

Implementing Algorithm 3
Require: inputProgram

function RATIONALCLOSURE(queryRule)
rank ← 0
ranks← number of ranks in defeasibleRanks

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 208

while rank < ranks do
Clear inputProgram
inputProgram← inputProgam ∪ defeasibleRanks from rank to (ranks− 1)
inputProgram← inputProgam ∪ strictRules
inputProgram← inputProgam ∪ grounded body of queryRule
dlvInvocation← new DLV Invocation
Set inputProgam as the input for dlvInvocation
Run dlvInvocation
if dlvInvocation computes a model then

break

else
rank ← rank + 1

inputProgram← inputProgam ∪ head of queryRule as a query
dlvInvocation← new DLV Invocation
Set inputProgam as the input for dlvInvocation
Run dlvInvocation
if dlvInvocation computes a model then
return true

else
return false

end function

8 EVALUATION

This section evaluates the performance of DDLV. Other defeasible Datalog reasoning imple-
mentations typically use an argumentation-based approach, which require additional inform-
ation, such as constraints or override axioms. These other approaches also typically do not
handle classical negation. These other approaches would, therefore, require a different set
of rules that does not use classical negation and has additional information which the other
approaches require to solve inconsistencies. Since there are no other preferential reasoning
systems for defeasible Datalog, we compare DDLV with DIP, the Defeasible-Infererence Plat-
form for Description Logics (Meyer et al., 2014). Although Datalog and Description Logics
are different languages with different levels of expressivity and different approaches to clas-
sical reasoning, the preferential reasoning approach of DIP is very similar to DDLV. It is worth
comparing DIP and DDLV to illustrate the computational benefits of utilising Datalog as an
underlying language rather than Description Logics. Classical Datalog reasoners benefit from
database optisation techniques, such as join order optimisations and the magic sets transform-
ation. (Hustadt & Motik, 2005; Hustadt et al., 2007; Leone et al., 2002)

DIP performs KLM-style rational closure for ALC. The exceptionality check for DIP ter-
minates in EXPTIME. Moodley built and then evaluated DIP for his PhD (2015) thesis. He
synthesised ontologies to evaluate. No repository or collection of defeasible Datalog programs
exists, so we must synthesise defeasible Datalog programs to evaluate as well. We follow

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 209

Moodley’s parameters and techniques for the synthesised programs in order to have defeasible
Datalog programs that are as comparable as possible to his defeasible ontologies. Hardware
with identical specifications is also used (Intel i7, 4 cores, 3GB RAM).

Moodley evaluated 10 groups of defeasible ontologies. Each group had a different percent-
age of defeasible statements in the ontologies in the group, starting from 10% and going up
to 100% in intervals of 10%. Each group contained 35 ontologies, with the smallest ontology
containing 150 statements and the largest ontology containing 3500 statements. The onto-
logy sizes were uniformly distributed between the smallest and largest ontologies. To perform
a similar evaluation of DDLV’s performance, we synthesised and evaluated 10 groups of de-
feasible Datalog programs. As with the evaluation of DIP, each group of defeasible Datalog
programs has a different percentage of defeasible rules in the programs in the group, starting
from 10% and going up to 100% in intervals of 10%. Still following Moodley’s parameters for
the evaluation of DIP, our groups contain 35 programs, with the smallest program containing
150 rules and the largest program containing 3500 rules. The program sizes are uniformly
distributed between the smallest and largest programs.

Figures 3 and 4 show the ranking compilation time of DIP and DDLV respectively. Figure 3
shows the ranking compilation time for DIP for each of 10 groups of defeasible ontologies,
while Figure 4 shows the ranking compilation time of DDLV for the 10 groups of defeasible
Datalog programs. Moodley used percentile plots because they give a good general picture
of the performance and reveal outliers quickly (Moodley, 2015). For example, if the value
for the P90 bar is 40 seconds then it means that 90% of the ontologies (in the case of DIP)
or programs(in the case of DDLV) could have their ranking computed in 40 seconds or less.
Note that the vertical scale for Figure 3 is logarithmic whereas the vertical scale for Figure 4
is linear.

