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ABSTRACT
No framework exists that can explain and predict the generalisation ability of deep neural networks in general
circumstances. In fact, this question has not been answered for some of the least complicated of neural network
architectures: fully-connected feedforward networks with rectified linear activations and a limited number of
hidden layers. For such an architecture, we show how adding a summary layer to the network makes it more
amenable to analysis, and allows us to define the conditions that are required to guarantee that a set of samples
will all be classified correctly. This process does not describe the generalisation behaviour of these networks,
but produces a number of metrics that are useful for probing their learning and generalisation behaviour. We
support the analytical conclusions with empirical results, both to confirm that the mathematical guarantees hold
in practice, and to demonstrate the use of the analysis process.
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1 INTRODUCTION

Deep Neural Networks (DNNs) have been used to achieve excellent performance on many
traditionally difficult machine learning tasks, especially high-dimensional classification tasks
such as computer vision, speech recognition and machine translation (Goodfellow et al., 2016).
DNNs generalise well: trained on a limited data set, they are able to transfer this learning to
unseen inputs in a demonstrably effective way. Despite various approaches to studying this
process (Bartlett et al., 2017; Dinh et al., 2017; Jiang et al., 2019; Kawaguchi et al., 2019;
Keskar et al., 2017; Montavon et al., 2011; Neyshabur et al., 2017; Raghu et al., 2017; Shwartz-
Ziv & Tishby, 2017), no framework yet exists that can explain and predict the generalisation
ability of DNNs in general circumstances.
Specifically, one of the central tenets of statistical learning theory links model capacity—

the complexity of the hypothesis space the model represents—with expected generalisation
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performance (Vapnik, 1989). However, a sufficiently large DNN represents an extremely
large hypothesis space, specified by hundreds of thousands of trainable parameters. While
any architecture that has a hypothesis space that is sufficiently large to be able to memorise
random noise is not expected to generalise well, this is not the case for DNNs. In a paper that
caused much controversy, Zhang et al. (2017) demonstrated how both Convolutional Neural
Networks (CNNs) and standard Multilayer Perceptrons (MLPs) are able to memorise noise per-
fectly, while extracting the signal buried within the noise with the same efficiency as if the
noise was not present. Even more pointedly, this was shown to occur with or without adding
regularisation (Zhang et al., 2017).
The generalisation behaviour for even a straightforward fully-connected feedforward net-

work – as soon as it has more than one layer and non-linear activation functions – has not yet
been fully characterised In this work we take a step back, and analyse the classification ability
of such a network with one change: we add a small 2-node summary layer to the more stand-
ard fully-connected feedforward network in order to be able to probe its behaviour during
training and use.
In recent work (Davel et al., 2020), it was shown how the individual nodes of a standard

fully-connected feedforward network can draw class-specific activation distributions apart,
to the extent that these distributions can be used to train individual likelihood estimators
and produce accurate classifications at any of the later layers of a network. Here we use
these activation distributions to continue to probe the ability of a fully-connected feedforward
network to generalise.
The main contribution of this paper is a conceptual analysis process that can be used

to probe the generalisation ability of a neural network by adding a summary layer, and the
empirical confirmation of the mathematical aspects of this analysis. In the process, we define
the theoretical conditions for correct classification of a set of samples by an MLP, and use these
conditions to analyse network behaviour. This paper is an extended version of (Davel, 2019),
and repeats much of the preliminaries, in order to be readable on its own. Note that both the
notation and derivation process have been made clearer, resulting in a different formalism for
the theoretical conditions for correct classification. There has also been some shift in emphasis
from focusing on gaps (differences in values) to ratios (relationships between values), as will
become clearer in later sections.
In the next section, we start by reviewing the concept of nodes as network elements (Section

2), before introducing activation and weight ratios (Section 3), and exploring the role of these
ratios in achieving perfect classification from an analytical perspective. Expected relationships
are empirically confirmed in Section 4, before demonstrating the intention of the analysis
process in Section 5.

