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ABSTRACT
Feedforward neural networks provide the basis for complex regression models that produce accurate predictions
in a variety of applications. However, they generally do not explicitly provide any information about the utility
of each of the input parameters in terms of their contribution to model accuracy. With this in mind, we develop
the pairwise network, an adaptation to the fully connected feedforward network that allows the ranking of input
parameters according to their contribution to model output. The application is demonstrated in the context of
a space physics problem. Geomagnetic storms are multi-day events characterised by significant perturbations to
the magnetic field of the Earth, driven by solar activity. Previous storm forecasting efforts typically use solar
wind measurements as input parameters to a regression problem tasked with predicting a perturbation index
such as the 1-minute cadence symmetric-H (Sym-H) index. We re-visit the task of predicting Sym-H from solar
wind parameters, with two ‘twists’: (i) Geomagnetic storm phase information is incorporated as model inputs and
shown to increase prediction performance. (ii) We describe the pairwise network structure and training process
– first validating ranking ability on synthetic data, before using the network to analyse the Sym-H problem.
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1 INTRODUCTION

In this work we present an adaptation to the fully-connected feedforward neural network
(FFNN) structure to allow for the ranking of a set of inputs during training, with no significant
trade-off in performance. We apply this network to a space weather regression problem and
show that the ranking it produces corresponds to the underlying physical processes involved.
This work builds on Lotz et al. (2019), where the “pairwise” network architecture was first

introduced. We improve the architecture and ranking procedure by adding summary nodes to
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the pairwise network and taking activation values into account when ranking, instead of only
the weights. We also propose parameter pruning as a way to improve the model’s ranking
capability. As an extended version of Lotz et al. (2019), relevant content is repeated here.
Section 2 provides a short overview of space weather in the context of this paper and a

description of the input and target parameters considered for this study. Previous work on
the interpretability of artificial neural networks that relates to this study is also mentioned. In
Section 3, we describe the process followed to construct the data sets, and Section 4 stipulates
the architecture and training procedure of the models considered in this work. In Section 5, we
validate the pairwise procedure on two artificial problems with different levels of complexity
before revisiting the space weather problem in Section 6. Section 7 discusses the limitations
of and possible future improvements to our approach, followed by the conclusion in Section
8.

2 BACKGROUND

Violent eruptions of electromagnetic energy (solar flares) and charged plasma (coronal mass
ejections or CMEs) on the solar surface are propagated through interplanetary space and can
impact the Earth’s geomagnetic field. These perturbations can result in the disruption of vari-
ous kinds of technological systems such as satellite (Béniguel & Hamel, 2011) and HF radio
communications (Frissell et al., 2019) and power grids, oil pipelines and other ground-based
conductor networks (Boteler, 2001; Trichtchenko & Boteler, 2002). These effects are collect-
ively known as “space weather”. Due to the adverse effects on critical technological systems,
major efforts are underway to monitor and predict space weather accurately (Oughton et al.,
2019).
Multi-day intervals of disruption to the geomagnetic field are known as geomagnetic storms

(Gonzalez et al., 1994) and their severity is quantified by indices that measure the net disturb-
ance to the geomagnetic field. The direct cause of geomagnetic storms is the injection of
energetic solar wind particles into the magnetosphere (the region of space around Earth dom-
inated by the geomagnetic field) and the increased degree of coupling between the solar wind
and magnetospheric plasmas. The prediction of a geomagnetic disturbance (GMD) index from
solar wind data lends itself to modelling as a regression problem, and many attempts to do this
have been made (Gruet et al., 2018; Lotz et al., 2015; Siscoe et al., 2005; Wintoft et al., 2005).
One such GMD index is the symmetric-H (Sym-H) index, which is constructed from measure-
ments at multiple magnetic observatories on Earth. (See Section 2.3 for more detail on the
Sym-H index). Our aim is to predict the Sym-H index (on Earth) from solar wind parameters
(as measured in space).
Figure 1 shows the progression of a geomagnetic storm over about four days. The top panel

shows the Sym-H index and the lower two panels show solar wind parameters measured by
the Advanced Composition Explorer (ACE) spacecraft. All values are shifted in time to the
estimated position of the magnetospheric bow shock nose (BSN) position. This storm was due
to a single CME impacting the magnetosphere and the passage of ejecta past the spacecraft
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is recognisable as the increases in speed, density, and fluctuations of the interplanetary mag-
netic field (IMF). A typical geomagnetic storm is seen in the Sym-H curve, with the onset phase
indicating the arrival of the CME on 17 March, moving into the main phase as the IMF turns
southward (BZ < 0), resulting in increased coupling between the solar wind and magneto-
sphere. After the IMF turns northward (BZ > 0) and the bulk of the disturbed solar wind
plasma has passed, the magnetosphere can recover.
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Figure 1: A typical geomagnetic storm driven by a single CME. This particular event occurred between
17 and 21 March 2015. The entire event from start to end is used to develop the model, as is the case
for the other 96 storms identified between 2000 – 2018. The top panel shows measured Sym-H (Section
2.3) and the lower panels show solar wind parameters Vsw, BT BZ and Np (Section 2.1) respectively.
Phase transitions are indicated with dashed vertical lines and each phase is labelled in the top panel.

