SACJ 33(1) July 2021
Research Article

Architecture and Architectural Patterns for
Mobile Augmented Reality

D. Munro®, A.P. Calitz®, D. Vogts

Department of Computing Sciences, Nelson Mandela University, Ggeberha, South Africa

ABSTRACT

A software architecture codifies the design choices of software developers, which defines a modular organiza-
tional spine for the design of a software artefact. Different architectures may be specified for different types
of artefacts, a real-time interactive artefact, for example, would have markedly different requirements to those
of a batch based transactional system. The use of software architecture becomes increasingly important as the
complexity of artefacts increases.

Augmented Reality blends the real world observed through a computer interface, with a computer generated
virtual world. With the advent of powerful mobile devices, Mobile Augmented Reality (MAR) applications have
become increasingly feasible, however the increased power has led to increased complexity. Most MAR research
has been directed towards technologies and not design resulting in a dearth of architecture and design literature
for MAR. This research is targeted at addressing this void.

The main requirement that a MAR architecture must meet is identified as being the efficient real-time pro-
cessing of data streams such as video frames and sensor data. A set of highly parallelised architectural patterns
are documented within the context of MAR that meet this requirement. The contribution of this research is a
software architecture, codified as architectural patterns, for MAR.

Keywords: Architectural Patterns, Software Architecture, Augmented Reality

Categories: e Software and its Engineering ~ Designing software e Human-centered computing ~ Ubiquitous and mobile computing

Email: Article history:

D. Munro donaldmunro@gmail.com (CORRESPONDING), Received: 27 Oct 2020

A.P. Calitz Andre.Calitz@mandela.ac.za, Accepted: 16 May 2021

D. Vogts Dieter.Vogts@mandela.ac.za Available online: 12 July 2021

1 INTRODUCTION

Augmented Reality (AR) blends the real world, as viewed through a computer interface, with a
virtual world generated by a computer, forming part of a larger set of Mixed Realities, described
by Milgram and Kishino (1994) as a “Virtuality Continuum” (Figure 1). The related mixed
reality technologies comprise Virtual Reality (VR) which provides an interactive view of an
entirely virtual world and Augmented Virtuality (AV), projecting real-world objects into a
virtual world.

Munro, D., Calitz, A. and Vogts, D. (2021). Architecture and Architectural Patterns for Mobile Augmented
Reality. South African Computer Journal 33(1), 59-78. https://doi.org/10.18489/sacj.v33i1.908

Copyright © the author(s); published under a Creative Commons NonCommercial 4.0 License (CC BY-NC 4.0).

SACJ is a publication of the South African Institute of Computer Scientists and Information Technologists. ISSN

1015-7999 (print) ISSN 2313-7835 (online).

https://orcid.org/0000-0001-7029-193X
https://orcid.org/0000-0002-2555-9041
https://orcid.org/0000-0002-2554-7518
mailto:donaldmunro@gmail.com
mailto:Andre.Calitz@mandela.ac.za
mailto:Dieter.Vogts@mandela.ac.za
https://doi.org/10.18489/sacj.v33i1.908
http://creativecommons.org/licenses/by-nc/4.0/

Munro, D., Calitz, A. and Vogts, D.: Architecture and Architectural Patterns for Mobile Augmented Reality 60

The last decade has seen the rapid evolution of mobile devices incorporating multi-core
Central Processing Units (CPUs), Graphics Processing Units (GPUs) and high definition displays
coupled with sophisticated cameras and sensors capable of detecting position, orientation,
motion as well as environmental variables, such as light and temperature. The increasing
complexity of mobile devices has also resulted in the development of Operating Systems, such
as Android and iOS, to control these mobile devices. The combination of hardware and system
software providing access to the hardware capabilities, has enabled complex MAR applications
to become not only feasible, but, given the ubiquity of mobile devices in the modern world,
inevitable. Research into MAR software has proved to be a fertile new field for researchers,
with copious research covering highly technical areas, such as Computer Vision for object
detection and tracking, 3D graphics for realistic rendering of virtual content and probabilistic
filtering and Simultaneous Localisation and Mapping (SLAM) for coordinating position and
orientation between the real and virtual worlds (Billinghurst et al., 2015).

The above-mentioned research has also led to a sudden increase in interest relating to MAR,
which in turn has led to the eventual commodification of MAR. Two of the larger players in the
mobile device marketplace have released MAR SDKs with Google’s ARCore and Apple’s ARKit.
MAR games have also popularised MAR in the popular software marketplace with games such
as Pokémon Go and Ingress Prime introducing a wider general audience to MAR.

As is often the case with new fields in Computer Science (CS), most of the research has
concentrated on solving highly technical issues, with far less being devoted to software design.
As a field in CS matures, more attention needs to be bestowed on architecture and design, as
the overall complexity of system implementation within the field increases, making ad-hoc
implementations difficult. This is particularly the case when the maturing field becomes more
accessible to a less specialised audience, who require more guidance when developing systems
within the field. In MAR development, this is especially the case as the research provides
a plethora of different solutions for similar or closely-related problems, documented mostly
in relatively obscure academic papers, which are not always accessible to a less specialised
audience.

The first step on the path towards a coherent software design is the software architecture,
which provides the foundation on which the rest of the design is built. Software architecture,
as discussed in Section 3, is concerned with formalising an underlying foundation on which a
software artefact can be built. This entails the partition of the artefact into related components

REALITY AUGMENTED AUGMENTED VIRTUAL REALITY
REALITY (AR) VIRTUALITY (AV)

Figure 1: Mixed Reality Continuum (Milgram & Kishino, 1994). Image adapted from Valoriani (2016)

https://doi.org/10.18489/sacj.v33i1.908

https://doi.org/10.18489/sacj.v33i1.908

Munro, D., Calitz, A. and Vogts, D.: Architecture and Architectural Patterns for Mobile Augmented Reality 61

based on the artefact requirements and the context in which the artefact is deployed.