2 NODES AS NETWORK ELEMENTS

While a network functions as a single construct, each layer also acts as a functional element,
and within a layer, each node can be viewed as an individual unit with both a local and
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global function. Nodes are locally attuned to extracting information from a very specific part
of the input space, while collaborating globally to solve the overall classification or regression
task. Specifically, in Davel et al. (2020) it was shown that node-specific classifiers can be
constructed from two different information sources: either utilising the continuous activation
values (the distribution of activation values observed at a node), or the discrete counts of
whether a node is active or not when presented with the training data. For all networks
of sufficient size analysed, it was observed that at some layer, the network is able to achieve
similar classification accuracy as the actual network, irrespective of the system used to perform
classification (Davel et al., 2020).
This is an interesting result. In both systems, each node therefore uses locally available

information to develop its own probability estimate in isolation, but then collaborates with
other nodes (across the layer) to solve the overall classification task. Using this perspective, the
set of samples that activates any node (its ‘sample set’) becomes very significant, as discussed
further in Section 2.1.
We restrict the rest of this discussion to fully-connected feedforward architectures with

rectified linear unit (ReLU) activations (Nair & Hinton, 2010) and arbitrary breadth (number
of nodes in a hidden layer) and depth (number of hidden layers). Analysis is further restricted
to solving a classification task, with stochastic gradient descent (SGD) to optimise network
parameters.

2.1 Sample sets
Simultaneously introduced in Davel (2019) and Theunissen et al. (2019), a node-specific
sample set refers to the set of samples that activates a specific node. During gradient descent,
the forward process applies weights to create sample sets; the backward process uses sample
sets to update weights: each weight attuned to its specific sample set. For ReLU-activated
networks, this update has a surprisingly simple structure, if the weight update is written in its
iterative form, as introduced in Davel et al. (2020), a derivation that we loosely follow here.
We define the sample set Sb,l,j at node j of layer l as those samples in batch b that produce

a positive activation value at node j. For any sample in the sample set, node j in layer l can
be connected to an arbitrary number of active nodes in layer l + 1. Selecting one active node
per layer, the weights connecting these active nodes can be used to define an active path p
= {wp1 , wp2 , . . . , wpN−l

} associated with a specific sample, starting at layer l and ending at a
node in the output layer N . Limiting our analysis to ReLU-activated networks with no bias
values beyond the first layer, the SGD weight update δws

l,j,i contribution from sample s, for the
weight connecting node i in layer l − 1 to node j at layer l is then given by:

δws
l,j,i = −η

∑
s∈Sb,l,j

asl−1,i

∑
p∈P s

j

N−l∏
g=1

wpgλ
s
p (1)

where the superscript s indicates sample-specific values, and
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• η indicates the learning rate,
• asl−1,i indicates the post-activation value at node i in layer l − 1,
• P s

j indicates the set of all active paths linking node j to the output layer, and
• λs

p indicates the derivative of an arbitrary loss function1 with regard to the pre-activation
value at node cp; where cp indicates the last node in path p, one of the possible output
nodes, each associated with one of the possible classes.

This sample-specific weight update can be expressed in terms of the node-supported cost, a
scalar value that represents the portion of the final cost that can be attributed to all active
paths emanating from node j, when processing sample s. Specifically, the sample-specific
node-supported cost (Cs

l,j) at layer l, node j is defined as:

Cs
l,j =

∑
p∈P s

j

N−l∏
g=1

wpgλ
s
p (2)

It is observable that Cs
l,j does not differentiate between a node that creates paths with large

positive and negative costs that balance out, and one where all individual paths have close to
zero cost. Both have little effect on the specific weight update. Also, for a particular path p, a
positive cost implies too much activation at the end node of that specific path, and a negative
cost, too little.
The weight update calculate over all samples in the mini batch of size B is then given by:

δwl,j,i = −η
1

B

∑
s∈Sb,l,j

asl−1,j,iC
s
l,j (3)

with the update to the node vector wl,j feeding into node j at layer l given by:
δwl,j = −η

1

B

∑
s∈Sb,l,j

asl−1,jCs
l,j (4)

