
Research Article — SACJ, No. 47., July 2011 7

Software Testing in Small IT Companies: A (not only)

South African Problem

Stefan Gruner, Johan van Zyl

Department of Computer Science, Faculty of Engineering and IT, University of Pretoria, Republic of
South Africa

ABSTRACT

Small software companies make for the majority of software companies around the world, but their software

development processes are often not as clearly defined and structured as in their larger counterparts. Espe-

cially the test process is often the most neglected part of the software process. This contribution analyses

the software testing process in a small South African IT company, here called X, to determine the problems

that currently cause it to deliver software fraught with too many defects. The findings of a survey con-

ducted with all software developers in company X are discussed, and several typical problems are identified.

Solutions to those (or similar) problems often already exist, but a major part of the problem addressed in

this contribution is the unawareness, or unfamiliarity, of many small-industrial software developers and IT

managers as far as the scientific literature on software science and engineering, and especially in our case:

software testing, is concerned.We also discuss two prevalent test process improvement models that can be

used to reason about the possibilities of process improvement. This contribution is an extended and revised

summary of a longer project report [56] which can be obtained from the corresponding author of this article

upon request.

CATEGORIES AND SUBJECT DESCRIPTORS:

KEYWORDS: Software process improvement, Software testing, IT management

1 MOTIVATION

Software has become so intrinsic in the fab-
ric of modern society that its value cannot
be ignored. This has opened a window for
many businesses wanting a ‘slice’ of the soft-
ware ‘pie’. Moreover, because software engi-
neering is not (yet) a protected profession, any-
body with money for investment can hire a
few programmers and start his own ‘software
business’ — in contrast to, for example, an ac-
counting firm which is required by law to be
operated by state-certified and chartered ac-

Email: Stefan Gruner sg@cs.up.ac.za, Johan van Zyl
johanvanzyl80@gmail.com

countants. Opportunities like these have given
birth to thousands of small software companies
(SSC) across the world. Small software com-
panies, with between one and fifty employees,
constitute the majority of the global software
industry [57].

SSC face many challenges in their pursuit
to create acceptable software and to survive
in an increasingly competitive market place:
The first challenge is that SSC tend not to
believe that the same processes and methods
used by large software companies are applica-
ble to them as well. The reasons for not adopt-
ing more rigorous methods are typically: cost,
lack of resources, time, and level of complex-
ity [3] [53]. A second challenge facing SSC is



8 Research Article — SACJ, No. 47., July 2011

that their processes and organisational struc-
tures are mostly informal which usually leads
to a chaotic workflow [50] [52]. A possible rea-
son for this is that SSC have to focus on time-
to-market to survive and thus often neglect the
more resource-intensive rigorous processes. A
third challenge is a lack of resources in terms
of skills and experience [53] [41]: SSC can of-
ten not afford to employ experienced software
developers, not even to mention software en-
gineers. A fourth challenge, is that despite
the many Software Process Improvement (SPI)
programs such as CMM (Capability Maturity
Model), CMMI (Capability Maturity Model
Integration) and ISO/IEC15504, SSC are ei-
ther not aware of them, or SPI programs are
not tailored towards solving the problems fac-
ing small companies [53] [22]. These problems
are not specific to developing countries such as
South Africa; they are also known in highly
developed countries like Germany with its ap-
proximately 20,000 software producing compa-
nies. A study conducted on the German soft-
ware industry [9] indicated:

• Only about 30% of all German IT houses
followed a somehow ‘defined’ workflow in
their software production process.

• Only about 22% of all German IT houses
cooperated with scientific software engi-
neering research institutions for the sake
of software quality improvement.

• Only 5% of all German IT houses were on
a CMM maturity level of 2 or higher.

• 95% of the approximately 20,000 German
IT houses were on the lowest CMM level
1.

The problems facing small software companies
mentioned above are similar to the problems
faced by company X, a small South African
software company with approximately 40 em-
ployees, eight of whom are software developers.
Their workflow process is ‘officially’ defined,
but not followed consistently in each project.
The type of software products developed by
company X covers a wide spectrum that ranges
from small desktop applications to large web-
based content management systems for vari-
ous platforms. Company X focuses on current
customer needs and will attempt any type of
development project required by a customer,

even if there are no skills in that particular do-
main. This diverse product portfolio can be
attributed to a need for securing revenue in a
competitive market.

Not adhering to the defined process during
projects can be attributed to a lack of histor-
ical project data which leads, amongst others,
to unachievable and unreasonable deadline es-
timations in current projects. The project be-
comes rushed as it falls more and more behind
schedule, which in turn leads to ad-hoc short-
cuts being taken in the process. The result
of this rushed and ad-hoc process are untested
software with questionable quality. The other
major problem facing the company is the lack
of skills and experience, as none of the devel-
opers have any industry experience, apart from
that which was gained since working for com-
pany X. Together with the lack of financial
resources, software developers currently em-
ployed are university graduates with little or
no industry experience. This leads to cus-
tomer facing projects being a training ground
for software developers that spend most of their
time performing research to come to grips with
new technology. The software process used in
company X is the well-known Waterfall model,
where the software testing phase follows at the
end of the process. The rushed and chaotic na-
ture of software projects at company X causes
the testing phase to be largely ignored, and
most often used for implementation of miss-
ing functionality. This leads to late, untested
software products fraught with defects. This
is not a sustainable model as frustrated and
unsatisfied customers will not return for future
cooperation.

The contribution of this article is a critical
assessment of the software testing process fol-
lowed at company X as well as a proposal for
an improved process, based on the software en-
gineering literature as well as on insight from
experience and interviews with industry test
practitioners. Since company X is a typical
case, representative of many others, this con-
tribution should be of interest to a wide range
of readers from the IT industry as well as from
academic software science and engineering in-
stitutes. As an ‘added value’ this article also
offers a rich literature database under the fol-



Research Article — SACJ, No. 47., July 2011 9

lowing two aspects:

• The aspect of small IT companies (and
their software quality procedures) is cov-
ered by references [2] [3] [11] [12] [22] [25]
[26] [32] [36] [39] [41] [50] [51] [52] [53].

• The aspect of internationality (for com-
paring our South African situation with
the situations in countries such as Aus-
tralia, Brazil, Canada, Germany, or
South-Korea) is covered by references [9]
[19] [34] [37] [51].

2 PROBLEM ANALYSIS

To study the current testing practices of com-
pany X more closely, several interviews were
conducted with all its developers [56]. The
questionnaire used in the interviews contained
fifteen open-ended and two close-ended ques-
tions. The questions were clearly explained to
the participants. Interviews lasted for about
30 minutes. The last question required that the
developer ‘model’ the testing process as he cur-
rently performs it. Participants were given one
full day to complete this question. The main
objective of the interviews was to determine
the current state of testing practices in com-
pany X and identify concrete problems within
the current testing process. More specifically,
the questionnaire focused on eliciting informa-
tion from the following three categories [56]:

• the level of software testing skills and
knowledge of the developers in company
X,

• the company’s managerial commitment to
software testing as perceived by its devel-
opers,

• the current software testing process used
in the company.

Unfortunately, this survey was of a rather
‘qualitative-interpretative’ character, since
only eight people participated in the survey,
which is per-se not a statistically significant
number. However, since company X is small,
those eight people comprised 100% of the
company’s software developing members of
staff at the time when those interviews were
conducted. Seven out of those eight developers
are university graduates with qualifications
ranging from three-year diplomas to four-year

bachelor degrees in Information Technology
and Computer Science or related fields. Two
of those were, at the time of the survey, still in
the process of completing their studies, while
one developer dropped out.

The summaries of the findings in the initial
problem analysis, which are described in much
finer detail in [56], are given below. As far as
the individual testing skills in company X are
concerned [56]:

• The developers did not receive rigorous
training in software testing at tertiary
(university or college) level: The little
training received by some of the developers
was only a superficial overview of testing
and was not explored in depth or practi-
cally exercised.

• No further training courses or seminars
have been attended after their tertiary
education was completed: This meant
that none of the developers were properly
trained in software testing in practice.

• No internal training programs were con-
ducted by company X to further educate
its developers.

• Unit tests, which are usually performed in
the testing process, were not performed by
six out of the eight developers: The main
reason given was the lack of knowledge,
which can be attributed to the first three
problems.

• No test tools were used to assist the de-
veloper in the process of software test-
ing: This also implies no test automation
and tedious, repetitive manual ‘debugging’
work.

• Software testing as it is currently done is
not integrated into the software process.
Almost all of the developers in company
X only performed their ‘debugging’ after
the implementation phase.

• Six out of eight of the Developers in com-
pany X did not know that testing en-
tails more than just the execution of code:
To them, there did not exist any concep-
tual difference between testing and ‘de-
bugging’.

As far as the commitment of company X, es-
pecially in terms of its management, towards
a proper software testing process is concerned,



10 Research Article — SACJ, No. 47., July 2011

our initial problem analysis has identified the
following shortcomings [56]:

• The managers of the company did not reg-
ularly read the scientific literature on soft-
ware testing and did also not sufficiently
inform themselves by other means (e.g.
seminar participation) about the current
state of the art in this field.

• The company did not provide develop-
ers with a company-wide testing policy:
There were no testing objectives or princi-
ples or check-lists to indicate the view or
objectives of the company about how to
do software testing.

• No proper testing environments were given
to the developers for testing: Develop-
ers used virtual machines on their note-
book or desktop computers to perform
their testing. These virtual machines were
not properly managed, such that any test
results were not sufficiently repeatable.
They were mostly shared amongst several
developers and thus did not present any
pristine testing environment.

• No test templates, historical data, or
documentation from previous software
projects were provided: Developers some-
times created their own test documenta-
tion ad-hoc, which did not adhere to any
proper standards.