The objective of this research is to provide such an architecture for MAR applications. The
research involves design of an architecture which resulted in the methodology of Design Sci-
ence Research (DSR) as applied to conceptual meta-artefacts, as described by livari (2015)
being used. The methodology was combined with the research process of Nunamaker et al.
(1990). In the context of the research strategies proposed by livari, the combined architectural
patterns are a conceptual IT meta-artefact, which can be used to design and implement con-
crete artefacts. The sample application designed and implemented in the evaluatory section
(Section 6) is an example of a concrete artefact designed using the architectural patterns.

In order to provide some theoretical background, a brief overview of the differing types of
MAR will be provided in Section 2, followed by an overview of the concepts of software archi-
tecture and architectural patterns in Section 3. Related work on the design of MAR software
will be described in Section 4. Section 5 will document a proposed MAR architecture, while
Section 6 will present an open source realisation of the architecture as an Android application.
Finally, Section 7 will provide conclusions which can be drawn from the study, and identify
future research areas.

2 MOBILE AUGMENTED REALITY CLASSIFICATION

MAR may be classified in several ways. From a hardware perspective, MAR may be implemen-
ted on a standard hand-held device, such as a smartphone or tablet with a video feed provided
by a camera. Another variety of MAR is provided on wearable devices epitomised by Google
Glass (2020), Microsoft HoloLens (2020) and the HTC Vive Pro (2020), although these wear-
able devices differ in the way they present the real-world with Google Glass and Microsoft
HoloLens using see-through lenses onto which virtual content is stereoscopically projected,’
while the HTC Vive resembles a hand-held device in that it utilises two displays in the headset
to render output from two head mounted cameras.

The software implementing MAR applications can be further classified into:

« Computer Vision (CV) based applications, which use computer vision based techniques
for object detection, tracking and pose determination.? Early CV systems used special
artificial markers, known as fiducial markers for object detection and tracking. Recent
and more sophisticated CV systems may also utilise SLAM to detect and redetect features,
in order to dynamically build a map of the surroundings as the user moves through the
world; and

+ Locational MAR applications, which use device sensors such as gyroscopes, acceleromet-
ers and magnetometers combined with the use of a Global Positioning System (GPS) for
outdoor localisation and WiFi/Bluetooth beacons for indoor localisation. Such applica-
tions cannot directly detect objects to augment, instead they use the location and pose to

! Although the Hololens uses several cameras for head and eye tracking
2Finding the position and orientation of the device in a common coordinate system

https://doi.org/10.18489/sacj.v33i1.908

https://doi.org/10.18489/sacj.v33i1.908

Munro, D., Calitz, A. and Vogts, D.: Architecture and Architectural Patterns for Mobile Augmented Reality 62

determine when and where to display virtual content. Precise pose determination can be
challenging on such sensor only systems, as the sensors are prone to noise and other er-
rors with gyroscope drift being common and magnetometers being known for sensitivity
to even small local magnetic fields, such as wrist watches. However applications which
do not require precise positioning can utilise locational AR successfully, usually by using
a technique known as sensor fusion to combine sensors in order to reduce errors: the
popular MAR game Pokémon Go is an example of such an application; and
« Hybrid systems which combine CV and sensors using CV for detection/tracking and
sensors combined with CV for pose determination and localisation. SLAM systems in
particular are often implemented using this approach.
The main emphasis of this research is MAR implemented on a hand-held device, but most of
the architectural requirements underlying the proposed design also apply to alternate types
of MAR. The following section will briefly discuss architectural patterns, before Section 5
describes the application of an architectures pattern for the proposed design of an MAR archi-
tecture.

3 SOFTWARE ARCHITECTURE AND ARCHITECTURAL PATTERNS

A definition of software architecture is provided by IEEE standard 1471-2000 (Maier et al.,
2001) indicating that

The fundamental organization of a system embodied in its components, their re-
lationships to each other, and to the environment, and the principles guiding its
design and evolution.

An alternate definition that highlights the link between design, particularly high-level design
decisions and architecture, is provided by Booch (2008):

Architecture is design but not all design is architecture. Architecture represents
the significant design decisions that shape a system, where significant is measured
by cost of change.

The latter definition captures the effect of architecture on the longevity of the design, because
the quality of the architecture determines the maintainability and extensibility of the software
and the related costs. The costs of designing without any coherent architecture is described
by Foote and Yoder (1999), in which the term describing such systems as “Big balls of mud”
was first coined.

According to Booch et al. (2007), the attributes that software architectures should possess
include:

* Modularity which entails representing the system as multiple separate modules. These

modules may in turn consist of sub-modules or components;

https://doi.org/10.18489/sacj.v33i1.908

https://doi.org/10.18489/sacj.v33i1.908

Munro, D., Calitz, A. and Vogts, D.: Architecture and Architectural Patterns for Mobile Augmented Reality 63

+ High cohesivity for components of a module meaning that the components have a com-
mon task or goal and provide interfaces for these tasks;
+ Low coupling where modules have no unnecessary dependencies on other modules;
* Encapsulation of functionality by using defined interfaces for accessing modules or com-
ponents; and
Abstraction of the functionality of the system by using encapsulation to represent all
functionality provided by the system.
An architecture describes design decisions, therefore documenting these decisions is a require-
ment. Software patterns provide a convenient tool for describing designs and design decisions
(Ton That et al., 2012). Software design patterns emerged in the mid 1990’s and were pop-
ularised in the software design community by the “Gang of Four” (Gamma et al., 1995), who
in turn were inspired by earlier work by Alexander (1979), describing “real brick and mortar”
architectural designs as interlinked patterns. Software patterns document recurring design
problems in terms of the context in which they occur, constraints (also known as forces) that
affect the design and tried and trusted solutions described as a solution space instead of a spe-
cific solution blueprint. The designer may then customise the solution to best fit the particular
circumstance, with the customisation often involving the assignment of roles in the pattern to
software components.