Within this context, we revisit the regression problem – where we task a feedforward neural
network to predict Sym-H from solar wind parameters – with two important changes: Firstly,
an adapted network topology is designed to enable the analysis of input parameter weights.
The aim is to use the weight adaptations performed by the model training procedure to rank
input parameters according to importance. Secondly, we show that the inclusion of storm
phase as an input parameter to the model increases prediction performance. We know that
different physical phenomena are at play during different phases of a geomagnetic storm.
Finally, we show how the input parameter rankings change when restricting the model to
only one storm phase, further demonstrating the utility of analysing parameter importance to
gain insight into the problem at hand, beyond merely seeking accurate predictions.
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Prior to addressing the task as just described, we demonstrate the development of pair-
wise networks and the selection of input parameters on two synthetic regression problems: a
straightforward function of a small set of parameters (Section 5.1) and regression problems
from space weather (Section 5.2). The latter task models a synthetic parameter, Akasofu’s ϵ,
which is derived from solar wind parameters. The rest of this section is dedicated to describing
the space weather-related inputs and outputs.

2.1 Solar Wind Parameters
Several plasma and magnetic field parameters are included in this study, all contributing to
some extent to the dynamics involved in driving a geomagnetic storm:
Vsw Solar wind speed [km/s] is the bulk speed of the plasma moving across the spacecraft.
Np Proton number density [#/cc] measured in particles per cubic centimetre indicates the

particle density of the plasma. Coronal mass ejecta are usually denser than the ambient
solar wind plasma.

Pd Dynamic flow pressure [nPa] is the flow pressure of the solar wind and is linearly related
to NpV

2
sw.

EM Merging electric field in the solar wind [mV/m] serves as an indication of the coupling
between the solar wind and magnetospheric plasmas and is linearly related to −VswBZ .

BX,Y,Z, BT The three components of the IMF, measured in nT, and the total field BT .

2.2 Akasofu’s ϵ

This parameter serves as an indication of the amount of energy (in Watts) deposited by the
solar wind into the magnetosphere (Koskinen & Tanskanen, 2002). It is defined by

ϵ =
2π

µ0

VswB
2
T sin4(

θ

2
)l20. (1)

with θ = tan(BY /BZ) the clock angle of the IMF, µ0 the vacuum permittivity, and l0 a scaling
factor determined empirically. In Section 5.2 a simplified version of this parameter is modelled,
with solar wind parameters as input:

ϵ∗ = VswB
2
T sin4(

θ

2
), (2)

The ϵ∗ parameter simply avoids the scaling constants, but the relationship with solar wind
parameters remains intact. This regression problem enables the evaluation of our pairwise
network on a complex but known relationship between input and output parameters, utilising
real-world data.
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2.3 Symh-H index
The target or output parameter to the regression problem described in Section 6 is the sym-
metric H (Sym-H) index. This is an index calculated at 1-minute cadence, derived from the
horizontal (with regard to the Earth’s surface) component of the geomagnetic field measured
at 11 middle latitude magnetic observatories. The calculation is based on averaging disturb-
ances to the H-index at longitudinal pairs of stations. Sym-H serves as an indication of the
strength of the ring current (Moldwin, 2008) which circles the Earth and is the main driver of
magnetic storm activity at middle latitudes.
The physical phenomena relating Sym-H to solar wind plasma are reasonably well un-

derstood by space physicists, but an exact, quantitative transfer function relating solar wind
parameters to Sym-H is not known.

2.4 Related work
Several attempts have been made to extract feature ranking from deep neural networks. A
prominent direction is attribution methods, such as Integrated Gradients (Sundararajan et al.,
2017), DeepLIFT (Shrikumar et al., 2017) and Layer-wise Relevance Propagation (LRP) (Bach
et al., 2015), that assign an importance score to each input feature of a network. Attribution
methods do not form part of the model’s structure and can be readily applied to a wide range of
architectures, however this also means that these methods only approximate model behaviour.
In contrast, the pairwise network introduced in this work are intrinsically interpretable,

that is, the structure of this network allows for feature ranking. Similar architectures exist
in the literature, most of which are based on generalised additive models (GAMs) (Hastie &
Tibshirani, 1986), first introduced as “progression pursuit regression” (Friedman & Stuetzle,
1981). GAMs take the form:

g(E[y]) = β +
M∑
i=1

fi(xi) (3)

where y is the target, x = (x1, x2, . . . , xM) is the input with M features, g is the link function
and fi is a univariate shape function.
Generalised Additive Neural Networks (GANNs) were introduced in (Potts, 1999) and was