• None of these test levels that comprise
the testing process were clearly defined.
The tasks that should be performed within
each test level were also not defined by the
company.

The combined effects of these shortcomings,
both on the level of the individual employees
as well as on the managerial level of company
X as a whole, are quite typical:

• Far too little time (only about 10%) per
project was dedicated to testing.

• The testing process itself could not be
monitored because most developers had
only sketchy documentation about their
testing progress. No test results were
available for future reference, as those
sketches were not part of the deliverables
of the project. There was thus no quanti-
tative measurement of the current testing
process.

• Moreover, there was a lack of planning on
how the testing on a project should be
performed. The testing was mostly done
ad-hoc as ‘debugging’, and the decision on
what needs to be tested was solely at the
discretion of the individual developer.

• Few or no test cases were written, due to
a lack of testing skills and in depth the-
oretical knowledge, such as mentioned by
Amman and Offut [1]. This also implied
that most code written for testing pur-
poses formed part of the production code;
in other words, there was no clear sepa-
ration between production code and test
code.

• Defects were not captured in a defect
tracking system where they could be prop-
erly monitored, managed, and prioritised.
Developers mostly wrote the defects they
encountered on pieces of paper.

• There was no dedicated test team or
testers available: all testing activities were
solely performed by the developers them-
selves, with the usual ‘developer bias’
towards showing the absence of defects
rather than their presence.

• Testing was thus systematically geared to-
wards quick and shallow user-acceptance
tests, which correspond to the require-
ments specification of a software sys-
tem, whereas the deeper small-scale tests,
which correspond to the software architec-
ture and its units’ levels, were too often
omitted.

The following section discusses possible solu-
tions to the concrete problems identified here.

3 MATURITY LEVELS IN TESTING

Small IT companies, of which company X is
only one example, typically operate at a low or
even very low level of maturity as far as their
software testing processes are concerned. Test
standards such as the international IEEE829
or the British BS7925-2, already exist, but they
do not provide sufficient ‘progress guidelines’
for sub-standard IT houses which wish to make
progress towards the application of such stan-
dards. To be able to measure their process im-
provement progress, IT companies need crite-



Research Article — SACJ, No. 47., July 2011 11

CTP Criterion TMMi Category TMMi Level

Analysis of quality risks Test monitoring and control 2

Test estimation Test planning 2

Test planning Test policy and strategy 2

Test planning Test planning 2

Test team building Test planning 2

Design and implementation of test support systems Test design and execution 2

Design and implementation of test support systems Test environment 2

Running and tracking of tests Test monitoring and control 2

Running and tracking of tests Test design and execution 2

Managing of bugs Test monitoring and control 2

Discovery of test context Test life cycle and integration 3

Test planning Peer reviews 3

Test team building Test organisation 3

Test team building Test training programme 3

Running and tracking of tests Non-functional testing 3

Figure 1: Mapping between Black’s CTP Criteria and TMMi Categories at medium Levels of Maturity

ria against which to check the observable phe-
nomena.

The Test Maturity Model (TMM)/Test Ma-
turity Model Integration (TMMi) framework
[46] is well-known amongst academics, but lit-
tle known (if not even completely unknown)
amongst small IT houses such as company
X. On the other hand, the testing handbook
by Black with its Critical Testing Processes
(CTP) framework [5] specifically addresses in-
dustrial practitioners and may thus be assumed
to be wider known amongst industrial software
developers. Black [5] describes the CTP pro-
cesses as lightweight check-lists and not /bu-
reaucratic regulations. Together with Black’s
20 years experience in the testing industry,
not to mention the concise, practical guide-
lines on implementing a test process improve-
ment project, made the CTP a good candi-
date for this study. Whereas the CTP can
be seen as an agile, easy-to-implement frame-
work, the TMMi follows a more heavyweight
approach with a strong foundation in testing
principles, best practices, and general testing
goals. Their complementing factors made these
two frameworks ideal candidates for this study.
One of the problems in this context is that the
CTP criteria provided by Black do not imme-
diately let us see to which TMMi level (which
we take as a reference framework) they cor-

respond. Small IT houses such as company
X, which usually start at the lowest possible
TMMi level (1), would thus not know which
higher TMMi level they would reach by follow-
ing Black’s criteria. To tackle this problem, we
have described and explained a mapping [56]
between the categories of TMMi and Black’s
criteria, which is summarised in Figure 1. This
mapping takes only the medium TMMi levels,
(2) and (3), into account because it is highly
unrealistic for small IT companies to reach out
for the higher TMMi levels, (4) and (5), which
are often not even reached by large interna-
tional industrial software corporations. It is
worth noting that there are also several CTP
criteria and recommendations in [5] which can-
not be directly mapped to TMMi categories at
the above-mentioned levels. Companies using
Black’s CTP criteria should also aim at apply-
ing for an official TMM/TMMi certificate. Al-
though the CTP positively contributed to the
improvement process, this study put more em-
phasis on the TMMi improvement model. The
reason is that Company X preferred to align
itself with a fast-growing industry standard.

The TMM/TMMi classification was
modeled with the older, widely known
CMM/CMMi classification in mind, after it
had been discovered that even those IT houses
which enjoy the benefits of a high CMMi



12 Research Article — SACJ, No. 47., July 2011

level (in general) can still be ‘pretty bad’ as
far as their software testing procedures (in
particular) are concerned. In other words, a
high CMMi level does not necessarily imply
a high TMMi level as well. Purchase and
procurement managers should be aware of
the possibility of such a discrepancy between
CMMi and TMMi, and should thus not be
lured into purchase contracts merely on the
basis of a high CMMi certificate.

An IT house at the lowest possible TMMi
level can be characterised by the following
description: “At TMMi level 1, testing is a
chaotic, undefined process and is often consid-
ered as part of debugging. The organisation
does not provide a stable environment to sup-
port the processes. Tests are developed in an
ad-hoc way after coding is completed. The ob-
jective of testing at this level is to show that
the software runs without major failures. In
the field, the product does often not fulfil its
needs, is not stable, or is too slow to work with.
Within testing, there is a lack of resources,
tools and well-educated staff. At TMMi level
1, there are no defined process areas. Prod-
ucts also tend to be delivered late, budgets are
overrun and quality is not according to expec-
tations” [46].

If this is the case in any IT house, whether
big or small, improvements should be at-
tempted as soon as possible. Many ‘standard’
solutions to those well-known problems can be
found in the software engineering literature,
but they must still be adapted to the situations
in each case.

4 LITERATURE SOLUTIONS

In section 2, several problems of the case study
object, company X, we summarised together
with their software testing procedures, includ-
ing their meta problem of not knowing that
their problems are rather common or ‘typi-
cal’, and that the scientific software engineering
and software testing literature already provides
many quite easily applicable solutions to those
kinds of problems. Therefore, in this section,
we re-visit the previously identified problems
in the context of company X and we point
to several relevant papers (related work) the

authors of which have also dealt with similar
problems. Consequently, the papers mentioned
in this section can be regarded as ‘tools’ for
improving the software testing procedures in
company X, which is a typical responsibility
of IT management.

4.1 Testing Training and Education

All the developers in company X, except for
one, had completed their tertiary education in
Computer Science related fields. The develop-
ers commented in our interviews that little or
no software testing principles had been taught
to them at university. Indeed, according to [42]
and [13] only a small portion of undergradu-
ate Computer Science/Informatics curricula is
allocated to the topic of testing. They recom-
mended that more testing should be taught at
tertiary level. Paper [20] agrees that univer-
sity training on software testing is currently not
sufficient. A study conducted by [34] indicated
that 27 out of 65 participating organisations
reported that less than 20% of their test team
received training in software testing at univer-
sity. Paper [34] concluded that there is either
a lack of practical skills delivered to tertiary
students in software testing courses, or a com-
plete lack of software testing courses provided
by universities. Paper [42] recommends that
more testing be taught and that there be more
communication between industry practitioners
and academics to ensure that undergraduate
curricula provide students with a solid foun-
dation in software testing. These papers are
all hinting at long term solutions to a widely
recognised problem. In the immediate situa-
tion of company X, however, they are not di-
rectly applicable. Therefore, such IT houses
must in the meantime go through the effort
of sending their technical staff to commercially
available courses and seminars, as they are of-
ten offered by consulting houses and other IT
support companies. In South Africa, also the
Computer Society of South Africa (CSSA) (es-
pecially its SIGiST special interest group in
software testing) is active with public seminars
in this field.

In this context a study conducted by [34]
indicated that 47 out of 65 IT organisations



Research Article — SACJ, No. 47., July 2011 13

provided opportunities for their testing staff to
be trained in software testing. Among the or-
ganisations investigated in this study, 37 out of
65 organisations preferred commercial training
courses, as opposed to 25 organisations that
preferred internal training courses. Another
study [19], conducted in Canada, indicated
that 31% of the respondents received rigorous
training on software testing. Paper [49] ad-
vises that small to medium enterprises (SME)
should invest in test training courses for devel-
opers or testers. The ‘International Software
Testing Qualification Board’ (ISTQB) provides
professional software testing certifications in al-
most 40 countries across the world, including
our country, South Africa.

The ISTQB syllabi are organised in three
levels: ‘Foundation’, ‘Advanced’, and ‘Expert’.
The Foundation certification syllabus provides
a solid introduction to software testing and is
well suited for people entering the field of soft-
ware testing. The Advanced certification syl-
labus provides a mid-level certification to prac-
titioners with at least 5 years experience. Pa-
per [6] suggests that prospective testers do not
even have to attend expensive training, but can
gain free access to the ISTQB syllabi from the
ISTQB website and only write the exams at
accredited testing centres.

The South African Software Testing Qual-
ification Board (SASTQB) was recently estab-
lished in 2008, as the 40th National Board
member of the ISTQB. There are at least three
accredited ISTQB training providers in South
Africa, and we recommended that all the devel-
opers from small IT companies, such as com-
pany X, attain the Foundation and Advanced
level certifications.