While software patterns are most frequently associated with solving lower level single
issue problems, they have increasingly become popular as an architectural level design aid.
Many modern software architectures are expressed as patterns, for example, LAYERED, CLIENT-
SERVER, PIPES AND FILTERS and BLACKBOARD are well known and used patterns (Buschmann
et al., 1996). These patterns are known as architectural patterns to distinguish them from
tactical level design patterns, which target individual low-level problems. By documenting
the application of architectural patterns to design a system, a record of the design decisions
is created, which can be referred to in later phases of the system life cycle. It should also
be noted that while patterns have become synonymous with Object-Oriented (OO) design, in
reality both tactical and architectural patterns can be used in non-OO design, for example, the
Linux Kernel documents several Operating System level patterns (Guy & Agopian, 2018a).

In the next section, related work and software architectures that have been applied to MAR
are described. The architecture proposed by this research is then presented in Section 5.

4 RELATED WORK

While there is much research describing the implementation of AR and MAR artefacts, most
of them concentrate on demonstrating the use of AR for a particular application, for example,
as a tourist guide or for surgical training or support, with very little or no description of any
architecture or design.

Research that does briefly discuss this area tend to follow the design of Reicher (2004).

https://doi.org/10.18489/sacj.v33i1.908

https://doi.org/10.18489/sacj.v33i1.908

Munro, D., Calitz, A. and Vogts, D.: Architecture and Architectural Patterns for Mobile Augmented Reality 64

Reicher describes a Model View Controller (MVC?) (Krasner & Pope, 1988) based architecture
comprising of several modules (Figure 2a), namely:

« Application: Provides a high-level interface encapsulating the rest of the modules and
components;

« Interaction: Deals with user interaction, which would usually be seen to belong to the
Controller part of MVC. For mobile device-based MAR, this primarily encompasses touch
screen use, but voice-based input could also be handled;

« Context: Stores and shares the common information. The Context module is accessed
by modules requiring common information and is in turn updated by modules producing
the information,;

« Presentation: Provides the view part in the MVC pattern rendering the augmented
output. In order to do so, it needs to access other modules to obtain information required
for rendering, for example, the pose can be obtained from the context module;

« Tracking: Handles object detection, tracking and pose updates using the camera and
/or sensor data. The information is disseminated to the Context module for use by other
modules; and

* World Model: Defines the world coordinate system.

MacWilliams et al. (2004) also documents the patterns used in the above design.

'Capture O-F vive input
|

+ RGB input frame

%l Background comparison

i
|
|
|

___________________ Application |._ - ->{ World Model | |
|
|
|
|
|

Display

. e — + foreground binary mask
! — orld Mode
| [ConeR <--- % Application | %World Model |$ e thzZl;sllround Connected components
i+ |5 Context T x vy + labeled components image
|52 _Manager || _______, | \ !
| i i e
: A ; ' . ' s
| ->[Tnteraction E R E> Presentation ' :TraCng l__\Trackingl}‘/—,__l Rendering
- nput \ N 3D Image 3D | L /|: [L
C3a Device |[7 777T [' Generator Renderer l h + composite image
I ! | Tracking 1
5 Input y ' Output Control | Graph |: O‘EEI Display
3 Processor —r\!ﬁﬁm I Interface Feedback 1 h (composite image)
I
I
I

'

| T T
= Tracker H
== oo

(a) MVC-based MAR high-level architecture (MacWilli- (b) Video segmentation and tracking architecture using
ams et al., 2004; Reicher, 2004). SAI (Francois, 2003).

Figure 2: Prior work in AR architectures.

A generic architecture for multimedia applications was proposed by Francois (2003), which
can be adapted for use in a MAR setting. The architecture is known as SAI (Software Architec-

SMVC defines an architecture for designing interactive applications, comprising of three main components:
the Model which is responsible for the state of a displayable logical entity, the View displaying a representation
of the model and the Controller responding to user interaction and updating the model.

https://doi.org/10.18489/sacj.v33i1.908

https://doi.org/10.18489/sacj.v33i1.908

Munro, D., Calitz, A. and Vogts, D.: Architecture and Architectural Patterns for Mobile Augmented Reality 65

ture for Immersipresence), and is based on three components, namely cells, sources and pulses.
Cells are arranged in pipelines and process incoming data and forward the result to the next
Cell. Data can be persistent, for example, constant data such as settings or volatile, such as
video or audio frames. Persistent data are held in Sources connected to specific Cells contain-
ing persistent data for the Cell. While sources hold constant data, pulses transmit volatile data
periodically. The pulse combined with a timestamp, is propagated through the pipeline of
cells and each cell can extract and operate on the data in the pulse. The cell can also modify
the volatile data before allowing the pulse to continue to the next cell. The pulse data itself
is passed as a pointer (in process) or token (out-of-process) to avoid expensive data copying
operations on memory-heavy content, such as video frames. Cell generated pulses are also
used to communicate persistent data from sources to cells, these are known as active pulses.
Figure 2b illustrates a simple SAI architecture for video segmentation. Squares represent
cells, while circles represent sources. Passive pulses carrying volatile data travel along single
line connectors, while active pulses allowing cells to access persistent data in sources are
represented by double lines. Text with a + in front denote a cell addition to the pulse. There
is a feedback loop in the second Segmentation cell, which splits the pulse in two with the
feedback part of the pulse updating a statistical background model used during segmentation.

ExtractY

ExtractU @

ExtractV

Figure 3: OpenVX graph

ColorConvert

Combine

’ Read }—>{ ConvertNV12 }

While not specifically targeted at MAR, OpenVX (Khronos, 2015), which is an open stand-
ard for providing acceleration for CV applications, also utilises the concept of linking data
streams. OpenVX defines a set of CV functions, which are combined as nodes in a graph with
data streams forming the edges between the nodes. An example of a graph diagram for a small
OpenVX fragment for converting image formats is shown in Figure 3.