This sum can either be calculated over Sl,j, or over Sl,j ∩ Sl−1,i as only samples that are active
at both nodes i and j will contribute to the sum. The weight update is therefore directly spe-
cified by the batch-specific sample set, and only this sample set. Intuitively, it is produced by
calculating the product of the activation value feeding into the node with the node-supported
cost (per sample), summing these values over all samples in the cluster, and weighing this
value with a constant. In Equation 3, both the local and global nature of the update is evident:
the Sb,l,j is a locally relevant set of samples, specific to this node; for each s ∈ Sb,l,j, the cost
Cs

l,j is influenced by the state of the overall network, with the Cs
l,j value representing a single

node-specific summary of the sample’s current error within the network.
1Note that for a cross-entropy loss function with softmax activations, or for a mean squared error loss function

with linear activations, this value reduces to the difference between the target value and the hypothesis value
at node cp. In (Davel et al., 2020) the weight update is expressed in terms of -λ for these special cases of loss
function (rather than λ), resulting in a variant of the same equation.

https://doi.org/10.18489/sacj.v32i2.861

https://doi.org/10.18489/sacj.v32i2.861


Marelie H. Davel: Using Summary Layers to Probe Neural Network Behaviour 106

3 GAPS AND RATIOS

In order to develop a theoretical perspective on the interplay between activation values, node-
supported cost and sample sets, we introduce a summary layer to a standard MLP architecture.
In this way, the summary layer provides a starting point for a theoretical analysis. This allows
us to determine the exact theoretical requirements for perfect classification of a set of samples.

3.1 A simplified architecture

Figure 1: In the simplified architecture, it is only the summary layer that is restricted to two nodes; all
other layers are allowed an unlimited number of nodes. The theoretical analysis allows any number of
hidden layers; the empirical analysis reports on a single hidden layer.

While an MLP is typically viewed as an input and output layer flanking any number of
hidden layers, each hidden layer can also be seen as a small 3-layer subnetwork in its own
right: utilising the output from the prior layer as input, and trying to address the loss (the node-
supported cost of Section 2.1) passed along from its immediate output layer, the next hidden
layer. As a starting point for our analysis, we consider a 3-layer subnetwork: considering only a
single functional hidden layer in addition to an input and output layer. An additional hidden
layer is now added between the functional hidden layer and the output as a summarising
element: this layer contains only two nodes, in order to summarise the activations produced
by the functional hidden layer for analysis purposes, as illustrated in Figure 1.

3.2 Theoretical requirements for perfect classification
Consider a network that only has two nodes in its last hidden layer. At least two nodes are
required to be able to differentiate among classes, but two nodes are sufficient to differentiate
among an unlimited number of classes, if weights are correctly assigned. From here onward,
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we omit the layer indicators, knowing we are only analysing activation values (a) at the sum-
mary layer, weight values (w) connecting the summary with the output layer, and the output
values (z) at the final layer. Consider two samples s and t from two different classes cs and
ct, respectively. Limit the nodes in the last hidden layer to two, arbitrarily named A and B,
let asA be the activation value of sample s at node A, and wcsA the weight to the output node
associated with class cs, starting at node A.
We can now define a number of values, the meaning of which will become clearer as this

section progresses. The activation gap is defined as the difference between the activation
values of two samples (s and t) at a node (A or B):

αAst = asA − atA
αBst = asB − atB (5)

The weight gap ϕ is defined as the difference between two weight values linking the same node
to different nodes in the output layer:

ϕAcsct = wcsA − wctA

ϕBcsct = wcsB − wctB (6)
The weight gaps are not sample-specific, and have a single value for each summary node and
pair of classes. They allow us to construct the first ratio we use in the analysis: the weight ratio.
The weight ratio is defined as the ratio between the weight gaps of the two summary nodes:

ϕ-ratio(cs, ct) =
ϕBctcs

ϕAcsct

=
wctB − wcsB

wcsA − wctA

(7)

We will see later (in Equation 17) that this value is required to be positive for classification to
be possible.
The activation ratio (α-ratio) is specific to each sample, and is defined as the ratio of the

activation values between the two summary nodes:

α-ratio(s) = asA
asB

(8)

Note that, how A and B are used in the numerator and denominator is fixed and different
for the two ratios. The choice is arbitrary, but remains fixed throughout the analysis. The
definitions of weight and activation gaps are illustrated in Figure 2.
For a sample s to be classified correctly, we know that the sample-specific output value at

zscs should be positive, and higher at node cs than at any other node. This is similar to requiringthat, for any sample-pair s and t, it should hold that:
zscs > zsct (9)
ztct > ztcs (10)
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Figure 2: An illustration of the process to calculate the weight and activation gaps. See Equations 5
and 6 for more detail.