4.2 Test Planning and Test Cases

During the time of this case study, testing in
company X was not planned at all. Develop-
ers mostly started testing without any idea of
how, when, or what needed to be tested. In
the context of similar ‘emerging’ software or-
ganisations, the authors of [25] performed a
study that analysed the current testing prac-
tices of a small software company. The results
of that study also indicated that no upfront

planning of the testing process was done. Ac-
cording to [25] this resulted in deadlines being
overrun and increases in the project costs. The
authors of [10] suggested that test planning is
an essential component of a testing process as it
ensures that the process is repeatable, defined,
and managed. This view is also supported
by [17], which states that test planning con-
tributes significantly to improve the test pro-
cess; also [5] has argued in this direction.

On the highest, most general level of test
planning is the so-called ‘Master Test Plan’
(MTP). It provides an overall view of the test
planning and test management of a project as
a whole. According to standard IEEE 829, this
entails activities such as:

• selecting the different parts of the project’s
test effort,

• setting objectives for each constituent part
of the test process identified,

• identifying the risks, assumptions and
standards for each part, and

• identifying the different levels of test and
their associated tasks, as well as the doc-
umentation requirements for each level.

On the small scales of test planning we eventu-
ally find the task of defining test cases which
can be regarded as ‘micro-requirements’ that
must be fulfilled by the various software units
under test (see also the following sub-section
4.3). Standard IEEE 610 defines a test case as
a set of test inputs, execution conditions, and
expected results developed for a particular ob-
jective, such as to exercise a program path or
to verify compliance with a requirement.

In our case study, the software developers
at company X also did not design nor exe-
cute any explicitly defined test cases. This was
mainly due to a lack of general knowledge in
testing as well as a lack of guidance from a test
policy and test strategy (see also sub-section
4.6). In the case study of [21] amongst twelve
software organisations, nine out of them did
not enforce the use of test case selection meth-
ods. It was left to developers and testers to
decide which test cases were selected. In [16]
it was argued that the absence of clearly de-
fined test cases in a test process impedes the
improvement of the test process. They recom-
mended that templates be available that pro-



14 Research Article — SACJ, No. 47., July 2011

vides guidelines on the most common steps to
create a test case. Another study, conducted
for paper [24] investigated the test processes
followed by developers amongst six organisa-
tions: it revealed that only half of those or-
ganisations created test cases for testing their
software. None of those organisations in that
study developed any test cases before the prod-
uct programming began.

Test Driven Development (TDD) is a soft-
ware practice whereby unit tests are defined
before product program code is implemented.
The code for the unit test is gradually added
until a test is passed. In [18] it was argued
that code developed using TDD had superior
quality compared to code developed using tra-
ditional approaches such as the waterfall-like
model applied in company X. The same study
also claimed that 78% of the professional pro-
grammers interviewed believed that TDD im-
proved their productivity.

On the other hand, there is also recent ev-
idence which indicates that not all is well with
TDD: In a comparative case study conducted
amongst five small-scale software projects [43],
it was found that “an unwanted side effect can
be that some parts of the code may deterio-
rate. In addition, the differences in the pro-
gram code, between TDD and the iterative
test-last development, were not as clear as ex-
pected. This raises the question as to whether
the possible benefits of TDD are greater than
the possible downsides. Moreover, it addition-
ally questions whether the same benefits could
be achieved just by emphasising unit-level test-
ing activities” [43]. This leads us now to the
topic of unit testing.

4.3 Unit Testing

IEEE standard 610 explicates unit testing as
‘testing of individual hardware or software
units or groups of related units’; in Object ori-
ented programming (OOP) a unit may repre-
sent a single method in a class, or the whole
class itself. IEEE standard 1008 defines an
integrated approach to structured and docu-
mented software unit testing in this context.

None of the developers in company X unit-
tested their program code in detail. According

to [23] [24] [33], however, programmers typ-
ically write unit tests as opposed to testers.
Those papers also emphasise the importance of
unit testing and state that it is the most effi-
cient test to conduct due to its low granularity
and high code coverage. In [24], a study con-
ducted in six software organisations on the test-
ing processes of programmers, revealed that
even the definition of test process did not imply
that programmers had a concrete ‘recipe’ for
conducting unit and unit integration testing.
According to [4], unit testing is seen as an es-
sential phase in software testing. According to
[33] [4], unit testing allows individual units to
be inspected that can reveal faults early, which
would otherwise be difficult to find in system or
user-acceptance testing. In [4] it is also noted
that unit testing is generally not performed
well and sometimes not performed at all due to
cost implications, as it was also the case with
our study object, company X. In this context
the authors of [49] recommend the following IT
management tactics for improving the quality
of unit testing done by programmers:

• Force developers to perform unit testing
by emphasising that unit testing is their
responsibility.

• Motivate developers by having regular
meetings and seminars to share informa-
tion.

• Allow developers the freedom to per-
form unit testing as they feel convenient:
Thereby, allow them to experiment with
different test tools and technologies avail-
able.

• Provide developers with the necessary re-
sources: This includes time specifically al-
located to the study of testing methods
and to practice the learned methods in
various exercises.

4.4 Test Automation

In our case study, company X did not use any
test tools to assist in the automation of test
tasks. In a study by [34] it was found that 44
out of 65 organisations used test automation
tools. Interestingly, 30 of those 44 organisation
thought that the use of automated test tools
was beneficial. According to [34], the biggest



Research Article — SACJ, No. 47., July 2011 15

factors against the use of test tools were cost,
time and difficulty of use. This view is also sup-
ported by [14] who states that test tools can be
very expensive and involve a lot of effort from
the testers. They suggest that organisations
may consider using test tools when they have
mature test practices or have a large number
of tests. Organisations may do well in soft-
ware testing without the use of test tools, too
[14]. Also in [29] it is said that using test tools
could pose a problem for organisations having
the following characteristics:

• Lack of well-defined testing process.

• Ad-hoc testing.

• Organisational culture does not support
and embrace testing.

These three issues were relevant for company
X too, as they had no structured testing pro-
cess, their testing activities were ad-hoc and
the company had not yet embraced a ‘culture’
of software testing.

Although testing tools and automated test-
ing lighten the workload by eliminating repeti-
tive manual tasks, the difficulties identified by
the literature suggest that manual testing will
be sufficient for small companies, such as com-
pany X for the time being. In any approach
to automated software testing one must also
take into account the possibility of the so-called
‘Heisenbugs’: these appear to be (pseudo) ‘de-
fects’ which are caused by the test apparatus
used for automated software testing, not by the
software under test itself. Because of the pos-
sibility of those ‘Heisenbugs’, automated soft-
ware testing must never be conducted naively:
the testers need to know their test apparatus
well, and they also need to have some the-
oretical knowledge about the phenomenon of
‘Heisenbugs’, their causes and their potential
effects.

4.5 ‘Static Testing’ by Program Code
Reviews

The only form of testing being conducted in
company X during our case study was ‘dy-
namic’ testing which is defined by the ISTQB
[47] as testing that involves the execution of
the software of a component or system. This
implies that code must already be available be-

fore testing can commence. ‘Static’ testing on
the other hand does not entail the execution of
code, but refers to activities such as program
code reviews.

A study conducted on software testing ma-
turity in the Korean defence industry [37] in-
dicated that static test techniques were iden-
tified as having a low maturity on the test
process improvement (TPI) maturity matrix
[27]. A study conducted by [24] on the testing
processes in six software organisations revealed
that only two organisations conducted code re-
views against company coding standards. Only
two organisations conducted peer reviews and
only three organisations did inspections. Al-
though the sample size of this study was small,
it might be regarded as ‘anecdotal evidence’ for
the lack of static testing techniques in many
software organisations.

In [24] it was also recommended that or-
ganisations encourage the application of static
testing alongside dynamic testing. Similarly,
[33] mentioned reviews of functional require-
ments and design as one two the key fac-
tors that indicate an organisation’s test ma-
turity. There it was said that functional re-
quirements reviews improve the correctness of
requirements even before the software is de-
signed. In terms of design reviews it was ar-
gued in [33] that conducting reviews of the de-
sign can help to eliminate flaws in the design
before coding commences.

In a recent study conducted by [16]
amongst ten software organisations to deter-
mine which factors impede the improvement of
testing processes, the establishment of review
techniques ranging from informal peer reviews
to rigorous code inspections was suggested as
an approach to improving the testing process.
In [30] it was argued that reviewed documents
can result in a 65% reduction in defects that
could otherwise have been carried forward to
later phases of the development cycle.

For small IT companies with limited re-
sources (such as company X in our case study)
we would recommend on the basis of our ex-
perience three reviews throughout the software
cycle:

• The first review should be conducted dur-
ing the requirements phase to try to en-



16 Research Article — SACJ, No. 47., July 2011

sure that all specified requirements are
testable.

• The second review should be conducted
after the design phase to try to ensure
that the design does not contain flaws
which would propagate to the program-
ming phase.

• The third review should be a program
code review held during the implementa-
tion phase to try to ensure that developers
are programming according to company
coding standards and to identify possible
weaknesses or bad programming practices.

4.6 In-House Guidelines: Policy and
Strategy

Several of the developers in company X in-
dicated in our semi-structured interviews that
they did not know how to perform testing, or
what is expected of them in this regard. They
also indicated that the company did not pro-
vide them with in-house guidelines on how the
IT management would want their testing to be
conducted.