the first attempt to use neural networks for approximating the shape functions of GAMs. How-
ever, the GANNs used in (Potts, 1999) were not trained with back-propagation and only con-
sisted of a single hidden layer. Neural Additive Models (NAMs) (Agarwal et al., 2020) improve
GANNs significantly with several architectural and optimisation changes. GAMI-Net (GAMs
with structured Interactions) (Yang et al., 2020b) essentially adds pairwise interactions to
GANNs, approximating:

g(E[y]) = β +
∑

fi(xi) +
∑

fi,j(xi, xj) (4)
Neural Interaction Transparency (NIT) (Tsang et al., 2018) is a framework that produces the

same model as GAMI-Net, but by disentangling interactions within a FFNN. The Explainable
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Neural Network (xNN) (Vaughan et al., 2018), Adaptive xNN (AxNN) (Chen et al., 2020) and
Enhanced xNN (ExNN) (Yang et al., 2020a) are all based on the Generalised Additive Index
Model (GAIM):

g(E[y]) = β +
∑

fi(w
T
i x) (5)

where wi are known as the projection indices.
Except for GANN (1999), NIT (2018) and xNN (2018), all of these techniques were de-

veloped in parallel with ours, with ExNN, GAMI-Net, AxNN and NAM (preprint) published in
2020.

3 DATA SET

The space weather data set comes from a public source (Section 3.1) with specific events of
interest selected for model building, as described in Section 3.2.

3.1 Source
Data is collected from the High Resolution OMNI (HRO) data set1, which combines meas-
urements taken from several satellites and includes both solar wind parameters and several
geomagnetic disturbance indices, of which Sym-H is one.
This data set is already preprocessed in the following steps: Solar wind measurements

taken at 16 or 64-second cadence (depending on the instrument) are averaged to 1-minute
values and shifted in time to the estimated position of the magnetospheric bow shock nose
(BSN). This ensures that the propagation time from the first Lagrange point (L1) to the BSN
does not have to be incorporated into model development.

3.2 Event selection
The data set consists of solar wind and Sym-H data, at 1-minute cadence, from the period 2000
– 2018. This period includes almost two full solar activity cycles, but since geomagnetic storms
are fairly rare events, using all available data would result in a very unbalanced data set, with
the storm periods being under-represented. Therefore, only intense geomagnetic storms, those
with minimum Sym-H < −100 nT, were selected out of the 19 year period.
The event selection algorithm is described in Lotz and Danskin (2017). Using this method

97 storms are identified between 2000 and 2018, resulting in 396,164 minutes of data (ex-
cluding missing values) out of the ∼ 9.9 × 106 minutes spanning the 19 year interval. In this
set, the average storm has a duration of 5,000 minutes (∼ 3.5 days) with a standard deviation
of 2,200 minutes (∼ 1.5 days). The selection algorithm was developed for practical use and
built to consider closely separated events as a single event, in order to focus on the effect of
the event rather than the cause.
1https://omniweb.gsfc.nasa.gov/
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The collection of distinct storms are used to divide the data into training (67 storms),
testing (15 storms) and validation (15 storms) sets. Keeping storm intervals separate ensures
that the three sets are truly independent – every storm interval is wholly contained in only
one of the three data sets. The training set is used during training to adapt weights through
gradient descent, the validation set is used to determine the model’s performance after each
epoch, and the test set serves as the independent out-of-sample data set on which the model’s
performance is ultimately calculated. The entire data set is standardised by subtracting the
mean and scaling to unit variance, where both scalers are calculated on the training set.
Within each storm, the onset, main and recovery phases are identified by searching for (i)

the interval around the positive increase in Sym-H (onset phase), (ii) the rapid decrease to
storm minimum (main phase), and finally (iii) the recovery period from the minimum Sym-H
until the end of the event. These identifiers are important because there are different physical
processes involved in the various storm phases.

4 MODEL DEVELOPMENT

Two different types of architectures are utilised, a standard fully-connected FFNN and a “pair-
wise” neural network, detailed below (Section 4.1). The same process is utilised to optimise
all networks, as described in Section 4.4.

4.1 The pairwise network
A fully-connected feedforward network layout mixes signals from all inputs as information
flows through the hidden layers to the output. This enables the training procedure to utilise
all the different combinations of input parameters to find an efficient solution. Analysis of
these sets of combinations is prohibitively complex since, from the first layer of hidden nodes,
every node is directly or indirectly connected to every input parameter. Selectively removing
some connections from the input layer to the first hidden layer results in distinct combinations
of inputs to be fed to the subsequent hidden layers of a network.
The pairwise network, as originally introduced in (Lotz et al., 2019), is constructed accord-

ing to the following procedure. Given a model with M input parameters, H hidden nodes in
a single hidden layer, and a single output node:

1. Find all possible distinct pairs of inputs {Xi, Xj} (i ̸= j) in the list {X1, X2, . . . , XN}. Say
there are P such pairs, and note that {Xi, Xj} ≡ {Xj, Xi}.