The architecture proposed by this research study applies to MAR artefacts that are self
contained on a device. An alternate approach proposed in the early to mid 2000’s, before
mobile device processing power advanced to their current levels, is to move the CPU intensive
tasks to more powerful cloud servers utilising a distributed system paradigm (Bauer et al.,
2001; Huang et al., 2014; Piekarski & Thomas, 2001). Such an approach however, further
magnifies the potential latency issues as video frames and sensor data need to be transferred to
cloud servers for processing.* Ren et al. (2019) propose modernising this type of architecture

4Alternately some initial pre-processing such as feature extraction can be done locally with the preprocessed
results (image features for example) transmitted to the server instead of the entire frame.

https://doi.org/10.18489/sacj.v33i1.908

https://doi.org/10.18489/sacj.v33i1.908

Munro, D., Calitz, A. and Vogts, D.: Architecture and Architectural Patterns for Mobile Augmented Reality 66

by adding an extra “edge layer” situated between the device and the cloud server. The edge
layers are located at the base stations of cellular networks or WiFi network access points and
can therefore provide somewhat faster processing as less network hops are required, however
such an approach is still dependent on network access speed and developers having access
to such edge layers. It should be noted that the same requirements applicable to on-device
architectures also apply to cloud-based architectures, so the architectural patterns proposed
in Section 5 are also applicable to cloud or edge-based servers in conjunction with distributed
system architectural patterns.

5 PROPOSED SOFTWARE ARCHITECTURE FOR MAR

The architecture of a MAR system must reflect the primary requirements and constraints that
pertain to the design of the system. The user’s perception of a MAR system is almost entirely
dependent on how responsive it is, thus the primary requirement for MAR is the processing of
streams of video and sensor data in real-time, therefore the choice of an architecture optimal
for processing data streams in real-time is essential.

Streams of data are traditionally processed using the PIPES AND FILTERS® architectural
pattern (Buschmann et al., 1996). Filters encapsulate processing steps and filters can execute
concurrently with other filters, when data are available. The data are passed through pipes
between filters. The pipes are typically implemented as queues. Synchronisation is effected
by blocking on the queue when the pipe is empty or full. Filters can also provide incremental
output to the next filter to maximise throughput. Examples of pipeline architectures include
the 3D graphics rendering and compiler parsing pipelines.

A recent alternative to PIPES AND FILTERS is the PARALLEL PIPELINE pattern (McCool et al.,
2012), which also supports fully parallel filters that can process more than one data item from
the stream at a time. Implementation for this pattern is more complicated and must allow for
out-of-sequence data.

The Pipes and Filters architecture is a good fit for traditional streamed data applications,
such as 3D graphics or compilers, however it has some drawbacks when processing real-time
or interactive streams, namely:

+ Data are passed as raw bytes between filters resulting in both speed and storage over-

heads;

+ Large architectures having multiple dependent pipelines cannot synchronise the output
from different pipelines at logical barrier points where the pipelines merge;

+ When two stages can act on the same data independently there is unnecessary latency,
while the first stage processes the data. For example, if P1, P2 and P3 are stages with P2
and P3 dependent on P1 but not on each other:
|P1|— | P2]—| P3| —[P4]

SThe notational convention of using SMALL CAPS to denote patterns follows from the convention used in
Buschmann et al. (2007a, 2007b).

https://doi.org/10.18489/sacj.v33i1.908

https://doi.org/10.18489/sacj.v33i1.908

Munro, D., Calitz, A. and Vogts, D.: Architecture and Architectural Patterns for Mobile Augmented Reality 67

then P3 has to wait until either P2 completes, or if P2 supports incremental output then
at least until after P2 has started producing output. If P4 is only dependent on P2, then
it too has to wait for P3; and

 There is no feedback support, so the output from a filter cannot change the processing

done by another, for example, user interaction cannot modify filter behaviour.
For interactive real-time architectures, moving away from a strict pipeline topology would
appear to provide a solution. The pipeline can be replaced with a Directed Acyclic Graph
(DAG), with the nodes of the graph corresponding to filters and the edges to pipes. This DAG
based solution provides a more flexible alternative, while retaining the underlying chained
structure of a pipeline, as DAGs can be decomposed into chains of nodes (Chen, 2007).

The TASK GRAPH pattern (Miller, 2010), models multiple atomic tasks with dependencies
between the tasks as a DAG, with nodes representing tasks, while edges represent dependencies
and predecessor output. The graph can be defined either at compile time or, as a variation, at
runtime and is documented as a computational pattern as opposed to an architectural one. For
the purposes of providing an architecture for MAR, an architectural variant of this pattern is
documented in Subsection 5.2.1. As previously mentioned, the data streams involved in MAR
can comprise large quantities of data, which would be slow to move between tasks and would
use lots of memory, which may be in short supply on mobile devices that lack virtual memory
capability. An architectural specialisation of the SHARED RESOURCE pattern (Ortega-Arjona,
2003) can be combined with the architectural TASK GRAPH pattern to create a base software
architecture for MAR. This version of the SHARED RESOURCE is documented in Subsection
5.2.2.

This base architecture does not preclude other MAR modules from having module specific
sub-architectures interacting with the task components through predefined interfaces. For
example, the rendering/interaction module may choose to use a MVC related architecture,
with the MVC components interacting with task nodes to obtain or update the system state.

As previously mentioned in Section 2, MAR can be classified by hardware type, that is,
hand-held or wearable and by the use of CV techniques versus location sensors for pose and
localisation. The architecture proposed applies directly in the wearable case as these devices
also use camera streams (in the case of the Hololens (2020) there are 6 cameras and a time-of-
flight depth sensor), in addition to an accelerometer, gyroscope and magnetometer. Locational
MAR does not rely on camera video streams, however the sensors provide streams of data at
high frequency, thus also necessitating efficient stream processing, although the size of the
stream content is much smaller.

While patterns concern themselves with design level decisions, some discussion of possible
implementation approaches and technologies may be useful as examples. This discussion is es-
pecially relevant here, as implementing task graphs efficiently depends on being able to utilise
a high degree of parallelism. Subsection 5.1 will briefly describe some possible implementa-
tion technologies and provide a simple example illustrating a particular implementation.

https://doi.org/10.18489/sacj.v33i1.908

https://doi.org/10.18489/sacj.v33i1.908

Munro, D., Calitz, A. and Vogts, D.: Architecture and Architectural Patterns for Mobile Augmented Reality 68

5.1 Implementation Tools

Historically, parallel programming used low level software threads that were mapped onto
hardware threads by either the OS or a threading package using pre-emptive time slicing. A
modern high-level alternative is to define potentially parallel units of execution as tasks and
let a task scheduler determine optimal task-to-thread allocation, based on the current status
of available processors. The tasks themselves can then be implemented as lightweight non-
pre-emptive threads or fibres, thereby avoiding the expense of pre-empting hardware threads.
Several of the technologies described in this Subsection use this approach, however it is entirely
possible to implement a task graph using old fashioned threads. It will however be both more
complex and, more often than not, sub-optimal.