According to [48] a test policy answers ques-
tions such as ‘Why do we test?’, ‘How impor-
tant is quality?’, and ‘Are we time-driven or
quality-driven?’. It was further suggested in
[48] that a test policy forms a critical basis for
commitment to all test-related activities in an
organisation. Similarly it was suggested in [38]
that an explicitly defined test policy should
provide a framework for planning, organisa-
tion and execution of all test activities within a
company. The author also warns that if a test
policy is only given implicitly it can have the
following adverse effects [38]:

• Testing is not consistent over different de-
partments: This will cause the testing
approach to be defined individually on
projects and the results will not be com-
parable between projects.

• The test policy will not be recognised and
adhered to by the people involved.

• Managers will struggle to properly track
a project’s testing status, such that per-
formance will differ based on the testing
approach followed individually.

For companies such as our case study company
X we therefore suggest that the test policy be
one of the first improvements to be introduced.
Any test policy will emphasise the importance
of testing and software quality. This will cre-
ate an awareness and sense of responsibility
amongst its employees, especially the software
developers, that testing is viewed as a critical
part of the software cycle.

In contrast to a test policy (as mentioned
above), a test strategy is defined by the ISTQB
as a high-level description of the test levels to
be performed and the testing within those lev-
els for an organisation. According to [21] a test
strategy thus provides an organisation with re-
sponsibilities within each test level and also ad-
vises the organisation on how to choose test
methods and coverage criteria in each phase.
There was no such test strategy in company X
to guide developers on how to perform testing
at the time our case study was conducted. In-
terestingly, from the study conducted by [21]
only four out of the twelve organisations un-
der study used explicitly defined test strate-
gies. Three organisations had implicitly de-
fined strategies that formed part of some stan-
dard regulating the testing aspects of a prod-
uct.

Another test process maturity study [24]
conducted in 2007 amongst six software or-
ganisations indicated that there was a definite
lack of testing guidelines, too. This study ar-
gued that developers did not know what to test
or how to test and provides an ideal opportu-
nity for implementation of a test strategy. Ac-
cording to [48] a test strategy is based on an
organisation-wide test policy; thus test policy
and test strategy are closely related to each
other. The strategy must be aligned with the
organisation’s software development process as
various test activities and procedures are de-
fined for each phase of the software develop-
ment process. These activities typically include
user acceptance testing planning at the require-
ments phase, system testing planning at the
architecture phase, integration testing at the
design phase, and unit test design and execu-
tion during the implementation phase; (see the
well-known V-model for comparison).



Research Article — SACJ, No. 47., July 2011 17

4.7 Test Specialists

Closely related to the issue of in-house guide-
lines (test policies and test strategies) is the
question whether or not an IT house employs
specialist software testers which are not also
playing the role of software programmers at the
same time. There is no ‘one-size-fits-all’ solu-
tion to this problem; for some organisations or
project it might be better to keep testers and
programmers completely separate, whereas for
other organisations and projects it might be
better to have programmers and testers ‘min-
gled’ or in flexibly interchangeable roles. This
also depends on the maturity level (see section
3) of the organisation; anyway the in-house
guidelines must clearly answer this organisa-
tional question and should not leave it dangling
in an undefined limbo state.

At the time of our case study, company X
did not employ any dedicated software testers,
and all test-related activities were performed
by its software developers. As it was also recog-
nised by [15], small companies have limited re-
sources and therefore do not (or even cannot)
invest in separate quality assurance staff. An-
other software process improvement study con-
ducted in a small IT house [3] also indicated
that not enough resources were available to es-
tablish separate quality assurance group. This
coincides with the view of [32]. In the already
mentioned study [24], however, five out of the
six organisations had independent test teams.
This study, however, did not specify the size
of the organisation, but indicated that some of
the organisations had up to only twenty devel-
opers; the ratio between developers and testers
indicated that the organisations had between
one to four developers per tester. Company X
at the time of our case study had only eight
developers.

In [25] it was found that having a dedicated
test role in projects allowed for testing to be-
come more structured as well as allowing de-
velopers to focus more on fault finding at the
unit level than at the system level of testing. A
survey conducted by [34] in Australia regard-
ing software testing practices indicated that 44
out of 65 organisations investigated had an in-
dependent test team indeed. Also [49] recom-
mended that even small to medium sized enter-

prises (SME) should employ at least one per-
son that is dedicated to testing. If this is how-
ever not possible, then one may also follow [40]
which recommended that some developers in
the team be assigned the role of testers tem-
porarily. This would imply that the same de-
veloper may not tests his own program code
such that there is some degree of independence
between development and testing. However,
if an IT house wishes to reach TMMi level 3
(see section 3 above), then dedicated testers
must be members of a separate quality assur-
ance group.

4.8 Test Timing: Early versus Late Testing

Company X in our case study followed the
‘Waterfall’ approach to software development
with the testing phase being situated between
programming and deployment. This practice
is in contrast to newer software engineering
practices. A study described in [25] on testing
in emerging software organisations (similar to
company X) revealed that testing was mostly
being performed too late in projects. In [28] it
was argued that testing has a life cycle of its
own and must therefore run concurrently with
the software development process. They, too,
suggest that testing must start already during
the requirements phase of a project. This is
also emphasised in [31]. According to [45], be-
tween 20% of the testing effort can be spent
on planning, 40% on preparation and the re-
maining 40% should be spent on test execution.
This clearly implies that testing cannot occur
only at the end of the software development life
cycle. In [30] it was suggested that testers be
involved in reviewing requirements documents
as well as design documentation. According to
[30] [47] defects found early in the software life
cycle will cost much less to fix than the ones
detected in the later stages of the development
process.

Theoretically, not much testing will be
needed if software was properly and formally
specified at the beginning of the project cycle,
but practice usually differs from theory. As a
‘rule of thumb’ one can say that about 50% of
the total project time should be invested into
testing [23]. This means: if in some project



18 Research Article — SACJ, No. 47., July 2011

less than half of its time is spent on testing,
then it is most likely this project itself is in dire
straits (and very unlikely that specifications at
in the beginning of the project had been done
so exceptionally well that hardly any testing is
needed in the end any more.) This further im-
plies, typically, that when a project runs out
of time and goes beyond schedule, which most
projects actually do [8], then the most impor-
tant activity of testing is usually the very first
victim to be sacrificed at the altar of the dead-
line cult. In our case study at company X
we found that less than 10% of the average
total project time was actually spent on soft-
ware testing, which is five times less than rec-
ommended. For comparison, also [25] found
that testing activities were given too little time
and too few resources in a project, whilst [24]
found, too, that developers did not pay enough
attention to testing, again mainly due to a lack
of available project time.

Business people often say that ‘time is
money’, thereby hoping and believing to save
money by saving project time. For this short-
sighted dogma very high prices will have to
be paid later, when previously undetected soft-
ware ‘bugs’ (due to hasty testing) will creep to
the daylight after deployment and have to be
eliminated at even higher costs. For this prob-
lem, however, we do not have any technical so-
lution in our software engineering tool box; this
is a problem of the business mind. All project
stakeholders, especially on the non-technical
side, need to understand in their minds that
quality requires time; it is indeed the respon-
sibility of the software engineer, in his role as
the technological expert, to warn the business-
man on the project against any unrealistic pre-
sumptions or wishful thinking on the basis of a
short-sighted ‘time is money’ dogma.

Of course we will never have an infinite
amount of testing time available and we thus
need to allocate our available time as wisely as
possible; this implies that we should also have
some reasonable priority declarations in place
which state what parts of a system under test
should be tested first with highest priority, and
what parts of the system can be tested later
with lower priority.

4.9 Test Priorities and Critical Tasks

Related to the question of test timing is the
question about which tasks to do first, with
highest priority, in an available frame of time.
Our ability to assign such test priorities ap-
propriately, however, depends on our depth of
understanding of the ‘most critical’ parts and
‘bottle neck’ sections of the software system
under consideration. This requires skills, and
tools, for the analysis of the structure (and
structural complexity) of the software system
before the various test tasks can be prioritised.
In our case study, the software developers in
company X indicated that they did not know
what to test nor how to prioritise their test
activities to test the most ‘complex’ program
code first, or the code most likely to contain
defects, or those highly connected sections of
the code in which a defect would have the most
far-reaching ‘ripple effects’.

In order to address such problems, [44] rec-
ommended static code analysis and software
visualisation techniques. Static analysis is a
fault-detection support technique that aims to
evaluate a system or component based on its
form, structure, content, or file documentation,
whereby the component or system’s code itself
is not executed [24]. Tools are available to au-
tomatically perform static analysis and we re-
fer to these tools as Automatic Static Analysis
(ASA). ASA tools automate the detection of
flaws and poor code constructs by parsing the
source code and searching for certain patterns
in the code [55]. According to [44] a typical
pipeline for a static analysis tool includes the
following components:

• Parser : analyses the raw source code
and produces and low-level representation
thereof. The source code is usually repre-
sented as a syntax tree.

• Query engine: checks the source code for
certain facts by scanning the syntax tree
for specific patterns. These patterns in-
clude showing variables that are used be-
fore they are initialised, code modular-
ity, and cyclomatic complexity to name a
few. Thereby, cyclomatic complexity is the
measure of the complexity of a software
module, and a module is defined as any
single method or function that has a sin-



Research Article — SACJ, No. 47., July 2011 19

gle entry and exit point [54].

• Presentation engine: represents query re-
sults graphically to show the patterns un-
covered by the query engine.

The authors of [44] integrated their own query
engine with SolidFX, an existing Interactive
Reverse-engineering Environment (IRE). This
IRE has the same look as modern Inte-
grated Development Environments (IDE) such
as Eclipse or Microsoft Visual Studio. They ap-
plied their query engine together with SolidFX
and Call-i-Grapher to a number of industrial
C and C++ projects. Thereby, their tool re-
vealed the following interesting characteristics:

• Complexity ‘hot-spots’ based on metrics
such as McCabe’s cyclomatic complexity,
and lines of code commented;

• The modularity of a system and its con-
stituent modules based on its call graphs;

• The maintainability of a system based on
specified metrics such as lines of code, lines
of commented code, and cyclomatic com-
plexity.