2. Divide the set of hidden nodes into P distinct groups.
3. For each group, create a sub-network by fully connecting each pair of inputs to its cor-
responding group of hidden nodes.
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4. For each sub-network fully connect the nodes of the final hidden layer to a single node
(the summary node).

5. Fully connect the summary nodes of each sub-network to a single output node.
Figure 2 shows the layout of this network. The input weights in the first layer of the pairwise
network is set to have a value of 1 and frozen so as not to update during training. Biases
are added to the second layer of the pairwise network and ReLU activation functions are
placed after every layer except the first (input), second-last (summary) and final layer. All
sub-networks are initialised to have identical weight values between sub-networks. This is
achieved by randomly initialising a single sub-network and then duplicating its weights to all
other sub-networks. This network is identical to the one described in (Lotz et al., 2019), apart
from the more careful weight initialisation performed here.

Sub-network

1 1 1

Input Weights
Summary Node Weights

Figure 2: Illustration of the pairwise network architecture. Three input nodes (x1, x2, x3) are grouped
into pairs and connected to a single output node (y) via three distinct sub-networks. The output of each
sub-network is the so-called summary node which is linked to the output y.

4.2 Ranking procedure
The input parameter ranking process improves on the one described in (Lotz et al., 2019). It is
performed after training by passing a set of samples through the network and then capturing
the activation values of each sub-network’s summary node. For any given sample, the output
node value is the weighted sum of the summary node activation values. The reasoning is
that the magnitude of the weighted summary node activation values gives an indication of
sub-network importance for that sample. When averaging over all samples, the importance
of each sub-network can be estimated for the particular set. We refer to this as the weighted
summary node activation distribution.
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It can happen that the training algorithm completely prunes one of the inputs from a sub-
network. We renamed such sub-networks to have the same name as the remaining input.

4.3 Pruning procedure
In addition to the standard pairwise network, we also investigate iterative pruning of the
model’s weight parameters, similar to the method described in (Han et al., 2015). This in-
creases the model’s ranking capability by forcing the network to be more sparse.
The procedure we implemented is as follows: we first train the network to completion, and

then prune p% of the smallest unpruned weights according to their magnitude, by setting their
values to 0 and freezing them so that they do not get updated in subsequent training steps.
The remaining weights are then retrained to completion. Pruning and training are repeated
until the network reaches the desired level of sparsity or until the network’s performance on
the validation set falls below a predetermined threshold from the best value of the preceding
iterations. This threshold value sets the trade-off between sparsity and performance.

4.4 Model development
Two distinct network layouts are investigated in this work: standard feedforward networks
and the pairwise network layout described above. The baseline model (hereafter labelled B1)
is a fully connected FFNN with solar wind parameters as input and Sym-H as output. Model
B1 is trained with the 8 solar wind inputs, two hidden layers of 10 nodes each and a single
output node (Sym-H).
To enable the model to capture time information, we add temporally shifted versions of

each parameter to the set of inputs. The magnetospheric response to solar wind energy input
is non-linear in time and there are non-zero decay times determining the response of the ring
current (and Sym-H index) (Moldwin, 2008; Vassiliadis et al., 1999). Therefore we include
a time-shifted version of input parameters. For each input parameter Xt, measured at time
t, another input Xt−m is added, doubling the number of inputs of model B2 to 16. In this
case, we let m = 270 minutes, chosen by a parametric search of shifts. Applying this time
shift resulted in a marked increase in performance (see Section 6). Note that a constant shift
size is a limitation of the model because it incorrectly assumes that the time scale of energy
deposition and magnetospheric processes is identical for all geomagnetic storms.
A further improvement is made by adding categorical input parameters to indicate phase

since different physical processes are at play during the three storm phases. The relevant phase
indicator is set to 1 when the appropriate phase (onset, main or recovery) is in progress, and
set to 0 at other times. Therefore, model B3 has 8 + 3 = 11 input parameters.
All Pi models are the pairwise equivalents of the Bi models. Both the Bi and Pi models

are trained with Adam (Kingma & Ba, 2015) as the optimiser and mean squared error (MSE)
as the loss function. Correlation between the predicted and observed output is used as a
performance metric. All optimisation decisions are based on the model’s performance on the
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validation set. Early stopping is implemented by selecting models with the largest validation
correlation. Correlation and MSE are correlated for this task, so either one could be used as a
performance metric (Beukes, n.d.). An analysis using MSE is available in (Beukes, n.d.).
Extensive probing showed that weight decay, batch normalisation and learning rate sched-

ulers make little to no improvement to the performance, therefore none of these are used. It
was also found that smaller mini-batches have better performance, so a mini-batch size of 64
is chosen. Increasing the network width or depth does not improve performance, therefore
the mentioned network sizes are chosen as such in favour of computational efficiency. A grid
search is done to determine the best learning rate. Three initialisation seeds are considered
for both the Bi and the Pi models. The test results of these models are discussed in Section 6.

5 VALIDATION ON SYNTHETIC DATA

To validate the pairwise network’s ranking capability, we investigate two synthetic problems,
with different degrees of complexity. We use the model development process described in
Section 4.4 and train pairwise networks with 2 hidden layers and 10 hidden nodes per sub-
network.