Threading Building Blocks (TBB) (Voss et al., 2019) is an open source C++ task-based
template library for parallel programming using multi core CPUs. TBB has also been ported
to mobile OSs such as Android and iOS. TBB directly supports task graphs through its flow
graph template class. Several predefined node types are supported (Intel TBB, 2014), while
new node types can also be created by composition and inheritance of the predefined node
types. Edges between nodes can be specified with a concurrency limit, which designates the
number of tasks the node can run in parallel.

For an example of a task graph architecture, see Figure 5 in Section 6. An excerpt from the
code to create the task graph illustrated in Figure 5 using TBB is listed below:

source_node<uintptr_t> backSrc{graph, backSourceNode, false};
source_node<uintptr_t> frontSrc{graph, frontSourceNode, false};
function_node<uint64_t, uint64_t, rejecting> frontDetect
{graph, 1, [this] (uint64_t seqno) —> uint64_t
{ return (xfrontDetectorNode)(seqno); } };
function_node<uint64_t, uint64_t, rejecting> frontTrack
{graph, 1, [this] (uint64_t seqno) —> uint64_t
{ return (xfrontTrackerNode)(seqno); } };
function_node<uint64_t, uint64_t, rejecting> backDetect
{graph, 1, [this] (uint64_t seqno) —> uint64_t
{ return (xbackDetectorNode)(seqno); } };
function_node<uint64_t, uint64_t, rejecting> backTrack
{graph, 1, [this] (uint64_t seqno) —> uint64_t
{ return (xbackTrackerNode)(seqno); } };
multifunction_node<uintptr_t ,RouterOutputTuple> rearRoute
{graph,1,rearRouterNode };
multifunction_node<uintptr_t , RouterOutputTuple> frontRoute
{graph,1,frontRouterNode };
function_node<uint64_t, uint64_t, rejecting> render{graph, 1,
[this] (uint64_t seqno) —> uint64_t { return (*renderNode)(seqno); } };

make_edge (backSrc, rearRoute);
make_edge(frontSrc, frontRoute);

https://doi.org/10.18489/sacj.v33i1.908

https://doi.org/10.18489/sacj.v33i1.908

Munro, D., Calitz, A. and Vogts, D.: Architecture and Architectural Patterns for Mobile Augmented Reality 69

make_edge (output_port <O>(rearRoute), backDetect);
make_edge (output_port <l1>(rearRoute), backTrack);
make_edge (output_port <2>(rearRoute), render);
make_edge (output_port <O>(frontRoute), frontDetect);
make_edge (output_port <l1>(frontRoute), frontTrack);

FastFlow (Aldinucci et al., 2017) shares many features with TBB, particularly in supporting
a task-based model for data streaming and data parallelism. FastFlow differs somewhat from
TBB in task graphs creation as it supports this through combining tasks into task farms or by
pipeline composition.

5.2 Architectural Patterns

The proposed architectural patterns for MAR, namely the ARCHITECTURAL TASK GRAPH and
SHARED RESOURCE patterns are documented in this Subsection. The context, problem and
solution are specialised for use in an architectural MAR setting. The architectural patterns
described here can also be integrated into a larger Pattern Language (PL), as described by
Munro (2020).

5.2.1 The Architectural Task Graph Pattern

Context: Defining an architecture for MAR capable of processing multiple data streams in
real-time.

Problem: The chief requirements for MAR are real-time interactivity and augmentation
that is in both spatial and temporal registration with the physical world. The realisation of
these requirements are dependent on rapid and efficient processing of streams of data, such
as video frames and sensor readings. The streams are usually periodic and high frequency,
and as in the case of video frames, may also comprise large data items comprising many
bytes. The streams are usually processed by different components, which extract information
from the streams or transform the data from the stream. Some components depend on the
output of other components, either as information extracted from the stream or changes made
to the data. The probable existence of multiple data streams, combined with the possibility
that the output from some MAR components may be split into inputs for several descendent
components and later recombined means a simple pipeline is not practicable.

Solution: Structure the design components responsible for handling and transforming
data streams into tasks and place them in a DAG, where the nodes are tasks and the edges are
data stream dependencies along which the data stream can flow. The component lifetimes are
assumed to match that of the artefact being designed, so the graph exists for the lifetime of
the artefact and defines its architecture, with the tasks being architectural components.

As streamed data packets can be large, for example video frames, it is undesirable and
inefficient to repeatedly copy the data between nodes. A better solution is to combine this
pattern with the SHARED RESOURCE pattern (See Subsection 5.2.2) and pass a key or token

https://doi.org/10.18489/sacj.v33i1.908

https://doi.org/10.18489/sacj.v33i1.908

Munro, D., Calitz, A. and Vogts, D.: Architecture and Architectural Patterns for Mobile Augmented Reality 70

representing the data between the nodes while gaining access to the actual data through a
shared resource object or method.

The technology being implemented (as described in Subsection 5.1) should support task
parallelism and the components should be designed so as to be able to support processing
the next item in the stream, as soon as the current one is complete in order to be able to
maximise throughput. Implementing technologies that use task-based scheduling are preferred
to those that require low-level threading. If low-level threading is used, then care must be
taken in assigning logical threads in components to physical hardware threads to avoid over-
subscription of logical to physical threads, which leads to inefficient time sliced scheduling
amongst the logical threads.

It is also possible to combine other forms of parallelism into the graph. For example, a
task node may utilise a scan or map-reduce pattern or execute an OpenVX graph within the
component. To fully utilise available parallelism, the component could combine the use of
multiple GPU cores with a CPU core (the combination of CPU and GPU processing is known
as heterogeneous computing).