Similarly it was argued in [54] that cyclomatic
complexity should be limited because complex
software is harder to maintain, harder to test,
more difficult to comprehend and more likely to
cause errors. Since such software visualisation
tools are commercially available and specifi-
cally designed for industrial application [44],
we recommend that also small IT houses should
make themselves familiar with them. High test
priorities can then be given rationally to the
‘hot spots’ identified by those scanner tools.

4.10 Test Repeatability and Environments

Experimental repeatability is one of the key
characteristics of the scientific method. This
also holds for software testing, if we regard
a software test run in analogy to a ‘scientific
experiment’. One of the methodological pre-
conditions of scientific repeatability is the con-
duction of experiments under well-defined, iso-
lated and well-controlled laboratory conditions.
This is also true in the area of software test-
ing, where isolated and well-maintained ‘test
environments’ resemble a scientific laboratory.
Though it is well known that not all software
testing experiments are repeatable in this strict

sense —distributed and concurrent systems no-
toriously display nondeterministic behaviour,
because of the wide network environment on
which they run which is typically beyond our
control— most of the ‘ordinary’ software test-
ing experiments can indeed be made repeatable
if only those well-controlled laboratory condi-
tions are fulfilled.

In our case study, on the contrary, the
test environment available at company X was
found not adequate to support their different
software projects in a scientifically acceptable
way. The developers in our case study mostly
used virtual machines running on their per-
sonal notebook computers to perform testing,
which means that the ‘test laboratory’ was not
carefully controlled. Indeed, due to the costs of
hardware and support software tools, small or-
ganisations often do not have the means to ob-
tain and maintain dedicated test environments
[32]. In the already mentioned study [24] con-
ducted between six organisations on their im-
plemented testing processes, one of the diffi-
culties listed was that of creating test environ-
ments that closely represented production en-
vironments.

The author of [33] also developed a set of
twenty questions to determine the testing ma-
turity of an organisation: The first question in
his questionnaire enquired whether an organi-
sation consistently creates an environment for
development and testing that is separate from
the production environment. He argued that
the benefit of such a separate testing environ-
ment allows an organisation to avoid making
changes to production environments ad-hoc, as
well as the possibility to develop and test soft-
ware completely before it is deployed in a pro-
duction environment.

Although a test environment is an impor-
tant part of software testing as identified by
the literature, it is not always possible (or prac-
tically feasible) to use a pristine test environ-
ment in and for every project. The main reason
for this is cost. Nevertheless it should be pos-
sible also for small IT houses to exercise bet-
ter control over their available resources, such
that the development environments and test-
ing environments are kept separate even if they
are running on the same hardware devices, and



20 Research Article — SACJ, No. 47., July 2011

that the scientific ‘laboratory conditions’ (for
the sake of repeatability) are at least ‘approx-
imated’ as far as possible.

It is indeed the responsibility of the IT
management in a company to fully appreci-
ate that software testing is de-facto the most
scientific of all software engineering activities,
whereas other software engineering activities
still resemble much of an ‘art’ or ‘craft’ [35].
However, the ‘power of science’ cannot be un-
leashed if IT managers are not aware of it.

4.11 Test Documentation

During our case study, little or no test doc-
umentation was created in company X. The
few test plans that have been created were not
done according to any industry standard such
as, for example, IEEE 829. A study conducted
in Finland [41] about software process improve-
ment in small companies also indicated that
there were problems with software test docu-
mentation; however that study did not elabo-
rate on the reasons for this problem. The au-
thors of [36] too assessed the software process of
a small company and found that no written test
plans or reports existed. According to them
this lack of documentation caused difficulty in
reproducing the defects in order to eliminate
them. It was also noted in [36] that once these
defects were fixed, the problem and solutions
were never recorded at all. This caused the de-
velopment team to investigate similar problems
from scratch again and again, without having
access to past documentation for historic ori-
entation.

The IEEE 829 standard provides guidelines
for software test documentation which can be
used as templates in various testing projects.
Those are not too difficult to handle and should
thus also be suitable for small IT houses with
short resources. There are templates for a
‘Master Test Plan’ (MTP), ‘Level Test Case’
(LTP), ‘Level Test Log’ (LTL), ‘Anomaly Re-
port’ (AR) as well as a ‘Master Test Report’
(MTR). Those templates should be stored in
the document management system of an IT
house such that all relevant employees have ac-
cess to them. The use of proper test documen-
tation must also be emphasised in the test pol-

icy document of a company, and must —last
but not least— be proactively enforced by its
IT management.

4.12 Test-Related Documentation

A test basis is defined by the ISTQB as “all
documents from which the requirements of a
component or system can be inferred”. Here it
becomes obvious that testing is closely linked
to the entire software project and cannot be
seen only in isolation. Indeed, the author of
[7] argued that insufficient test cases could be
attributed to the low quality of the test ba-
sis. The software developers of company X
in our case study also argued that better re-
quirements specifications be created so as to
improve the testing process. Although the re-
quirements specification is strictly speaking a
software development process component and
not a test process component, it has a direct
effect on the quality of the test effort.

According to [15], small organisations do
typically not have clearly defined and stable
requirements on software projects either. In a
study [41] conducted in 2007 regarding soft-
ware process improvement (SPI) in a small
companies in Finland, one of the problems
identified was that of requirements documents
that were not good enough. It was found
that structured documents such as require-
ments documents were created on projects,
but their contents and depth were deficient.
A possible reason for the haphazard require-
ments documentation might be attributed to
a lack of research in requirements engineering
for small companies. According to [2] there
are not many papers published in requirements
engineering conferences that addresses the re-
quirements processes of small IT houses specif-
ically. The authors of [2] further argued that
this may be due to mistaken assumptions that
small companies are no different than their
larger counterparts or that small companies
do not present noteworthy research challenges.
Although not referring specifically to require-
ments engineering or testing, also paper [53]
emphasise that not enough publications ex-
ist that provide software engineering solutions
specifically for small companies.



Research Article — SACJ, No. 47., July 2011 21

Anyway it is obvious that requirements en-
gineering must be done properly in support of
test engineering, and it is also clear that the ex-
isting ‘general’ literature on requirements engi-
neering is relevant until more ‘special’ results
become known on requirements engineering for
small IT houses in particular.

4.13 Test Tracking and Recording

Related to the issue of test documentation is
the issue of test tracking and recording (in data
bases) for future reference, with the purpose
of learning the lessons from past experiences.
Recording the history is also a precondition for
being able to gauge the success of any process
improvement measurements being undertaken.
For example: if we are not aware which ratio r
of our code units are currently defective (long
term average), and we are now enforcing a new
test policy P which leads to a new average ratio
r′ of defective units, then we cannot even tell if
the introduction of P was a successful measure-
ment in terms of r > r′. This was at the time
of our case study the situation in company X.

The reason for this lack of measurability
was the absence of any defect tracking system
at company X at the time of our study. Once
a developer at company X detected a defect,
he would either fix it immediately (and then
forget about it), or try to remember the defect
for later fixing, or scribble a private note on
a piece of office paper, which would sooner or
later land in the litter bin, too. On the con-
trary, [33] suggested that a defect tracking sys-
tem allows an organisation to assign ownership
to defects and to store the knowledge about
defects, until they are resolved, and even be-
yond. According to [33] can also indicate the
status of the test effort by reporting on the
number of defects found, number of defects re-
solved, as well as the yet to-be-fixed defects.
These metrics correspond well with those sug-
gested by [25]. Defect tracking system such
as ‘Bugzilla’ or ‘Track’ are easily accessible de-
fect tracking systems, freely available from the
Internet, such that even small IT houses with
limited financial resources can —and should—
take advantage of them.

The already mentioned Anomaly Report

template from standard IEEE 829 can also be
incorporated into a defect tracking system to
ensure that all necessary defect data are cap-
tured for future reference. The defect tracking
system will also automatically store some of
the test metrics that can be used to monitor
the test process progress.

According to [28], metrics are measure-
ments, collections of data about project ac-
tivities, resources and deliverables. Paper [28]
can be used as ‘tool’ to assist in the estima-
tion of projects, measure project progress and
performance, as well as quantifying project at-
tributes. The authors of [28] recommended
that the following test metrics be tracked in
every project:

• Number of test cases,

• Number of test cases executed,

• Number of test cases passed,

• Number of test cases failed,

• Number of test cases under investigation,

• Number of test cases blocked,

• Number of test cases re-executed.

In addition to these, we recommend to compare
also the efforts of software testing versus the
efforts of having to deal ‘a-posteriori’ with cus-
tomers’ complaints about buggy software after
product delivery and deployment: We assume
that any improvement of an IT house’s testing
procedures is in the first place an ‘investment’
on the negative side in the books of that IT
house; but the return on investment later, in
terms of ‘customer happiness’, might well be
worth the effort. Last but not least we rec-
ommend that also the time spent on testing
should be recorded in such data bases for fu-
ture reference.

A study conducted by [34] in Australia in-
dicated that only 38 out of 65 of the organisa-
tions investigated used test metrics for such or
similar purposes. 21 out of those 38 organisa-
tions agreed that metrics improved the quality
of the software developed. Similarly, [7] also
advises that metrics are an important part of
the test process as it provides valuable insight
into the progress of test projects. Company
X did not work with any kind of metrics and
was therefore unable to make reasonable esti-
mations on future software projects. In this
context [7] also argues that metrics provide a



22 Research Article — SACJ, No. 47., July 2011

basis for test estimation and help to identify
process improvement opportunities. On the
other hand, the authors of [48] have warned
against using too many metrics when embark-
ing on a test process improvement initiative,
as this could demand too many resources for
monitoring process.