5.1 Synthetic example 1: y = f(x)

Here we generate 3 data sets with input features sampled from a standard normal distribution

x1, x2, x3, x4 ∼ N (0, 1), (6)
and target values

y1 = x1 + x2 (7)
y2 = x2

1 + x2
2 (8)

y3 = x1x2. (9)
After generating target values, the data set is standardised by removing the mean and scaling
to unit variance. Each data set consists of 400 training and 100 validation samples.
We experimented with several pruning amounts p = {10, 15, 20, 25, 30} and found that

pruning more parameters per iteration tends to hurt ranking capability. On the other hand,
small values require more pruning iterations to reach the desired level of sparsity. Here, we
report on p = 20.
For each data set, a pairwise network is trained over 4 initialisation seeds and in every

case, the network reached above 0.92 correlation on the validation set. Figures 3(a), 3(b) and
3(c) show the weighted summary node activation distributions when passing the respective
training sets through trained pairwise networks.
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5.2 Synthetic example 2: Akasofu’s ϵ

Here we generate target values from a subsection of the Sym-H data set, as described in Sec-
tions 2.2 and 3, using the simplified ϵ∗ parameter (Equation 2). We test two sets of input
parameters: {Vsw, BT , θ, r} and {Vsw, BT , BY , BZ , r}, where r ∼ N (0, 1). In both cases, the
network is expected to identify the random variable r as an unwanted parameter since it does
not form part of the data generation. (Refer to Section 2.1 for a description of the solar wind
parameters used here.)
Optimisation produces pairwise networks with a validation correlation above 0.9. Figures

3(d) and 3(e) shows the weighted summary node activation distributions of pairwise networks
trained with the respective sets of input parameters.
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Figure 3: Weighted summary node activation distributions for synthetic example 1 (a to c) and synthetic
example 2 (d and e) when passing the training set through a pairwise network trained on that set. Each
bar represents a different initialisation seed and each section (colour) is a sub-network. The network’s
validation correlation and mean squared error (MSE) are shown below each bar. It can happen that
the training algorithm completely prunes one of the inputs from a sub-network. We renamed such
sub-networks to have the same name as the remaining input and marked them with a *.
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5.3 Discussion of synthetic examples
For almost all seeds of each synthetic example (see seed 1 in Figure 3(d) for the exception), the
predominant part of the weighted summary node activation distribution is occupied by pairs
that do not contain the unwanted variable. It is therefore clear that the pairwise network is
able to identify the parameters that influence the target value, and can suppress noise very
effectively.
Notice the contrast between the y = x1x2 problem (Figure 3(c)) and the other two problems

of synthetic example 1 (Figures 3(a) and 3(b)). For this problem, both x1 and x2 are required
as inputs for a sub-network to be ranked the highest, but for the other two cases the network
is able to produce the output from sub-networks where only one of the required inputs are
present. This is to be expected, as the final layer of the pairwise network can easily model
addition, but not multiplication.

6 RESULTS

The performance of the baseline (Bi) and pairwise (Pi) models are listed in Table 1. We first
consider the ability of the models to solve the task itself (Sections 6.1 and 6.2), before consid-
ering their parameter ranking ability (Section 6.3) and what this means. Pairwise results are
shown for training both with and without iterative pruning.

6.1 Baseline model
Without phase or time-shifted inputs, the optimal baseline model (B1) has a 0.63 test correla-
tion. By adding time-shifted inputs (B3) or phase (B2), the performance increases to 0.76 and
0.79, respectively. With both phase and time-shifted inputs added (B4), the model reaches a
test correlation of 0.83.
Figure 4 shows an example of Sym-H predicted by models B1 and B4 during a geomagnetic

storm. It clearly shows the advantage of adding time-shifted parameters and phase information
to the set of inputs, especially during the onset and recovery phases.

6.2 Pairwise network
With no phase or temporal information (P1), the pairwise model has a 0.63 correlation on
the test set. By adding time-shifted (P2) or phase (P3) inputs, the test correlation increases to
0.77 and 0.82, respectively. With both phase and time-shifted (P4) inputs, the test correlation
reaches 0.84.
When pruning iteratively, the resulting pairwise network has between 70% and 90% fewer

parameters, but at the cost of performance. In all cases, the iteratively pruned pairwise net-
work has lower test correlation than the baseline model.
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Table 1: Model performance. Average test correlation over 3 seeds for every model type. The standard
error (S.E.), calculated on the test correlation, is also shown.
Model Description Layout Test Corr. S.E.