These requirements can be specified in terms of the newly defined weight and gap ratios.
Specifically, consider a network with two summary nodes A and B and weights connecting
each summary node to each of the output nodes (one per class), such that all weights from a
single summary node are distinct, that is:

ϕAcicm ̸= 0 and ϕBcicm ̸= 0 ∀cm ̸= ci (11)
For any two classes ci and cm, the weight gap ϕAcicm = wciA − wcmA will either be positive or
negative, a value that is consistent for all samples of any specific pair of classes. It can then be
shown (see appendix A.1) that if the following holds, all samples i will be classified correctly:

α-ratio(i)
{
> ϕ-ratio(ci, cm) if ϕAcicm > 0

< ϕ-ratio(ci, cm) if ϕAcicm < 0
∀aiB > 0 (12)

and aiB = 0 =⇒

{
aiA > 0

ϕ-ratio(ci, cm) > 0 ∀m ̸= i
(13)

This means that each of the activation ratios must lie in an interval defined by the relevant
ϕ-ratios, in order to achieve perfect classification. Note that the ϕ-ratios are fixed for all
samples, once the network has been trained, and is determined solely by the weight values
in the output layer. The role of the nodes up to the last hidden layer can then be viewed as
creating activation values that are consistent with the established weight ratios of the final
layer. The weight ratios therefore induce an ordering that the activation ratios must reflect.
We also expect the activation ratios to fall between a clearly-defined minimum and maximum
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activation ratio for each class. As there is only a limited number of ϕ-ratios created, the
minimum of one set will form the maximum of another: the range of possible activation
values are then in effect partitioned into a set of non-overlapping ‘allowed values’ per class.
Since activation gaps are created by summing over all active nodes in the previous layer,

nodes that are able to separate classes well are re-used, and their ability to separate classes
can be analysed by analysing the source of the α-ratios. With this in mind, we also measure
the node contribution to the α-ratios of each of the nodes in the layer prior to the summary
layer, by first considering only the connecting weights. We define the node-ratio at node n as:

node-ratio(n) =
wAn

wBn

(14)

These values will be revisited in Section 5. The conditions for correct classification of a set
of samples have some interesting implications. Looking more closely at Equations 9 and 10,
these can be rewritten as:

asAϕAcsct + asBϕBcsct > 0 (15)
atAϕAcsct + atBϕBcsct < 0 (16)

which means that, since the (ReLU-activated) activation values ≥ 0, one of ϕAcsct or ϕBcsct will
always be negative, and the other positive; or (since ϕBcsct = −ϕBctcs) it will always hold that
ϕAcsctϕBctcs > 0, and also that

ϕ-ratio(cs, ct) > 0 (17)
We already know the α-ratios cannot be negative, which means that it is only the absolute
values of Equation 12 that are relevant. Finally, as shown in Appendix A.2, an implication of
Equations 15–16 is that it will always hold that:

αAcsctϕAcsct > αBcsctϕBctcs (18)
This does not mean that there is any asymmetry to the roles of A and B here. The inequality
of Equation 18 can be rewritten in different ways, as the following are equivalent to Equation
18:

αAcsctϕAcsct > −αBcsctϕBcsct

αAcsctϕBcsct > αBcsctϕActcs

To summarise, in this section we have defined a number of gaps and ratios (Equations 5–8,
14) that are useful for analysing network behaviour; we have described the requirements for
perfect classification in terms of weight and activation ratios (Equations 11 –13); and we have
looked at some of the other conditions that are also guaranteed to hold for all samples correctly
classified (Equations 17–18).
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Figure 3: If all fan-in weights at a node (red) are divided with the same value used to multiply all fan-
out weights (green) with, network behaviour remains unchanged, but per-layer analysis could produce
very different results.