Figure 3: DIP ranking compilation time (Moodley, 2015)

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 210

Computing the ranking is the greatest bottleneck with this approach. Once the ranking
has been computed, defeasible entailment checks can be performed very quickly. We will first
compare DDLV’s ranking compilation time with DIP’s.

Figure 4: DDLV ranking compilation time

As with DIP, the time that DDLV takes to compute rankings increases with the level of
defeasibility present in the program. DDLV seems to perform favourably against DIP, though.
DIP already takes about 100 seconds on average to compute a ranking for an ontology with
60% defeasibility. DDLV, in the worst case of Datalog programs with 100% defeasibility, only
takes just over 40 seconds on average to compute a ranking. The longest DIP takes to compute
a ranking is nearly 1000 seconds. The longest DDLV takes to compute a ranking is less than
130 seconds.

Next, we will compare the time DDLV takes to perform a defeasible entailment check with
the time DIP takes to perform a defeasible entailment check. Figure 5 shows the time DIP
takes to perform a defeasible entailment check using Rational Closure on the same groups of
defeasible ontologies that it performed the ranking compilation on, while Figure 6 shows the
time DDLV takes to perform a defeasible entailment check using Rational Closure on the same
groups of defeasible programs that it performed the ranking compilation on. Note that the
vertical scale for Figure 5 is logarithmic whereas the vertical scale for Figure 6 is linear.

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 211

Figure 5: DIP rational closure performance (Moodley, 2015)

Figure 6: DDLV rational closure performance

DDLV does not outperform DIP on average when it comes to defeasible entailment checks.
DIP’s average query time is less than 50 milliseconds, even for ontologies with 100% defeas-
ibility. DDLV’s average query time is about 120 milliseconds in the worst categories. In the
worst cases, however, DDLV outperforms DIP. The longest DIP takes to perform a defeasible
entailment check is just over 300 millisconds whereas the longest DDLV takes to perform a
defeasible entailment check is about 220 milliseconds. Even though DDLV’s average query
time is slower than DIP, the difference is very small in terms of real units of time and almost

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 212

negligible when single queries are performed in isolation. The performance of DDLV’s ranking
computation is of value, because reducing the typical bottleneck imposed by a long ranking
computation time will greatly increase the usability of the system.

To test how well DDLV will scale up, we also present stress tests.

Figure 7: DDLV size stress test

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 213

Figure 8: DDLV number of ranks stress test

For the size stress test, we recorded the ranking compilation time for 20 defeasible Data-
log programs varying uniformly in size from 5000 rules to 10000 rules, with all 20 programs
having a 20% level of defeasibility. For the ranking depth stress test, we recorded the ranking
compilation time for 20 defeasible Datalog programs of 5000 rules and a 20% level of defeas-
ibility, while the number of ranks in each program varied from 2 to 21. These two tests were
performed because the number of rules in a program and the number or defeasible ranks have
shown to have the greatest impact on ranking time. The two stress tests were performed on an
Intel Xeon processor with 96 cores. DDLV performs the exceptionality checks for each rule in a
rank asynchronously. This allows DDLV to perform as many exceptionality checks in parallel
as the number of cores available. We believe this approach contributes to the performance
demonstrated in Figure 7 and Figure 8. The longest DDLV took to compute a ranking in the
size stress test is just under 7 seconds for 8750 rules. The longest DDLV took to compute a
ranking in the ranking depth stress test is just under 6.5 seconds for 19 ranks.

9 RELATED WORK

The KLM preferential reasoning approach has been lifted to the Description Logic setting a
few times in different flavours (Britz et al., 2009; Britz et al., 2008; Britz et al., 2011; Casini
& Straccia, 2010). DIP is the most similar work and the only other known implementation
of KLM-style preferential reasoning. There is research into handling incomplete knowledge in
Datalog programs (Eiter et al., 1997), but that is not the same type of nonmonotonicity that
we are dealing with.