Without Iterative Pruning
B1 FFNN 8:(10,10):1 0.63 0.0008
B2 FFNN with time-shifted inputs (8+8):(10,10):1 0.76 0.0100
B3 FFNN with phase (8+3):(10,10):1 0.79 0.0081
B4 FFNN with phase and t-shifted inputs (8+3+8+3):(10,10):1 0.83 0.0047
P1 Pairwise net 8:(10,10)∗:1 0.63 0.0132
P2 Pairwise net with time-shifted inputs (8+8):(10,10)∗:1 0.77 0.0027
P3 Pairwise net with phase (8+3):(10,10)∗:1 0.82 0.0016
P4 Pairwise net with phase and t-shift (8+3+8+3):(10,10)∗:1 0.84 0.0009

With Iterative Pruning
P1 Pairwise net 8:(10,10)∗:1 0.55 0.0233
P2 Pairwise net with time-shifted inputs (8+8):(10,10)∗:1 0.69 0.0002
P3 Pairwise net with phase (8+3):(10,10)∗:1 0.73 0.0138
P4 Pairwise net with phase and t-shift (8+3+8+3):(10,10)∗:1 0.79 0.0137

∗Hidden layers of the pairwise model’s sub-networks

6.3 Input parameter ranking through pairwise network
The pairwise network P1 is developed with (i) the entire data set, and (ii) with the dataset
divided according to the 3 storm phases. This enables the ranking of input pairs in general
and for separate storm phases. This is to see if the input ranking via the pairwise networks
reflects the known differences in physical phenomena at play during the different storm phases.
In both cases the best performing pairwise model is used.
Similar to Section 5, we pass the training set through the network to extract weighted

summary node activation distributions, but with all 8 input parameters in pairs of 2, the graphs
become overly complex. As an alternative, we use this distribution to estimate attribution
values for each input parameter and present the results in Tables 2, 3, 4 and 5.
Input parameter attribution values are determined by dividing each sub-network’s portion

of the weighted summary node activation distribution equally between every unpruned input
connected to the sub-network (thereby assuming they contribute equally) and then summing
over all sub-networks. It was found that pairwise networks rank poorly when trained without
iterative pruning. In the following sections, we only show ranking results for pairwise net-
works trained with iterative pruning.

6.4 Interpretation of the input parameter selection
In this section, we evaluate the ranking input parameters performed by the pairwise network
models against our current understanding of the physical processes involved in the solar wind-
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Figure 4: Predicted and observed Sym-H values during a geomagnetic storm. Model prediction results
are shown both with and without phase and time-shifted inputs. The different storm phases are also
indicated here.

geomagnetic field coupling during geomagnetic storms. The ranking capability of the model
when trained on the bulk data set is discussed and in the subsequent subsections, model per-
formance is discussed for each of the three phases of geomagnetic storms.
Table 2 shows the input parameter ranking according to the attribution method described

in section 6.3. The rankings vary by seed, but as explained below, the top-ranked parameters
for each seed points to similar physical processes at work. In each of the three sets of ranks the
top seven parameters (out of 16) are related to the dynamic pressure applied by the solar wind
to the magnetosphere, i.e. Vsw, Np and BT , or the coupling of the solar wind plasma to the
magnetospheric plasma (EM , BZ , and Vsw). It is peculiar that the dynamic pressure parameter
Pd (∼ NpV

2
sw) does not feature in the top-ranked input parameters. This may be due to the

influence of Vsw and Np being strong indicators of solar activity and the training algorithm not
responding to features duplicated by Pd, or that the relationship between Sym-H and Vsw is
linear rather than quadratic. The X and Y components of the IMF (BX and BY ) consistently
achieve low rankings. This is to be expected as these parameters indicate the sun-ward (X) and
ecliptic (Y) components of the IMF. Only the Z-component is directly related to reconnection
between the IMF and geomagnetic field.
In most cases, both the instantaneous (X[t]) and the time-shifted (X[t − 270]) versions of

parameters achieve high ranking scores. This confirms that the current Sym-H values are
driven by current and previous conditions in the solar wind. This is indeed the case since
the solar wind–magnetosphere coupling depends on various processes, with different time

https://doi.org/10.18489/sacj.v32i2.860

https://doi.org/10.18489/sacj.v32i2.860


Beukes, J., Lotz, S., and Davel, M.: Pairwise networks for feature ranking of a geomagnetic storm model 49

dependencies.
To summarise, the model correctly separates the important parameters from those less

important to the regression problem in the context of a set of highly mutually correlating input
parameters. All the solar wind parameters are characteristics of the same volume of plasma
and its associated magnetic field. Furthermore, duplicated information due to parameters
representing similar physical parameters is not reflected in the ranking.