3.3 Network normalisation
After training and prior to any analysis, the network is weight-normalised to remove poten-
tial cross-layer artefacts. Figure 3 demonstrates how it is possible to introduce artefacts that
could invalidate a layer-specific analysis, without changing overall network behaviour. If all
fan-in weights at a node (red) are divided with the same value used to multiply all fan-out
weights (green) with, network behaviour remains unchanged, but per-layer analysis (for ex-
ample, when comparing weight values in a single layer) could produce very different results.
We therefore perform weight normalisation one layer at a time; normalising the fan-in

weight vector per node, and passing this norm along to the fan-out weight vector of the same
node at the next layer. Specifically, we calculate the node-specific Euclidean norm of the fan-
in weight vector at that node; and use this value to both divide the fan-in weight vector with,
and multiply the fan-out weight vector with.

4 EMPIRICAL CONFIRMATION

Before demonstrating how the newly-defined values can be useful in analysing network beha-
viour, we first confirm empirically that the expected relationships hold in practice.
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4.1 Trained networks
We train ReLU-activated networks with the architecture of Figure 1 using the MNIST (Lecun et
al., 1998) dataset. A fairly standard training setup is used: initialising weights and biases with
He initialisation (He et al., 2015); optimising the cross-entropy loss with standard stochastic
gradient descent; and performing a grid search of learning rates across different training seeds.
No regularisation apart from early stopping is used. Training continues until convergence, and
hyper parameters are optimised on a 5,000 sample validation set, using 3 training seeds. We
use the same protocol to train networks with hidden layers of 100, 300 and 600 hidden nodes.
Adding a 2-node summary layer does not prevent the networks from achieving fairly good

accuracy, as shown in Table 1. The 100-node network does not perform as well, but the
networks with 300 and 600 hidden nodes show very similar performance. The 300-node
network is selected for analysis, and results are verified to be identical before and after weight
normalisation.
At this stage we only report on results where training occurs with the summary layer in

place. It is also possible to first train a network, freeze its parameters prior to removing the
output layer, and adding a new summary and output layer before training further. Initial
results show that this is possible, with the training process particularly fragile, especially if
only one hidden layer is used. Additional hidden layers ensure that the combined system trains
much more easily, as does adding a third summary node. These results will be explored further
in future work: the current analysis focuses solely on an in-place summary layer consisting of
only two nodes.

4.2 Confirming analysis equations
We find that the expected relationships do indeed hold, as illustrated in Figures 4 and 5. Equa-
tions were verified for all architectures, but we only show a single architecture here: the
300-node hidden layer model. In Figure 4, all individual weight gaps (Equation 6) as well as
the product of the matching weight gaps are plotted for the network before and after normal-
isation. From Equation 17 this product is expected to always be positive, as observed.
In Figure 5 we extract the activation ratios for 1,000 random correctly classified samples in

the evaluation set of the 300-node model, and plot these separately depending on the sign of
the relevant weight gap. We also add the samples that were incorrectly classified, and indicate

model training accuracy test accuracy
100-node 0.969 0.936
300-node 0.984 0.950
600-node 0.989 0.950

Table 1: Training and test accuracy of models with different numbers of nodes in their functional hidden
layer. All models include a 2-node summary layer.
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(a) unnormalised

(b) normalised

Figure 4: As described by Equation 17, the value of ϕAcsctϕBctcs is always positive (black line) even
though the individual weights can be positive or negative. Weight gaps are shown both before (top)
and after weight normalisation (bottom).

them in red and black, again depending on the weight gap. We confirm that the conditions
specified in Equation 12 map directly to correctly and incorrectly classified samples.