Nodes and edges are the structural elements with nodes representing tasks and edges de-
pendencies with data flow. While the functional task is the primary node in the DAG, various
other node types exist in various implementations, or can be implemented using lower level
primitives. These nodes provide a means to synchronise and buffer graph flow. Some examples
include:

« Data generation and processing nodes, such as source nodes (for example a node that
obtains a camera image), functional task nodes, multifunctional task nodes that can
output results to multiple descendent nodes selectively and broadcast nodes that copy
their input to multiple descendants;

« Buffering nodes, including standard buffer, ring buffer, queue, priority queue and se-
quencer nodes, which resynchronise output based on an incoming sequence number;
and

+ Synchronisation nodes, such as a join node that receives input from multiple nodes but
only transmits to its successor when all input nodes have data available and the limiter
node that stops outputting data when a given count is reached until the counter is reset.

The critical path through the DAG, which is determined by the time taken by tasks in paths in
the graph determines the maximal throughput. It is possible to work around the limitations
of slower components by allowing them to “skip turns”, that is not process for every periodic
iteration, such as video frames. For example, if it is known that an object detector is slower
than other components, then the detector node can be set to have a parallelism of two and have
one thread doing the detection, while the second one simply passes the received token on to
the next task until the main thread completes its current detection. The obvious disadvantage
is that the detection may be several frames behind the other components, but this is frequently
acceptable given that inter-frame changes are normally quite minimal.

https://doi.org/10.18489/sacj.v33i1.908

https://doi.org/10.18489/sacj.v33i1.908

Munro, D., Calitz, A. and Vogts, D.: Architecture and Architectural Patterns for Mobile Augmented Reality 71

5.2.2 The Shared Resource Pattern

Context:

* When defining a STRUCTURAL TASK GRAPH, the size of the data that will have to be
passed between task nodes is too large to be efficiently copied; and

« When results computed from data streams need to be shared amongst all nodes.

Problem:

+ The default means of communicating data between nodes in a STRUCTURAL TASK GRAPH
is by message passing between nodes, however multimedia data such as images tend to
consume large amounts of memory space and are slow and inefficient to copy when
implementing task graph message passing; and

* When the results computed using the streams by one task should be available to other
nodes in the graph, regardless of their position in the graph relative to the node that
computed the result.

Solution: Use the SHARED RESOURCE pattern (Ortega-Arjona, 2003) to provide shared
data access to components acting as nodes in a STRUCTURAL TASK GRAPH. Data consistency
is enforced by the shared resource component, while ensuring correct sequencing is left either
to the nodes or the design. For example, if a task updates a frame and there is a possibility
of out-of-sequence access causing inconsistencies, the designer could specify that the updated
frame should be stored separately from the original.

When using SHARED RESOURCE in conjunction with STRUCTURAL TASK GRAPH, nodes from
the task graph play the role of the sharer components, while the shared resource object or API
plays the role of the SHAREDRESOURCE in the pattern as described by Ortega-Arjona (2003).
In order to adhere to the principle of programming to an interface, the SHAREDRESOURCE
component should export a standardised EXTERNAL INTERFACE (Buschmann et al., 2007b),
which would support pluggability and maintainability and minimise dependencies.

The locking that may be necessary to ensure data consistency will impact performance and
could even be the source of bugs. In some cases lock-free algorithms for some data structures,
such as queues may lead to improved performance although performance gains for lock-free
structures are not guaranteed and require real-life benchmarking.

6 EVALUATION

In order to evaluate the architecture, an Android application was designed using the architec-
tural patterns defined in Subsection 5.2 and implemented mainly in C++ using the Android
NDK. The application source is available at https://github.com/donaldmunro/ARArch.

As mentioned in Section 5, processing data streams, especially video streams in real-time
is the prime requirement, therefore the application was designed to support video streams
from multiple cameras. For example, Android devices having multiple cameras have recently
become increasingly common, although not all devices allow individual addressing of the
cameras using the Android camera API.

https://doi.org/10.18489/sacj.v33i1.908

https://github.com/donaldmunro/ARArch
https://doi.org/10.18489/sacj.v33i1.908

Munro, D., Calitz, A. and Vogts, D.: Architecture and Architectural Patterns for Mobile Augmented Reality 72

In addition to the video streams, the application also provides sensor data streaming from
accelerometers, gyroscopes and fused gravity/rotation sensors provided by devices through
the Android sensor API. These sensor streams are less demanding as the size of the data is
much smaller than video frames, however they typically occur at high frequency when used
in a MAR setting, where orientation updates need to be real-time. An example of a MAR
requirement for real-time sensor data streams is Visual-Inertial SLAM (Chang et al., 2018),
where Computer Vision (CV) is fused with sensor data to map the environment in real-time.

Figure 4: Sample application performing facial recognition and April Tag detection on front and rear
video streams.

The primary goal of the application is the evaluation and benchmarking of a MAR architec-
ture so it does not implement a full AR application, however, in order to simulate the kind of
tasks performed by an AR application, some CV tasks are included. In particular, an April Tags
(Wang & Olson, 2016) detector is used to detect April Tags, (a modern version of the fiducial
markers used in early AR) in the rear camera(s) feeds, while facial detection is implemented
for the front camera. For rear cameras, the April Tag bounding boxes (BB) are rendered, for
front-only camera streams, detected faces are rendered with a BB whilst processing both rear
and front video streams, a face detected using the front camera is overlayed over the rear cam-
era frame, which is rendered with BBs for detected April Tags (Figure 4). The device tested
was a LG G7 ThinQ, which has two individually addressable rear cameras and a single front
camera. The G7 is a relatively modern (July 2018) device, which was high-end, however not
quite flagship level when it was introduced. As indicated in the benchmark, it is able to main-
tain close to maximal frame rates across all benchmarks when using this architecture, the most
up-to-date high-end devices should be able to produce even better results.