Entire Sym-H data set
Seed 1 Seed 2 Seed 3 Avg

Param Score Param Score Param Score Param Score
Vsw[t− 270] 12.24 Vsw[t− 270] 13.18 Np[t− 270] 13.48 Vsw[t− 270] 12.36
EM [t− 270] 10.49 Vsw 13.18 Np 13.48 BZ [t− 270] 11.89
EM 10.49 BZ 12.35 BZ [t− 270] 13.30 Vsw 11.05
BZ 10.16 BZ [t− 270] 12.25 BT [t− 270] 12.67 BT [t− 270] 9.66
BT [t− 270] 10.12 Np[t− 270] 6.98 BT 12.67 BT 9.66
BT 10.12 Np 6.98 Vsw[t− 270] 11.65 BZ 7.54
BZ [t− 270] 10.11 EM [t− 270] 6.94 Vsw 11.65 Np[t− 270] 6.90
Vsw 8.31 EM 6.94 BY 3.75 Np 6.90
BY [t− 270] 4.71 BT [t− 270] 6.18 EM [t− 270] 2.52 EM [t− 270] 6.65
BY 4.71 BT 6.18 EM 2.52 EM 6.65
Pd[t− 270] 3.94 BY 3.30 BX [t− 270] 0.91 BY 3.92
Pd 3.94 Pd[t− 270] 1.59 BX 0.91 BY [t− 270] 1.90
Np[t− 270] 0.25 Pd 1.59 BY [t− 270] 0.35 Pd[t− 270] 1.84
Np 0.25 BX 1.22 BZ 0.12 Pd 1.84
BX [t− 270] 0.09 BY [t− 270] 0.65 Pd[t− 270] 0 BX 0.71
BX 0 BX [t− 270] 0.49 Pd 0 BX [t− 270] 0.50

Table 2: Input parameter ranking of the P2 network (pairwise with temporal inputs) for 3 seeds. The
score refers to the input attribution as described in Section 6.3.

6.4.1 Onset phase results
On average it is Vsw and Np that dominate the onset phase, with BZ in third place. It makes
sense that pressure-related terms (i.e. Np and Vsw) would dominate, since for intense storms
the onset phase is usually characterised by the so-called storm sudden commencement – caused
by a sudden increase in solar wind dynamic pressure which compresses the dayside magneto-
sphere, resulting in an increase in horizontal magnetic field measured on the ground (Gonzalez
et al., 1994). This increase manifests in Sym-H as a significant upward pulse lasting minutes to
hours. The onset phase is defined as the period before significant reconnection takes place and
hence the BZ and EM components do not play a big role here, although the sudden increase
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Phase: Onset
Seed 1 Seed 2 Seed 3 Avg

Par Score Par Score Par Score Par Score
BZ 31.19 Vsw 25.05 Vsw 20.23 Vsw 22.54
Vsw 22.34 Np 14.46 Np 19.20 Np 18.52
Np 22.30 BT 14.31 BT 14.37 BZ 18.05
BT 12.81 EM 14.06 EM 13.49 BT 13.88
Pd 7.86 BZ 11.23 BZ 12.86 EM 8.24
BY 3.51 BX 10.09 BX 8.71 Pd 7.67
BX 0 Pd 6.22 Pd 6.33 BX 6.80
EM 0 BY 4.56 BY 4.79 BY 4.29

Table 3: Input parameter ranking of the P1 network when trained on a subsection of the Sym-H data
set that only includes samples from the onset phase of a geomagnetic storm. Results are shown for 3
seeds and the average across seeds. The score refers to the input attribution as described in Section 6.3.

in pressure is usually accompanied by an increase in total IMF and Z-component of IMF (see
Figure 1 just before the start of the main phase period).

6.4.2 Main phase results

Phase: Main
Seed 1 Seed 2 Seed 3 Avg

Par Score Par Score Par Score Par Score
EM 26.48 BZ 20.35 EM 23.26 EM 22.11
Vsw 19.26 BT 19.62 Vsw 19.00 Vsw 19.01
BZ 15.83 Vsw 18.78 BT 13.89 BZ 16.20
BT 13.71 EM 16.60 BZ 12.42 BT 15.74
Pd 10.12 Pd 8.00 BX 11.34 Pd 8.55
Np 5.55 Np 6.34 Pd 7.53 BX 7.27
BX 5.02 BX 5.44 Np 6.60 Np 6.16
BY 3.99 BY 4.85 BY 5.96 BY 4.93

Table 4: Input parameter ranking of the P1 network when trained on a subsection of the Sym-H data
set that only includes samples from the main phase of a geomagnetic storm. Results are shown for 3
seeds and the average across seeds. The score refers to the input attribution as described in Section 6.3.

Storm main phase is defined by the magnetic reconnection between the IMF and geomag-
netic fields which happens when BZ turns negative, allowing field lines at the day side mag-
netopause to merge with IMF lines. Therefore the high rankings of BZ and EM in Table 4 is
expected (Vassiliadis et al., 1999). During this time the solar wind speed Vsw acts as a mod-
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ulator of the energy input into the open magnetosphere. It is interesting that, on average, it
is EM and both its constituent parameters BZ and Vsw that are highly ranked. On the other
hand, during the onset phase the pressure-related terms Np and Vsw were both ranked high
but not the combined parameter Pd. Again, this points to Sym-H being linearly correlated to
Vsw, rather than a higher order relationship.