5 ANALYSIS

In this section, we briefly demonstrate how the gaps and ratios defined in Section 3 can be
used to probe the generalisation ability of neural networks. We use the same 300-node model
as before when extracting metrics, unless otherwise indicated.
From Equation 12, we expect the activation ratios (Equation 8) to fall between a clearly

defined minimum and maximum activation ratio for each class. Since the same weight ratios
are re-used across class pairs, the range of possible activation values are in effect partitioned
into a set of non-overlapping ‘allowed values’ per class. This is illustrated in Figure 6. A
sample with an activation ratio falling within the allowed values will be correctly classified;
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(a) correct only (b) correct + errors

Figure 5: Weight ratios (green) plotted with matching activation ratios for ak ̸= 0, demonstrating
Equation 12. The sample-specific activation ratio is compared to the weight ratio between its true class
(ci) and all other classes (cm). For correct classification, the activation ratio must be larger than the
weight ratio if the weight gap at A is positive (ϕAcicm > 0, blue), and smaller when negative (ϕAcicm < 0,
orange). In (b) additional markers indicate incorrectly classified samples, where the weight gap at A is
either positive (black) or negative (red). All values after weight normalisation; 1,000 samples randomly
selected from the evaluation set; both axes limited to show detail.

outside of this restricted range will cause an error. No ratios are shown for class 6, as it is
not classified according to ratios (Equation 12) but according to Equation 13, implying an
undefined activation ratio.
Classes that lie on each other’s boundaries are more likely to be confusable. In the specific

example shown here, the evaluation error was 5.0%. All confusable pairs contributing more
than 0.20% absolute of the total evaluation set error (each) are boundary pairs, with the four
top confusable pairs being 3-8 (0.48%), 2-8 (0.47%), 4-9 (0.40%) and 7-9 (0.38%).
How are these activation ratios created? We know each active node (in the hidden layer)

contributes a value to both the numerator and denominator of the sample-specific activation ra-
tio (α-ratio) in the summary layer, according to (1) its own fan-out weights, and (2) activation
value. We are interested in how each hidden node’s own node ratio (Equation 14) influences
this process. As weighted activation values are added separately to the numerator and denom-
inator of the summary node’s α-ratio, it is not immediately obvious what this effect would be.
However, by analysing the node ratios and sample sets (Section 2.1) of a well-trained network,
we can obtain some intuition in this regard.
We first calculate the size of the class-specific sample sets at each node, using the same

300-node network as before. This is illustrated in the heatmap at the top of Figure 7, where
activation patterns are measured on the full (10,000-sample) evaluation set. Sample set sizes
are expressed as a fraction of the total number of samples per class, and nodes are ordered
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Figure 6: Minimum (blue) and maximum (red) allowed activation ratios (α-ratio) per class, as well
as the activation ratios of all correctly classified samples (grey) in the evaluation set of a 300-node
network. A minimum and maximum value is not indicated for class 6, as it is not classified according
to ratios (Equation 12) but according to Equation 13.

as they occur in the network. It is clear that some nodes activate more strongly for specific
classes, but little else is immediately visible. We now measure the node-ratio (difference
between weight values linked to a specific hidden node) and plot this from smallest ratio to
largest (middle figure, grey line). In the same figure (middle), we indicate the minimum and
maximum allowed activation ratios per class. These are the same values as shown in Figure
6. As expected, the node ratios (grey line) and the allowed activation ratios (colour bars)
follow exactly the same trend. In the bottom figure, the same values as in the top figure are
re-organised in two ways: nodes are re-ordered according to weight ratio, and classes are re-
organised according to minimum allowed activation ratio. Now, a much clearer picture starts
to emerge: a fairly small number of nodes activate for each class, and these typically have
a node ratio that is in the vicinity of the class ‘target’ ratio, that is, the values between the
minimum and maximum allowed activation ratios required for correct classification.
This is by no means the only way in which nodes could have contributed to reaching the