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 214

The nonmonotic approach we are taking is to elegantly deal with inconsistencies. There
has been other work on handling inconsistency in Datalog programs. The existing work in
inconsistency handling in Datalog has generally used an argumentation approach. Hecham
et al. implemented a defeasible Datalog± reasoning system called DEFT (2017). Seeing as
DEFT uses Datalog± as an underlying language, it does not use classic negation and, there-
fore, requires additional negative constraints to represent inconsistencies. Hecham et al. also
proposed a new Statement Graphs formalism for defeasible reasoning based on argumenta-
tion (2018). This approach uses defeater rules that can prevent defeasible rules from being
concluded. Deagustini et al. take an argumentation approach to defeasible reasoning for
Datalog± (2018). The inconsistency they deal with arises from incoherence and is resolved
using comparison criterion to establish which argument is preferred amongst arguments that
attack each other. Wan et al. define a framework for dealing with defeasibility in disjunctive
logic programs (2015). This approach requires additional override axioms to explicitly define
the preference or priority of defeasible rules. Morris et al. (2020) consider a KLM approach
to enriching Datalog with defeasibility by defining relevant closure and lexicographic closure.
Their considerations are purely theoretical.

10 CONCLUSIONS AND FUTURE WORK

We have identified the need for an extension to Datalog that can handle inconsistent inform-
ation in order to deal with exceptions. We introduced the defeasible Datalog language that is
able to express defeasible Datalog rules and contradictory Datalog rules.

We lifted the KLM preferential reasoning framework to our defeasible Datalog setting. We
defined versions of the rational closure algorithm and its supporting ranking and exception-
ality algorithms for defeasible Datalog. We defined defeasible Datalog versions of the KLM
postulates and proved that our rational closure algorithm meets these KLM requirements to
be considered a rational consequence relation.

We introduced DDLV, a system for rational preferential reasoning for defeasible Datalog.
We showed how our approach was implemented as a software tool in DDLV. We demonstrated
the value of this approach by being able to reduce the critical functions of DDLV to classical
entailment checks, thereby being able to leverage the performance of the well-established
DLV. The evaluation of DDLV made the performance benefits of this approach quite clear
whilst introducing espressive power that Datalog has not previously enjoyed.

In this paper, our preferential reasoning approach was very syntactic. Future work would
involve clearly defining a semantics for this work and demonstrating the correspondence
between the syntactic and semantic approaches.

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 215

References

Abiteboul, S., Hull, R. & Vianu, V. (1995). Foundations of databases (Vol. 8). Addison-Wesley
Reading.

Antoniou, G., Billington, D. & Maher, M. J. (1999). On the analysis of regulations using de-
feasible rules. Proceedings of the 32nd Annual Hawaii International Conference on Systems
Sciences. 1999. HICSS-32. Abstracts and CD-ROM of Full Papers, 7–pp. https://doi.org/
10.1109/hicss.1999.772631

Ben-Ari, M. (2012).Mathematical logic for computer science. Springer Science & Business Media.
https://doi.org/10.1007/978-1-4471-4129-7

Britz, K., Heidema, J. & Labuschagne, W. (2009). Semantics for dual preferential entailment.
Journal of Philosophical Logic, 38(4), 433–446. https://doi.org/10.1007/s10992-008-
9097-z

Britz, K., Heidema, J. & Meyer, T. (2008). Semantic preferential subsumption. Eleventh Inter-
national Conference on Principles of Knowledge Representation and Reasoning, 476–484.