6.4.3 Recovery phase results

Phase: Recovery
Seed 1 Seed 2 Seed 3 Avg

Par Score Par Score Par Score Par Score
BT 38.59 BZ 45.98 Pd 77.14 BT 29.17
Vsw 22.82 BT 40.50 BT 8.41 Pd 25.71
Np 22.57 BX 10.66 BZ 5.62 BZ 22.54
BZ 16.02 Np 2.18 BY 3.02 Np 9.18
BX 0 BY 0.34 Np 2.79 Vsw 7.84
BY 0 Vsw 0.34 BX 2.65 BX 4.44
Pd 0 Pd 0 Vsw 0.37 BY 1.12
EM 0 EM 0 EM 0 EM 0

Table 5: Input parameter ranking of the P1 network when trained on a subsection of the Sym-H data
set that only includes samples from the recovery phase of a geomagnetic storm. Results are shown for
3 seeds and the average across seeds. The score refers to the input attribution as described in Section
6.3.

During storm recovery, it is the absence of energy input from the solar wind that allows
the magnetosphere to recover by various internal wave-particle interactions that drain energy
from particle populations (McPherron, 1995; Vassiliadis et al., 1999). After a CME passes, the
solar wind speed gradually decreases to ambient level and the fluctuations in the IMF decrease
significantly. Here the top-ranking inputs are BT , Pd, and BZ . Pd achieves a very high score
for Seed 3, but zero scores for Seed 1 and 2, resulting in the high average score. Note further
that for Seed 1 bothNp and Vsw achieve relatively high scores, with Pd rated zero. Thus for this
phase, there seems to be an equivalence between Pd and (Vsw, Np), suggesting that perhaps
the Sym-H-Vsw relationship is of higher order than for onset and main phases. Total IMF BT

serves as a general indicator of disturbed solar wind and is usually characterised by a gradual
decrease during the recovery phase. During CME-driven solar wind disturbances it is typically
the Z-component that varies more coherently than the BX or BY components, and therefore
there is high correlation between BZ and BT , especially during the main and recovery phases.
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7 DISCUSSION

This investigation confirms that neural networks are a viable option for predicting a geomag-
netic storm index (i.e. Sym-H) from solar wind parameters alone. The simplest model is able
to reach an average test correlation of 0.63. By adding phase and temporal information, the av-
erage performance increases to 0.83. The proposed pairwise network achieved approximately
the same predictive performance (0.84) as the standard feedforward neural network when
trained without pruning.
Iteratively pruning the network during training, adds the benefit of ranking the importance

of input parameters at the cost of a decrease in performance and an increase in training time.
The pruning process is computationally expensive since the network has to be retrained at
every pruning iteration. Another shortcoming of the current pairwise network is that its use
is limited to smaller tasks: since every combination of input pairs receives a sub-network, the
model grows quickly, becoming unwieldy.
There are several improvements to be made. First of all, to reduce the training time, the

pruning algorithm can be adapted to stop at an earlier stage where the drop in performance
is less severe, but the level of sparsity ensures good ranking. Optimal pruning strategies have
not yet been investigated. In addition, alternative methods for enforcing sparsely-trained net-
works can be considered. For example, one can add a term to the loss function that ensures
sparsity in certain layers of the network. This approach will decrease training time since no
pruning iterations are required. Another improvement would be to add existing attribution
methods to the ranking procedure. For example, DeepLIFT (Shrikumar et al., 2017) or Integ-
rated Gradients (Sundararajan et al., 2017) can be used to get an estimate for the importance
of each input parameter to a sub-network.
In this work we base the pairwise network on the FFNN for its relative simplicity with

regards to both implementation and analysis. Architectures that are more suitable for sequence
modelling, such as recurrent or convolutional neural networks, can be incorporated in future
versions of the pairwise network.

8 CONCLUSION

In this work we illustrated how domain knowledge can increase the performance of a neural
network-based model on a well-known regression problem, and that careful model design
can inform domain knowledge. This is of particular relevance in the current age of rapidly
increasing machine learning capability, where researchers and domain experts are becom-
ing increasingly cognisant of the dangers of well-performing but unexplainable models. Our
contribution in this regard is to introduce a novel neural network that implements a form
of intrinsic interpretability through layout constraints to allow an, admittedly crude, way of
feature ranking.
Revisiting the well-known solar wind–Sym-H regression problem, we showed that adding

storm phase and time-shifted solar wind parameters increases model performance, as would
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be expected given the current understanding of the problem. For our pairwise network, it was
shown that (i) the architectural modifications do not decrease performance when compared
to a simple FFNN, but that (ii) the training procedure followed to produce networks with good
ranking ability might decrease the performance. Lastly, it was shown that (iii) the rankings,
calculated by taking the weighted summary node activation values, generally agree with the
current understanding of the problem.
Further development of the pairwise network introduced here will concentrate on a more

rigorous analysis of the ranking procedure and an improvement in the architecture and train-
ing algorithm to produce networks with better performance and ranking capability. A more
rigorous analysis on a broader range of synthetic data sets are required, but eventually, the
development will shift to the application of these ideas to other, less well-understood tasks.
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