target values but, in retrospect, it makes sense that this approach would lead to good gener-
alisation: if the node ratios are fairly similar, any combination of them would have the same
average node ratio, and classification would not rely on any specific subset of hidden nodes,
but rather a variety of node combinations would all produce the same classification result. In
this case, nodes are able to produce the same result either individually, or in collaboration
with additional nodes.
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Figure 7: Activation analysis of a 300-node model that generalises well (train accuracy: 0.984; eval
accuracy 0.950). top: sample set sizes per node are measured on the evaluation set, expressed as
a fraction of the total number of samples per class, and displayed as a heatmap; nodes ordered as
they occur in the network. middle: the node-ratio per node is shown, ordered from smallest ratio to
largest (grey line); minimum and maximum allowed activation ratios per class are indicated as coloured
markers. bottom: the top figure is re-organised in two ways: nodes are re-ordered according to weight
ratio, and classes are re-organised according to minimum allowed activation ratio.
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We test this intuition on a network that was not well optimised. Specifically we use a seed
and learning rate that produce a network that has a similar training accuracy (0.989) but a
much poorer evaluation accuracy (0.887). Results look very different, as shown in Figure
8. Sample set constitution is much less organised, and the target weight ratios are clustered
closely together. Analysis on either the training or the evaluation set produces comparable
results per network. The two networks shown here demonstrate extreme examples of organ-
ised vs disorganised behaviour: behaviour on the continuum between these two examples are
produced by networks with a variety of generalisation abilities. It is worth noting that training
accuracy of both networks are similar, even though it is clear prior to evaluation that one net-
work is expected to generalise better than the other. (Node ratios are determined by weight
values, and are not influenced by the data being evaluated.)

Figure 8: Similar to Figure 7 but for a 300-node model that generalises poorly (train accuracy: 0.989;
evaluation accuracy 0.887).
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6 CONCLUSION

We build on results from Davel et al. (2020), which views DNNs as layers of collaborating
classifiers, and probe the interplay between the local and global nature of nodes in a hidden
layer of an MLP. We ask what the theoretical requirements are for perfect classification of a set
of samples from different classes, and answer this question for a simplified architecture, which
adds a summary layer prior to the final output layer. In this process, we derive a number of
metrics (gaps and ratios) that are useful for probing the inner workings of a neural network.
While the architecture is simplified, it is not trivial: a summary layer can be added to a

variety of MLP architectures, which makes the 2-node summary layer less of a restriction than
it initially seems. Also, MLPs with multiple hidden layers can be considered as consisting of
multiple 3-layer subnetworks stacked on top of one another; it is not immediately clear to what
extent the same factors that are important for a 3-layer MLP are important for a subnetwork
within a larger structure, but both types of architectures can be probed with the type of analysis
described here. The same does not hold for recurrent and residual connections, as these are
problematic for theoretical analysis, but convolutional layers can to some extent be analysed as
sparse, connected-weight MLPs. The current analysis is restricted to ReLU-activated networks.
As the analysis in Davel et al. (2020), which also studied the binary behaviour of individual
nodes, was successfully applied to sigmoid-activated networks (with a adjusted definition of
what ‘on’ and ‘off’ entail) we expect to be able to extend this study to a more diverse set of
activation functions as well. This, however, remains future work. All in all, while it should
be possible to extend the ideas of this paper to more complex architectures, our first goal
is to probe (and eventually characterise) the generalisation ability of straightforward ReLU-
activated MLPs.
For a simplified MLP, we have shown how activation ratios are formed prior to the output

layer, and how the consistency of these ratios gives rise to the classification ability of a layer.
Specifically, we show that nodes act as local ‘gap generators’ between pairs of samples. These
gap generators are formed during gradient descent, when the node-supported cost (Section
2.1) is used to find directions in a layer-specific input space, which are useful for pulling
some samples apart and clustering others together. We show that, at the summary level, the
ratio of activation values (a single value per sample) aims for a target activation range that is
specific to each class. These ratios are formed by nodes in the prior hidden layer, and their
manner of use can shed light on the characteristics of networks that we expect to better support
generalisation.
Apart from the limited demonstration of the analysis process in Section 5, we have not

yet explored the many questions that the current results raise: Which indicators best capture
the difference between the good and poor generalisation demonstrated in Figures 7 and 8?
To what extent is learning with a summary layer similar to learning without one? From the
interaction between sample sets and gaps, some nodes are more general and others more
specific: what does this say about the generalisation ability of the network? How are results
different if additional layers are added prior to the summary level? In future work we would
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like to continue to use the analysis proposed here, in order to probe networks for answers to
questions such as these.
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A DERIVATION OF ADDITIONAL EQUATIONS