It should be emphasised that the combina-
tion of numeric metrics and historic records,
especially in the area of software testing, is
likely to make future software projects more
predictable for project planners. An ‘emerg-
ing’ IT house with few resources, such as com-
pany X, should wisely start with only a small
number of metrics applied, and then stepwise
increase the amount of quantitative measure-
ments being taken while the testing process of
the company matures. (The path from ‘quali-
tative understanding’ to ‘quantitative measure-
ments’ has indeed been walked by various sci-
entific disciplines, though at different pace and
velocity, during the history of science.)

5 TEST WORKFLOW IMPROVEMENT

The first step in improving the test workflow in
a small IT house, such as our case study com-
pany X, is to gain clarity about what work-
flow implicitly exists in such a company which
does not have any workflow explicitly defined.
On the basis of the interviews which were con-
ducted with the employees of company X [56],
we were able to extract a de-facto existing
workflow which is shown in Software and Sys-
tems Process Engineering Metamodel (SPEM)
notation in Figure 2. The ‘issues’ attached to
the process nodes in Figure 2 are the problems
which we have described and discussed in sec-
tion 2 of this paper; for more details refer to
[56].

The SPEM diagram of Figure 2 shows in-
tuitively that this is not the picture of a well-
organised test workflow. It is the picture of ad-
hoc activities in which there is no methodologi-
cal distinction between proper testing and mere
‘debugging’. The document-like icons repre-
sent work products that serve as input or as
deliverables of the process. The input work
product depicted in Figure 2 is a requirements
specification. This document is used by devel-

opers to determine the functionality that needs
to be implemented. The icons with sharp edges
pointing to the right, represent tasks in the pro-
cess. Developers would use the requirements
specification to implement a feature. They
would then proceed to build and run the code
artifact for this feature to determine whether
it performs the intended functionality. In the
case of a failure, the developer would proceed
to find the fault that caused it. This code-and-
fix cycle continues until all functionality has
been implemented and no more apparent bugs
exist. The software product is released to the
customer at this stage for further testing by
the customer. One should also note that the
human-like icons in Figure 2 represent develop-
ers. No other human role players are involved
in test process and it is completely up to the
developer to determine whether the software is
ready for release.

The reason why we have taken this de-facto
workflow representation is threefold:

• On the small scale it enables us to pin-
point ‘issues’ at each individual node in
this process diagram.

• On the large scale it enables us to ‘see intu-
itively’ the problems with such a workflow
as a whole.

• The visual representation of the existing
test processes in Company X (workflow)
aids understanding and provides a better
platform to discuss the ‘issues’ with the
company’s non-technical managers, who
are ultimately responsible for supervis-
ing and enforcing the improvement of the
workflow to be applied.

The workflow as depicted in Figure 2 has been
somewhat simplified for the sake of clarity;
the figure does not include all problems iden-
tified in [56]. Also note that the figure only
shows the test workflow identified in our case
study, not the entire software engineering work-
flow. Such a representation however, would
have revealed that the test workflow was un-
fortunately isolated from the other software de-
velopment phases, instead of being reasonably
well integrated with them. [1] warns against
the isolation of the test process into separate
stages of the software lifecycle, and recom-
mends that testing should run parallel to im-



Research Article — SACJ, No. 47., July 2011 23

Figure 2: Implicit De-Facto Test Workflow, extracted from Interviews conducted with Employees in Com-

pany X.

prove the quality at each stage.

Anyway, the de-facto representation taken
of an immature test workflow should be the
starting point from which a company’s IT man-
agement can launch its process improvement
exercise. As explained above, and as further
elaborated in [56], such a test process improve-
ment exercise should take into account the fol-
lowing items:

• Test Policy,

• Test Strategy,

• Test Planning,

• Test Design,

• Test Execution,

• Test Monitoring (Control),

• Test Recording (Storing),

• Test Reporting (Closure).

For each of these activities, further micro-
workflows could be defined, depending on the
size of the company, its available resources, as
well as the size of the project and the number
of personnel involved:

• If the company and its projects are only
small, then it would be a costly ‘manageri-
alist overkill’ to define further rigid micro-
workflows for those items.

• On the other hand if a company and its
projects are larger, then it might well
make sense to further increase the preci-
sion of the overall testing workflow defini-
tion by introducing micro-workflow defini-
tions for those items on a smaller scale.

It, however, must be taken into account that,
according to the well-known V-model, differ-
ent forms of testing correspond to each activity



24 Research Article — SACJ, No. 47., July 2011

Figure 3: Improved and explicitly defined Test Workflow for Company X, including consideration of the

V-Model.

on the software development side: Unit test-
ing corresponds to the activity of programming
in the small, integration testing corresponds
to the level of software architecture (program-
ming in the large), user acceptance testing cor-
responds to the activity of requirements engi-
neering, and so on. This can be clearly seen
in Figure 3, which depicts an improved testing
workflow which we had suggested to our case
study company X on the basis of the preceding
analysis as further described in [56].

The picture of Figure 3 does not show in all
detail that we have also suggested some clearly
defined activities and deliverables (represented
by the ‘envelope’ symbols in the picture) for
each phase of the new testing process . Many
of those suggested solutions for the improved

workflow were indeed derived from the process
areas of the TMMi model, according to our
motivation of increasing the TMMi certifica-
tion level of small IT houses such as company
X. Therefore we should now also reason about
the TMMi maturity of the improved workflow,
to determine how it would compare to the old
workflow maturity (which was at the lowest
possible level of the scale).

6 PREPARATION FOR TMMI

With the development of the improved work-
flow, as shown in the previous section and
as further explained in [56], we carefully fol-
lowed the recommendations made for TMMi
level 2. We attempted to include all of those



Research Article — SACJ, No. 47., July 2011 25

process areas into our new workflow for com-
pany X, and this was generally achieved. How-
ever, the TMMi is a very comprehensive model
with many specific and generic goals, which in
turn contains even more specific and generic
practices. We attempted to select the most
important goals and practices from each pro-
cess area for company X. It is currently not
possible to fulfil all TMMi-2 requirements in
each process area, because such would just add
to the already heavy laden process improve-
ment project. We therefore suggested in [56]
that more goals and practices be added at later
stages as the test process in company X be-
comes stable and more mature.

Especially as far as the TMMi-2 area ‘Test
Monitoring and Control’ is concerned, we could
not recommend to company X to fulfil all those
requirements at once; such would have over-
stretched the company’s capacity. We pre-
sume that this would also be true for many
other small IT houses which ‘play’ in the same
‘league’ as company X. In fact the TMMi-
‘Test Monitoring and Control’ process area
contains 17 specific sub-practices. In our case
study we have selected only a few practices to
add to our improved workflow due to two rea-
sons [56]:

• The first is that company X is only just
beginning with its test process improve-
ment program which needs to be rather
simple and relatively easy to implement.
We did not want to introduce too much
complexity into the process at this early
stage, but rather introduce new practices
over time.

• The second reason for limiting our moni-
toring and control phase to basic practices
was that company X did not have enough
human resources to manage the implemen-
tation of these practices.

Based on these suggestions, we can however
still ascertain that the improved workflow
meets the requirements of this process area as
at least two of the specific practices are met.
This is shown in Figure 4.

As far as the approach to TMMi level 3 is
concerned, our case study company X turned
out to be too poorly equipped to make this goal
realistically achievable in the near future; the

same will most likely be true for many other
small IT houses ‘playing’ in the same ‘league’
as company X. Nevertheless it turned out that
company X seemed to be prepared for a partial
approach to TMMi level 3, namely in the area
of ‘Test Life Cycle and Integration’ (with two
sub-goals seeming to be achievable) as well as
in the area of ‘Peer Reviews’ (ditto). This is
shown in Figure 5.

In summary, we found that the TMMi is
very comprehensive and demands that many
practices be implemented in each process area
before that process area can be satisfied. We
have decided that not all these practices and
goals in each process area would be beneficial
to the suggested new workflow of company X
at the time of our case study. The main reason
for this decision was that the implementation
of all these practices and goals is a large task
that could not be handled with the limited the
resources available in company X at the time of
the study. We therefore recommended that an
independent team be established in company
X to take on this task in ‘baby steps’. This
will be necessary should company X decide to
submit their test process for official accredita-
tion with the TMMi Foundation in the future.
For purposes of future research we also recom-
mended that the suggested workflow would be
implemented as is, to first establish a struc-
tured process. Once the test process has ma-
tured and is fully integrated into the activities
of the software development division of com-
pany X, we would recommend that the specific
goals still missing (Figure 4, Figure 5) should
be tackled. Still the question arises, how much
time and effort would be needed to lift a small
IT house, such as company X, to TMMi level
2 from the lowest possible level. This question
shall be addressed in the following section.

7 TRANSITION EFFORTS

Figure 6 provides a ‘to do’ list with recommen-
dations for our case study entity, company X,
as further explained in [56]. If all these items
would be done, then company X would have
lifted itself from TMMi level 1 to almost TMMi
level 2; let us say for the sake of illustration:
‘TMMi 1.75’ (if such fraction values would ex-



26 Research Article — SACJ, No. 47., July 2011

Figure 4: Assessment of Improved Workflow against TMMi Level 2.

ist in the classification).

How much effort would it take to make this
transition? Clearly this cannot be a trivial one-
week task, and indeed [48] suggest that the
transition phase could take up to two years
to reach TMMi level 2. Company X, how-
ever, had really no established test practices
at all that could be ‘improved’ or built upon,
and therefore we estimate that this effort might
take at least two years to complete for an IT
house such as company X. It was also sug-
gested in [48] that the following phases should
be gone through as a preparation for TMMi
certification in an organisation:

• initiation,

• planning,

• implementation,

• deployment.

These four phases will be described in the fol-
lowing, which should also explain the long du-
ration (two years) of the whole transition as
mentioned above.