The overall architectures are defined by the ARCHITECTURAL TASK GRAPH pattern de-
scribed in Subsection 5.2.1, combined with the SHARED RESOURCE pattern (Subsection 5.2.2)
(for the rest of this section the SHARED RESOURCE realised in the design will be referred to
as the repository). The application defines several test architectures, including a monocular
architecture for a single rear or front camera, a stereo version for dual rear cameras, a dual
monocular version for a single rear and front camera and finally, a rear stereo for two cam-
eras and a monocular front camera. Unfortunately, the final configuration could not be tested

https://doi.org/10.18489/sacj.v33i1.908

https://doi.org/10.18489/sacj.v33i1.908

Munro, D., Calitz, A. and Vogts, D.: Architecture and Architectural Patterns for Mobile Augmented Reality 73

‘ Shared Resource (Repository) ‘
x X 7
|
Queue“\ . \ :
Front S }—» Router S€| Detect ! .
‘ ront source seq‘ outer etector ‘ Frame/ etect}ons
b

. Frame/Detections
S e Tracker | .

A Frame Frame/DetectionE‘.
N \
Front

Camera

Queue : Detector |
Rear \ ! eq
Rear Source Router Renderer
| e seq Renderer]

Figure 5: An example architecture for separate detector/trackers for rear and front video streams.

Camera

as the test device did not seem to support more than two simultaneous video streams at the
hardware level.®

An example architecture for the case of single rear and front cameras is illustrated in Figure
5. The circular nodes on the left specify the Android camera handling code, which is currently
implemented in Kotlin” combined with RenderScript® (or optionally, CPU) based conversion
from the hardware native YUV video format to RGB required for CV-based processing (see
Munro (2020) for a more in depth description of utilising Renderscript for YUV conversion
documented as an Android specific idiom).

The frames from the camera handler are placed in an NDK level queue using Java Native
Interface (JNI) to interface with the C++ code. The source nodes are the first part of the task
graph and are responsible for removing frames from the queues, combining the frames with
identification information and placing them in a collection maintained by the repository. For
stereo configurations, the camera source nodes feed into a join node which marks the incoming
frames as stereo combinations in the repository. The source nodes (or join node in the stereo
case) pass the frame information (but not the data) to the router node, which routes the frame
information on to other nodes based on configuration information and current destination
node state. For example, detections may take some time so the detector should not receive
any further frames until it completes the current detection.

The detector nodes perform the April Tag or facial detection by using the frame sequence
to retrieve the frame data from the repository, performing the detection and then updating
detection information in the repository. For stereo operations, detection is performed on both
frames. In the current implementation, the tracker node is a no-operation node, but in a full
AR application, it would be used to perform tracking, which is usually assumed to be faster
and less resource intensive than detection. Finally the renderer node combines frame data and
detection information to render the output using a concrete renderer implementation, which

61t was possible to configure the cameras, but initiating the video streams resulted in hardware abstraction
layer (HAL) errors in the Android system logs.

7Recent updates to the NDK do include some C++ camera support, but the support is not as yet fully compre-
hensive

8An Android specific GPGPU API providing some of the functionality provided by GPU APIS such as OpenCL
or CUDA

https://doi.org/10.18489/sacj.v33i1.908

https://doi.org/10.18489/sacj.v33i1.908

Munro, D., Calitz, A. and Vogts, D.: Architecture and Architectural Patterns for Mobile Augmented Reality 74

Architecture FPS

Monocular Rear 30.147
Monocular Front 30.135
Stereo Rear 30.064
Front & Rear Monocular | 30.061

Table 1: Benchmark frame rates for different architectures (averaged over 10 runs).

implements an abstract renderer interface.

The test implementation uses a Vulkan-based renderer as Vulkan allows a fully multi-
threaded approach, as opposed to OpenGL, where all rendering must be done on the main
thread. However OpenGL rendering is also supported by placing rendering information in
a queue which can then be rendered on the main thread. The Vulkan renderer is a simple
implementation, which is all that is necessary for the test application, but the architectural
framework can also support scenegraph style rendering using Google’s Filament 3D framework
(Guy & Agopian, 2018b) for more advanced material-based rendering (See https://github.
com/donaldmunro/Bulb for a C++ scenegraph adaption for Filament that can be used with
the architectural framework).

The application was benchmarked using the maximum standard frame rate setting of 30fps
of the Android Camera2 API, unfortunately the newer high speed CameraConstrainedHighSpeed-
CaptureSession mode appears to only support direct output to a device display surface and not
programmatic capture. All benchmarks were also performed at the maximum resolution of
1920 x 1080, with the Monocular Rear and Stereo rear also performing April Tag detection,
the Monocular Front performing face detection and the Front & Rear Monocular performing
both types of detection. The results are summarised in Table 1. The performance scaled well
across multiple video streams maintaining consistently high frame rates while performing CV
detection tasks.

7 CONCLUSIONS

Designing MAR systems is complex due to MAR being a synthesis of many individually complex
technologies, such as 3D computer graphics, computer vision and mobile device programming.
In Section 3, the importance of utilising a coherent software architecture rather than resorting
to figurative “Big ball of mud” represented by the absence of any architecture was highlighted.
It would then seem reasonable to assume the existence of architectures applicable to MAR
design. In reality, the relative paucity of research into MAR design and architecture is evid-
ent when searching the literature, with the majority of MAR researchers concentrating on
innovating new technologies and improving the many existing technologies that contribute to
MAR, most references date back to the early-to-mid 2000’s (MacWilliams et al., 2004; Reicher,
2004). Also the number of developers interested in MAR development is increasing, due to
the power and ubiquity of mobile devices, and many of these developers do not have the spe-

https://doi.org/10.18489/sacj.v33i1.908

https://github.com/donaldmunro/Bulb
https://github.com/donaldmunro/Bulb
https://doi.org/10.18489/sacj.v33i1.908

Munro, D., Calitz, A. and Vogts, D.: Architecture and Architectural Patterns for Mobile Augmented Reality 75

cialised knowledge that MAR researchers do, thereby increasing the requirements for design
guidance when developing MAR applications. In light of this, the importance of providing a
viable modern architecture for MAR design is increasing.