A.1 Requirements for correct classification (Equation 12)
Consider a network with two summary nodes A and B and non-zero weights connecting each
summary node to each of the output nodes (one per class), such that all weights from a single
summary node are distinct. For any two samples from any two different classes, the weight gap
wcsA − wctA will either be positive or negative. Without loss of generality, assign the samples
as s or t such that wcsA > wctA. For these two samples s and t of classes cs and ct, let it then
hold that

α-ratio(i)
{
> ϕ-ratio(cs, ct) if i = s

< ϕ-ratio(cs, ct) if i = t
∀aiB > 0 (19)

First consider i = s, then:
α-ratio(s) > ϕ-ratio(cs, ct)
=⇒ asA

asB
>

wctB − wcsB

wcsA − wctA

[5, 6]

=⇒ asA(wcsA − wctA) > asB(wctB − wcsB) [wcsA − wctA > 0]

=⇒ asAwcsA + asBwcsB > asAwctA + asBwctB

=⇒ zscs > zsct

Similarly, if i = t, then
α-ratio(ct) < ϕ-ratio(cs, ct)

=⇒ atA
atB

<
wctB − wcsB

wcsA − wctA

=⇒ atA(wcsA − wctA) < atB(wctB − wcsB)

=⇒ atAwctA + atBwctB > atAwcsA + atBwcsB

=⇒ ztct > zscs

Since ϕ-ratio(cs, ct)= ϕ-ratio(ct, cs), and since α(i) is not influenced by the sign of ϕAcsct =
wcsA − wctA, Equation 19 can be restated as:

α-ratio(i)
{
> ϕ-ratio(ci, cm)∀ϕAcicm > 0

< ϕ-ratio(ci, cm)∀ϕAcicm < 0
∀aiB > 0 (20)

This holds for all aiB > 0. As aiB is a non-negative value, the only other option is if aiB = 0.
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If we now assume a positive aiA and that all ϕAcicm positive (when i ̸= m), it follows that:
ϕAcicm > 0

=⇒ aiAwcij − aiAwcmj > 0

=⇒ aiAwcij + aiBwcij > aiAwcmj + aiBwcmj

=⇒ zici > zicm (21)
A similar argument shows that if any ϕAcicm is negative and aiB = 0, no value of aiA can

result in correct classification.

A.2 Equations 17 and 18

zscs > zsct
=⇒ asAwcsA + asBwcsk > asAwctj + asBwctk

=⇒ asA(wcsA − wctj) + asB(wcsk − wctk) > 0

=⇒ asAϕjcsct + asBϕkcsct > 0 (22)

ztct > ztcs
=⇒ atAwctj + atBwctk > atAwcsA + atBwcsk

=⇒ atA(wcsA − wctj) + atB(wcsk − wctk) < 0

=⇒ atAϕjcsct + atBϕkcsct < 0 (23)
Combining 22 and 23:

asAϕjcsct + asBϕkcsct − (atAϕjcsct + atBϕkcsct) > 0

=⇒ ϕjcsct(a
s
A − atA) > ϕkcsct(a

t
B − asB)

> −ϕkcsct(a
s
B − atB)

=⇒ ϕjcsctαA > ϕkctcsαB (24)

B SUPPLEMENTARY FIGURES

B.1 Full version of Figure 5
Figure 5 was cropped to show detail. Here we include the full set of results on all correctly
classified evaluation samples. Normalised results are shown; pre-normalised and normalised
results are similar.
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Figure 9: A more complete version of Figure 5, calculated for all correctly classified evaluation samples.
Note that most activity occurs in the left corner of the figure, more visible in Figure 5

B.2 Demonstration of Equation 18
While Equation 18 is less prominent in this paper than it was in (Davel, 2019), the described
relationships still hold for all correctly classified samples, as illustrated in Figure 10.
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Figure 10: For correctly classified samples, it always holds that the αAcsctϕAcsct values (orange) are
larger than the matching αBcsctϕBctcs (blue), as specified by Equation 18. Normalised values shown
here, for 1,000 random correctly classified samples selected from the evaluation set. Values ordered
according to αAcsctϕAcsct values.
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