The initiation phase is used to determine
the current maturity level of the organisation.

Based on the results, recommendations must
be made to management. Fortunately this re-
search has already analysed the current test
process and has already made recommenda-
tions. We therefore suggested in [56] that the
results of this research be presented to the man-
agement of company X. As part of the ini-
tiation phase, common goals must be set by
the organisation on what they want to achieve
with this improvement project. These goals
can include predictability, higher productivity,
efficiency, and effectiveness [48].

The planning phases involve the creation
of a project team that will be responsible for
the improvement project. A common prob-
lem seen by [48] is that organisations do not
invest enough resources and attention into an
improvement project. Each of the recommen-
dations is assigned to a workgroup that im-
plements and deploys the recommendations.
We recommended in [56] that company X
should establish a steering committee with a
test project improvement manager. Specific
time and resources must be allocated to the



Research Article — SACJ, No. 47., July 2011 27

Figure 5: Assessment of Improved Workflow against TMMi Level 3.

workgroup so that this project is separate from
day-to-day work activities. Proper commu-
nication during this project is important as
many changes will be introduced. All em-
ployees of company X need to know which
changes are going to be implemented and why
these changes are necessary. It was also rec-
ommended in [48] to issue a periodic newslet-
ter that communicates progress of the project.
This will assist with the buy-in from employ-
ees into the project. The use of an external
consultant to take ownership of the project is
also recommended by [48] to guide the entire
process. We do not currently foresee this rec-
ommendation as feasible for very small com-
panies, such as company X, due to the cost
implications. However, the creation of an in-
ternal project team to manage this process im-
provement project can be critical to its success.
Furthermore [48] recommended that the pro-
cesses which the test process depend on must
also be taken into consideration. As the sug-

gested test process is tightly integrated into
the overall software development process, this
process must also be changed to accommodate
the changes in the testing process. We have
seen throughout our case study that the soft-
ware development process will be affected by
the suggested testing process. Therefore we
suggested in [56] that a separate improvement
project should be launched for the software de-
velopment process improvement at large. Such
a project could be managed by the current
software development manager such that no
additional resources would be needed in this
case. We also recommended that the newly
suggested test process be documented thor-
oughly and be made available to all stakehold-
ers of the company.

The implementation phase of a process im-
provement project realises the recommenda-
tions made in the previous phases. We agree
with [48] that the test policy and strategy are
the first and most important changes to be im-



28 Research Article — SACJ, No. 47., July 2011

Figure 6: To-do list from old workflow to new workflow.

plemented. This will provide direction on the
whole improvement project. We then recom-
mend that each process area of TMMi level
2 (and, later, 3) that was satisfied with the
suggested test process be implemented. We
also recommended in [56] that the structure of
the recommended documentation be created.
All the templates from the IEEE standard 829
should be adapted to the needs of company
X and stored in a document management sys-
tem. A document management system is al-
ready in use in company X; therefore this prac-
tice should not present any great difficulties.

According to [48] the deployment phase of
the improvement project is the most difficult
one to do. All the documentation and pro-

cess guidelines are futile if employees do not
adhere to them. We therefore recommended in
[56] that company X deploy the suggested test
process on an internal software pilot project
first. This will allow management to carefully
monitor the progress of the test project with-
out running the risk of possible failure with a
customer-facing delivery project. Only when
the basic practices of the test process have been
implemented in small steps and the test pro-
cess is producing the desired outcomes should
it be implemented in customer-facing delivery
projects. We estimate that this pilot imple-
mentation could take between six and eight
months for a company similar to company X.



Research Article — SACJ, No. 47., July 2011 29

8 FUTURE WORK

Though our case study conducted with com-
pany X can be regarded as comprehensive,
some aspects were not taken into account; they
remain open for future work. For example: we
did not investigate the test process from the
perspective of the management of company X,
because our study started from the interviews
with the software developers (though permis-
sion was given by the management, which
means that the management was aware of the
fact that such a study was being carried out).
However, an informal ‘chat’ with the Chief Ex-
ecutive Officer (CEO) of company X regard-
ing this case study was encouraging: The CEO
seemed convinced that those process improve-
ments, as they were elaborated in [56] and sum-
marised in the previous sections of this article,
should be introduced in company X as soon
as possible. This generally positive attitude
by the CEO might be regarded as an indica-
tor for the awareness of the current problems
being experienced with the software process,
more specifically the test process, at a too low
level of TMMi.

Another perspective that was not taken
into account in our case study was the per-
spective of the customers who were buying the
(often defective) software products from com-
pany X. We did not analyse the customer’s
view of the products they purchased and their
perceived quality thereof.

This case study only focused on one small
company that might perhaps not be fully rep-
resentative of the test processes of other small
IT houses. Though there is much ‘anecdotal
evidence’ of the similarity of many other small
IT houses with our case study company X, we
can —strictly speaking— not conclude from
this one case study that software testing is a
general problem facing many other small IT
houses.

It is a task for future work to actually im-
plement the suggested testing process in com-
pany X, and then to study the effects of the
implementation, such that we would be able to
judge if (and, if yes, to what extent) the pro-
cess improvement exercise was successful. This
would especially entail the consideration of the

following parameters (and their possible corre-
lations): software developers’ disgruntlement,
software defect rate, and customers’ satisfac-
tion, as briefly outlined in the following:

• Software developers in company X were,
at the time of our case study, disgrun-
tled with the current process because there
was often considerable re-work to be car-
ried out after delivery of defective soft-
ware. The customers would obviously
send complaints about such products, such
that the re-maintenance of those defects
disturbed the software developers’ sched-
ules while they were already working on
new projects, which meant that the new
projects got into delay by the need to fix
the defects from previous projects. It is
well known that employee disgruntlement
can have negative effects on the company
as a whole.

• Software defect rates at company X were
not counted during the time of our case
study. Without such figures, however, it
is not possible to measure the effects of
any suggested test improvement exercise.
Defect measuring is thus the precondition
for any subsequent initiative. The intro-
duction of defect rate counting to company
X would therefore be the first step of fu-
ture work into the direction of a long-term
study.

• Future work would need to determine how
satisfied customers are with the quality of
the current software. Once the suggested
process has been implemented, one would
have to ask the customers again in or-
der to find out if they are happier now
with the less defective software than previ-
ously. This study would, however, require
also some recurring long-term customers;
a study like this would be difficult to con-
duct on the basis of one-time customers
who only buy one product and then never
come back.

However, the ultimate goal for future work
would be the achievement of getting company
X TMMi-accredited for level 2; this could be
regarded as sufficient evidence for the effec-
tivity of the improvement measurements de-
scribed in [56] and in the previous sections



30 Research Article — SACJ, No. 47., July 2011

of this article. Since official TMMi accredita-
tions are still quite rare —especially here in
South Africa— a small IT house which is able
to present its TMMI certification diploma to
prospective customers should be able to gain
a considerable competitive advantage over its
countless competitors on the crowded software
market.

Acknowledgments

We would like to thank the software develop-
ers in company X for having participated in the
survey behind this contribution. Thanks to the
participants of the South African Institute for
Computer Scientists and Information Technol-
ogists (SAICSIT) Postgraduate Student Work-
shop 2009 for their comments on a related pre-
sentation. Last but not least many thanks to
Bernhard Westfechtel for his expertise.

REFERENCES

[1] P. Amman, J. Offutt, “Introduction to Soft-
ware Testing”. Cambridge Univ. Press, 2008.

[2] J. Aranda, S. Easterbrook, G. Wilson, “Re-
quirements in the Wild: How Small Compa-
nies do it”. Proc. RE’07: 15th IEEE Inter-
national Requirements Eng. Conf., pp. 39-48,
2007.

[3] J. Batista, A.D. de Figueiredo, “SPI in a Yery
Small Team: A Case with CMM”. Software
Process Improvement and Practice 5/4, pp.
243-250, 2000.

[4] A. Bertolino, “Software Testing Research:
Achievements, Challenges, Dreams”. Proc.
FOSE ’07: Future of Software Engineering
Conf., pp. 85-103, 2007.

[5] R. Black, “Critical Testing Processes: Plan,
Prepare, Perform, Perfect”. Addison-Wesley,
2003.

[6] R. Black, “ISTQB Certification: Why You
Need It and How to Get It”. Testing Experi-
ence The Magazine for Professional Testers 1,
pp. 26-30, 2008.

[7] K. Blokland, “A Universal Management
and Monitoring Process for Testing”. Proc.
ICSTW’08: IEEE Internat. Conf. on Softw.
Testing, Verification and Validation, pp. 315-
321, 2008.

[8] F. Brooks, “The Mythical Man-Month”.
Addison-Wesley, 1975.

[9] M. Broy, D. Rombach, “Software Engineering:
Wurzeln, Stand und Perspektiven”. Informatik
Spektrum 16, pp. 438-451, 2002.

[10] I. Burnstein, T. Suwanassart, R. Carlson, “De-
veloping a Testing Maturity Model for Soft-
ware Test Process Evaluation and Improve-
ment”. Proc. Internat. Test Conf., pp. 581-589,
1996.

[11] A. Cater-Steel, “Process Improvement in four
Small Software Companies”. Proc. ASWEC
13th Australian Softw. Eng. Conf., pp. 262-
272, 2001.

[12] G. Coleman, F. McCaffery, P.S. Taylor,
“Adept: A Unified Assessment Method for
Small Software Companies”. IEEE Software
24/1, pp. 24-31, 2007.

[13] S.H. Edwards, “Improving Student Perfor-
mance by Evaluating how well Students Test
their own Programs”. Journal Educ. Resour.
Comput. 3/3, pp. 1-, 2003.