Britz, K., Meyer, T. & Varzinczak, I. (2011). Semantic foundation for preferential description
logics. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 7106 LNAI, 491–500. https://doi.org/
10.1007/978-3-642-25832-9_50

Casini, G. & Straccia, U. (2010). Rational Closure for Defeasible Description Logics. European
Workshop on Logics in Artificial Intelligence, 77–90. https://doi.org/10.1007/978-3-
642-15675-5_9

Ceri, S., Gottlob, G. & Tanca, L. (1989). What You Always Wanted to Know About Datalog
(And Never Dared to Ask). IEEE Transactions on Knowledge and Data Engineering, 1(1),
146–166. https://doi.org/10.1109/69.43410

Deagustini, C. A., Martinez, M. V., Falappa, M. A. & Simari, G. R. (2018). How does incoher-
ence affect inconsistency-tolerant semantics for Datalog±? Annals of Mathematics and
Artificial Intelligence. https://doi.org/10.1007/s10472-016-9519-5

Dumas, M., Governatori, G., Ter Hofstede, A. H. & Oaks, P. (2002). A formal approach to
negotiating agents development. Electronic Commerce Research and Applications. https:
//doi.org/10.1016/S1567-4223(02)00016-9

Eiter, T. & Gottlob, G. (1997). Disjunctive Datalog. ACM Transactions on Database Systems,
22(3), 364–418. https://doi.org/10.1145/261124.261126

Eiter, T., Leone, N., Mateis, C., Pfeifer, G. & Scarcello, F. (1997). A deductive system for non-
monotonic reasoning. International Conference on Logic Programming and Nonmonotonic
Reasoning, 363–374. https://doi.org/10.1007/3-540-63255-7_27

Garcia, D. R., Garcia, A. J. & Simari, G. R. (2007). Planning and defeasible reasoning. Proceed-
ings of the International Conference on Autonomous Agents. https://doi.org/10.1145/
1329125.1329393

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.1109/hicss.1999.772631
https://doi.org/10.1109/hicss.1999.772631
https://doi.org/10.1007/978-1-4471-4129-7
https://doi.org/10.1007/s10992-008-9097-z
https://doi.org/10.1007/s10992-008-9097-z
https://doi.org/10.1007/978-3-642-25832-9_50
https://doi.org/10.1007/978-3-642-25832-9_50
https://doi.org/10.1007/978-3-642-15675-5_9
https://doi.org/10.1007/978-3-642-15675-5_9
https://doi.org/10.1109/69.43410
https://doi.org/10.1007/s10472-016-9519-5
https://doi.org/10.1016/S1567-4223(02)00016-9
https://doi.org/10.1016/S1567-4223(02)00016-9
https://doi.org/10.1145/261124.261126
https://doi.org/10.1007/3-540-63255-7_27
https://doi.org/10.1145/1329125.1329393
https://doi.org/10.1145/1329125.1329393
https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 216

Grosof, B. N., Labrou, Y. & Chan, H. Y. (1999). A declarative approach to business rules in
contracts: Courteous logic programs in XML. ACM International Conference Proceeding
Series. https://doi.org/10.1145/336992.337010

Harrison, M. & Meyer, T. (2020). Rational preferential reasoning for datalog. Proceedings of
the South African Forum for Artificial Intelligence Research, 232–243.

Hecham, A., Croitoru, M. & Bisquert, P. (2017). Argumentation-based defeasible reasoning for
existential rules. Proceedings of the International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS, 3, 1568–1569.

Hecham, A., Bisquert, P. & Croitoru, M. (2018). On a flexible representation for defeasible
reasoning variants. Proceedings of the International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS.

Huang, S. S., Green, T. J. & Loo, B. T. (2011). Datalog and emerging applications. Proceedings
of the 2011 international conference on Management of data - SIGMOD ’11, 1213. https:
//doi.org/10.1145/1989323.1989456

Hustadt, U. & Motik, B. (2005). Description logics and disjunctive Datalog : The story so far.
CEUR Workshop Proceedings, 147.

Hustadt, U., Motik, B. & Sattler, U. (2007). Reasoning in description logics by a reduction to
disjunctive Datalog. Journal of Automated Reasoning, 39(3), 351–384. https://doi.org/
10.1007/s10817-007-9080-3

Kraus, S., Lehmann, D. & Magidor, M. (1990). Nonmonotonic reasoning, preferential models
and cumulative logics. Artificial Intelligence, 44(1-2), 167–207. https ://doi .org/10.
1016/0004-3702(90)90101-5

Lehmann, D. (1995). Another perspective on default reasoning. Annals of Mathematics and
Artificial Intelligence, 15(1), 61–82. https : / / doi . org / https : / / doi . org / 10 . 1007 /
BF01535841

Lehmann, D. & Magidor, M. (1992). What does a conditional knowledge base entail? Artificial
Intelligence, 55(1), 1–60. https://doi.org/10.1016/0004-3702(92)90041-U

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. & Scarcello, F. (2002). The
DLV System for Knowledge Representation and Reasoning. ACM Transactions on Com-
putational Logic (TOCL), 7(3), 499–562. https://doi.org/10.1145/1149114.1149117

Lloyd, J. W. (2012). Foundations of logic programming. Springer Science & Business Media.
Martinez, M. V., Deagustini, C. A. D., Falappa, M. A. & Simari, G. R. (2014). Inconsistency-

tolerant reasoning in Datalog± ontologies via an argumentative semantics. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 8864, 15–27.

Meyer, T., Moodley, K. & Sattler, U. (2014). DIP: A defeasible-inference platform for OWL
ontologies. CEUR Workshop Proceedings.

Moodley, K. (2015). Practical Reasoning for Defeasible Description Logics (Doctoral dissertation).
University of KwaZulu-Natal.

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.1145/336992.337010
https://doi.org/10.1145/1989323.1989456
https://doi.org/10.1145/1989323.1989456
https://doi.org/10.1007/s10817-007-9080-3
https://doi.org/10.1007/s10817-007-9080-3
https://doi.org/10.1016/0004-3702(90)90101-5
https://doi.org/10.1016/0004-3702(90)90101-5
https://doi.org/https://doi.org/10.1007/BF01535841
https://doi.org/https://doi.org/10.1007/BF01535841
https://doi.org/10.1016/0004-3702(92)90041-U
https://doi.org/10.1145/1149114.1149117
https://doi.org/10.18489/sacj.v32i2.850

Harrison, M. and Meyer, T.: DDLV: A system for rational preferential reasoning for Datalog 217

Morgenstern, L. (1998). Inheritance comes of age: Applying nonmonotonic techniques to prob-
lems in industry. Artificial Intelligence. https://doi .org/10.1016/s0004- 3702(98)
00073-3

Morris, M., Ross, T. & Meyer, T. (2020). Defeasible disjunctive datalog. Proceedings of the South
African Forum for Artificial Intelligence Research, 208–219.

Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z. & Banerjee, J. (2015). Rdfox: A highly-
scalable rdf store. International Semantic Web Conference, 3–20. https://doi .org/10.
1007/978-3-319-25010-6_1

Ricca, F. (2003). A Java wrapper for DLV. CEUR Workshop Proceedings, 78, 305–316.
Wan, H., Kifer, M. & Grosof, B. (2015). Defeasibility in answer set programs with defaults and

argumentation rules. Semantic Web. https://doi.org/10.3233/SW-140140

https://doi.org/10.18489/sacj.v32i2.850

https://doi.org/10.1016/s0004-3702(98)00073-3
https://doi.org/10.1016/s0004-3702(98)00073-3
https://doi.org/10.1007/978-3-319-25010-6_1
https://doi.org/10.1007/978-3-319-25010-6_1
https://doi.org/10.3233/SW-140140
https://doi.org/10.18489/sacj.v32i2.850

	Introduction
	Language
	Practical defeasible Datalog language
	Theoretical defeasible Datalog language

	A rational consequence relation for defeasible Datalog
	Defining rational closure for defeasible datalog
	Rational closure for defeasible datalog satisfies KLM's rational consequence relation requirements
	DDLV: Defeasible DLV
	Implementing rational closure in DDLV
	Evaluation
	Related work
	Conclusions and future work