[14] A. Farooq, P.R. Dumke, “Evalu-
ation Approaches in Software Test-
ing”. Techn. Rep. FIN-05-2008, Faculty
of Comp. Sc., Univ. of Magdeburg,
2008. http://www.cs.uni-magdeburg.de/
fin media/downloads/forschung/preprints/2008/
TechReport5.pdf

[15] M.E. Fayad, M. Laitinen, R.P. Ward, “Think-
ing objectively: Software Engineering in the
Small”. Communications of the ACM 43/3,
pp. 115-118, 2000.

[16] J. Garcia, A. de Amescua, M. Velasco, A. Sanz
A, “Ten Factors that impede Improvement of
Verification and Validation Processes in Soft-
ware intensive Organizations”. Software Pro-
cess Improvement and Practice 13/4, pp. 335-
343, 2008.

[17] D. Gelperin, B. Hetzel, “The Growth of Soft-
ware Testing”. Communications of the ACM
31/6, pp. 687-695, 1988.

[18] B. George, L. Williams, “An initial Investiga-
tion of Test Driven Development in Industry”.
Proc. SAC’03: Annual ACM Symp. on Appl.
Comp., pp. 1135-1139, 2003.

[19] A.M. Geras, M.R. Smith, J. Miller, “A Sur-
vey of Software Testing Practices in Alberta”.
Canadian Journal of Electrical and Comp.
Eng. 29/3, pp. 183-191, 2004.



Research Article — SACJ, No. 47., July 2011 31

[20] R.L. Glass, R. Collard, A. Bertolino, J. Bach,
C. Kaner, “Software Testing and Industry
Needs”. IEEE Software 23/4, pp. 55-57, 2006.

[21] M. Grindal, J. Offutt, J. Mellin, “On the Test-
ing Maturity of Software Producing Organiza-
tions”. Proc. TAIC PART: Testing: Academic
and Industrial Conference on Practice and Re-
search Techniques, pp.171-180, 2006.

[22] P. Grunbacher, “A Software Assessment Pro-
cess for Small Software Enterprises”. Proc.
EUROMICRO’97, 23rd EUROMICRO Conf.,
pp. 123-128, 1997.

[23] N. Juristo, A.M. Moreno, W. Strigel (eds.),
“Software Testing Practices in Industry”.
IEEE Software 23/1, pp. 19-21, 2006.

[24] M. Kajko-Mattsson, T. Björnsson, “Outlin-
ing Developers’ Testing Process Model”. Proc.
EUROMICRO’07, 33rd EUROMICRO Conf.,
pp. 263-270, 2007.

[25] D. Karlström, P. Runeson, S. Norden S, “A
Minimal Test Practice Framework for Emerg-
ing Software Organizations”. Software Testing
Verification and Reliability 15/3, pp. 145-66,
2005.

[26] K. Kautz, H.W. Hansen, K. Thaysen, “Ap-
plying and Adjusting a Software Process Im-
provement Model in Practice: The Use of
the IDEAL Model in a Small Software Enter-
prise”. Proc. ICSE’2000, 22nd Internat. Conf.
on Softw. Eng., pp. 626-633, 2000.

[27] T. Koomen, M. Pol, “Test Process Improve-
ment: A practical step-by-step guide to struc-
tured testing”. Addison-Wesley, 1999.

[28] L. Lazic, N. Mastorakis, “Cost effective Soft-
ware Test Metrics”. WSEAS Transactions on
Comp. 7/6, pp. 599-619, 2008.

[29] W.E. Lewis, “Software Testing and Continu-
ous Quality Improvement”. 2nd ed., Auerbach
Publ., 2004.

[30] D. Maes, S. Mertens, “10 Tips for Successful
Testing”. Testing Experience: The Magazine
for Professional Testers 3, pp. 52-53, 2008.

[31] W. Mallinson, “Testing: A
Growing Opportunity”, 2002.
http://www.testfocus.co.za/featurearticles/
Jan2002.htm

[32] K. Martin, B. Hoffman, “An Open Source Ap-
proach to Developing Software in a Small Or-
ganization”. IEEE Software 24/1, pp. 46-53,
2007.

[33] G.E. Mogyorodi, “Let’s Play Twenty
Questions: Tell me about your Organi-
zation’s Quality Assurance and Testing”.
Crosstalk: The Journal of Defense Software
Engineering, without page numbers, 2003.
http://www.stsc.hill.af.mil/crosstalk/2003/03/
mogyorodi1.html

[34] S.P. Ng, T. Murnane, K. Reed, D. Grant, T.Y.
Chen, “A Preliminary Survey on Software
Testing Practices in Australia”. Proc. Aus-
tralian Softw. Eng. Conf., pp. 116-125, 2004.

[35] M. Northover, D.G. Kourie, A. Boake, S.
Gruner, A. Northover, “Towards a Philoso-
phy of Software Development: 40 Years after
the Birth of Software Engineering”. Zeitschrift
für allgemeine Wissenschaftstheorie 39/1, pp.
85-113, 2008.

[36] S. Otoya, N. Cerpa, “An Experience: a Small
Software Company Attempting to Improve its
Process”. Proc. STEP’99 Software Technology
and Engineering Practice Conf., pp. 153-160,
1999.

[37] J. Park, H. Ryu, H.J. Choi, D.K. Ryu, “A
Survey on Software Test Maturity in Korean
Defense Industry”. Proc. ISEC’08: 1st India
Softw. Eng. Conf., pp. 149-150, 2008.

[38] I. Pinkster-o’Riordain, “Test Policy: Gain-
ing Control on IT Quality and Processes”.
ICSTW’08: Proc. IEEE Internat. Conf. on
Softw. Testing Verification and Validation, pp.
338-342, 2008.

[39] F.J. Pino, Felx Garcia, M. Piattini, “Key Pro-
cesses to start Software Process Improvement
in Small Companies”. Proc. SAC’09 ACM
Symposium on Applied Comp., pp. 509-516,
2009.

[40] M. Pyhäjärvi, K. Rautiainen, J. Itkonen
J, “Increasing Understanding of the Modern
Testing Perspective in Software Product De-
velopment Projects”. Proc. 36th IEEE Inter-
nat. Conf. on System Sc., pp. 250-259, 2002.

[41] P. Savolainen, H. Sihvonen, J.J. Ahonen, “SPI
with Lightweight Software Process Modeling
in a Small Software Company”. LNCS 4764,
pp. 71-81; 2007.

[42] T. Shepard, M. Lamb, D. Kelly D, “More Test-
ing should be taught”. Communications of the
ACM 44/6, pp. 103-108, 2001.

[43] M. Siniaalto, P. Abrahamsson, “Does Test-
Driven Development Improve the Program
Code? Alarming Results from a Comparative
Case Study”. LNCS 5082, pp. 143-156, 2008.



32 Research Article — SACJ, No. 47., July 2011

[44] A. Telea, H. Byelas, “Querying Large C and
C++ Code Bases: The Open Approach”.
Colloquium and Festschrift at the Occasion
of the 60th birthday of Derrick Kourie, 2008.
http://www.cs.up.ac.za/cs/sgruner/Festschrift/

[45] E. van Veenendaal, M. Pol, “A Test Man-
agement Approach for Structured Testing”.
Achieving Software Product Quality, online
collection without page numbers, 1997.

[46] E. van Veenendaal, “Test Maturity Model in-
tegrated (TMMi): Version 2.0”. TMMi Foun-
dation, http://www.tmmifoundation.org/

[47] E. van Veenedaal, D. Graham, I. Evans, R.
Black, “Foundations of Software Testing:
ISTQB Certification”. Internat. Thomson
Business Press, 2008.

[48] E. van Veenendaal, R. Hendriks, J. van de
Laar, B. Bouwers, “Test Process Improvement
using TMMi”. Testing Experience: The Maga-
zine for Professional Testers 3, pp. 21-25, 2008.

[49] T.E.J. Vos, J.S. Sanches, M. Mannise, “Size
does matter in Process Improvement”. Test-
ing Experience The Magazine for Professional
Testers 3, pp. 91-95, 2008.

[50] C.G. von Wangenheim, T. Varkoi, C.F. Sal-
viano, “Standard-based Software Process As-
sessments in Small Companies”. Software Pro-
cess Improvement and Practice 11/3, pp. 329-
35, 2006.

[51] C.G. von Wangenheim, A. Anacleto, C.F. Sal-
viano, “Helping Small Companies Assess Soft-
ware Processes”. IEEE Software 23/1, pp. 91-
98, 2006.

[52] C.G. von Wangenheim, S. Weber, J.C.R.
Hauck, G. Trentin G, “Experiences on Es-
tablishing Software Processes in Small Com-
panies”. Information and Software Technology
48/9, pp. 890-900, 2007.

[53] C.G. von Wangenheim, I. Richardson, “Why
are Small Software Organizations Different?”
IEEE Software 24/1, pp. 18-22, 2007.

[54] A.H. Watson, T.J. McCable TJ, “Struc-
tured Testing: A Testing Methodology Using
the Cyclomatic Complexity Metric”. Tech-
nical Report: National Institute of Stan-
dards and Technology, NIST 500/235, 1996.
http://www.mccabe.com/pdf/nist235r.pdf

[55] J. Zheng, L. Williams, N. Nagappan, W.
Snipes, J.P, Hudepohl, A.M. Vouk, “On the
Value of Static Analysis for Fault Detection in
Software”. IEEE Transactions on Softw. Eng.
32/4, pp. 240-253, 2006.

[56] Johan van Zyl, “Software Testing in a Small
Company: A Case Study”. M.IT.-Thesis, De-
partment of Comp. Sc., Univ. of Pretoria, De-
cember 2009.

[57] Kautz K, Hansen HW, Thaysen K, editors.
“Applying and adjusting a software process
improvement model in practice: the use of
the IDEAL model in a small software enter-
prise” ICSE ’00: Proceedings of the 22nd inter-
national conference on Software engineering;
2000; New York, NY, USA: ACM