The objective of this research has been to fill this void by proposing an architecture based
on two architectural patterns that can be applied to MAR design. The main requirement that
applies to MAR system architecture was identified as being the efficient processing in real-time
of multiple data streams, with the concomitant requirement for a high degree of parallelism in
the design. As a result of this analysis, two existing tried and tested patterns that are well suited
to meeting the aforementioned requirements and constraints, were adapted and documented
for architectural use in a MAR setting. Finally, in order to evaluate the architectural patterns,
an application was successfully developed and evaluated. As the evaluation was conducted
using an older non-flagship device, it also demonstrated the applicability of the architecture
across a wide range of candidate hardware. The source of the evaluation software is open
source and available for testing or adaption (see Section 6 for source URLSs).

Because the underlying nature of MAR will continue to involve real-time processing of data-
streams, the proposed architecture should remain applicable in the foreseeable future as new
technology will introduce more data streams and better parallelisation capabilities for imple-
mentations of the architecture. For example 3D point-cloud streams from depth sensors may
become commonplace, while increased CPU/GPU cores and the use of Field-Programmable
Gate Arrays (FPGA) for accelerating neural network object detection may improve parallelisa-
tion capabilities.

Future work could include:

+ Applying the architecture as part of a wider pattern language for MAR; and

« Extending the evaluation to a wider range of software artefact types, for example, util-

ising the architecture within an OO framework for MAR.
While this architecture has been specified with MAR in mind, it should also be possible to
apply it to other fields requiring real-time processing of large data streams, for example, many
multimedia applications have similar requirements.

References

Aldinucci, M., Danelutto, M., Kilpatrick, P. & Torquati, M. (2017). Fastflow: High-Level and
Efficient Streaming on Multicore. In S. Pllana & F. Xhafa (Eds.), Programming Multi-core
and Many-core Computing Systems (pp. 261-280). John Wiley; Sons, Inc. https://doi.
org/10.1002/9781119332015.ch13

Alexander, C. (1979). The Timeless Way of Building. Oxford University Press.

Bauer, M., Bruegge, B., Klinker, G., MacWilliams, A., Reicher, T., Riss, S., Sandor, C. & Wagner,
M. (2001). Design of a Component-Based Augmented Reality Framework. Proceedings
of the International Symposium on Augmented Reality (ISAR), 45-54. https://doi.org/10.
1109/ISAR.2001.970514

https://doi.org/10.18489/sacj.v33i1.908

https://doi.org/10.1002/9781119332015.ch13
https://doi.org/10.1002/9781119332015.ch13
https://doi.org/10.1109/ISAR.2001.970514
https://doi.org/10.1109/ISAR.2001.970514
https://doi.org/10.18489/sacj.v33i1.908

Munro, D., Calitz, A. and Vogts, D.: Architecture and Architectural Patterns for Mobile Augmented Reality 76

Billinghurst, M., Clark, A. & Lee, G. (2015). A Survey of Augmented Reality. Foundations and
Trends in Human-Computer Interaction, 8(2-3), 73-272. https://doi.org/10.1561/
1100000049

Booch, G. (2008). Architectural Organizational Patterns. IEEE Software, 25(3), 18-19. https:
//doi.org/10.1109/MS.2008.56

Booch, G., Maksimchuk, R., Engle, M., Conallen, J. & Houston, K. (2007). Object-oriented ana-
lysis and design with applications. Pearson Education. http://doi.org/10.1145/1402521.
1413138

Buschmann, F., Henney, K. & Schmidt, D. (2007a). Pattern oriented software architecture: On
patterns and pattern languages. John Wiley & Sons.

Buschmann, F., Henney, K. & Schmidt, D. (2007b). Pattern-Oriented Software Architecture: A
Pattern Language for Distributed Computing. John Wiley & Sons.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. & Stal, M. (1996). Pattern-oriented
Software Architecture: A System of Patterns. John Wiley & Sons, Inc.

Chang, C., Zhu, H., Li, M. & You, S. (2018). A Review of Visual-Inertial Simultaneous Localiza-
tion and Mapping from Filtering-Based and Optimization-Based Perspectives. Robotics,
7, 45. https://doi.org/10.3390/robotics7030045

Chen, Y. (2007). Decomposing DAGs into Disjoint Chains. In R. Wagner, N. Revell & G. Pernul
(Eds.), Proceedings of the 18th International Conference on Database and Expert Systems
Applications (pp. 243-253). Springer-Verlag. https://doi.org/10.1007/978-3-540-
74469-6

Foote, B. & Yoder, J. (1999). Big Ball of Mud. In Foote, B. and Harrison, N. and Rohnert,
H. (Ed.), Pattern Languages of Program Design 4 (pp. 29-37). Addison-Wesley Longman
Publishing Co., Inc.

Francois, A. (2003). Software Architecture for Computer Vision. In G. Medioni & S. B. Kang
(Eds.), Emerging Topics in Computer Vision (pp. 585-653). Prentice Hall PTR.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995). Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc.

Google. (2020). Google Glass 2 Specifications. https://www.google.com/glass/tech-specs

Guy, R. & Agopian, M. (2018a). Physically Based Rendering in Filament. https://lwn.net/
Articles/336224/

Guy, R. & Agopian, M. (2018b). Physically Based Rendering in Filament. https://google.
github.io/filament/Filament.html

HTC. (2020). HTC Vive Pro Specifications. https://www.vive.com/eu/product/vive-pro

Huang, Z., Li, W., Hui, P. & Peylo, C. (2014). CloudRidAR: A Cloud-Based Architecture for
Mobile Augmented Reality. Proceedings of the 2014 Workshop on Mobile Augmented Real-
ity and Robotic Technology-Based Systems, 29-34. https://doi.org/10.1145/2609829.
2609832

livari, J. (2015). Distinguishing and Contrasting Two Strategies for Design Science Research.
European Journal of Information Systems, 24(1), 107-115. https://doi.org/10.1057/
ejis.2013.35

https://doi.org/10.18489/sacj.v33i1.908

https://doi.org/10.1561/1100000049
https://doi.org/10.1561/1100000049
https://doi.org/10.1109/MS.2008.56
https://doi.org/10.1109/MS.2008.56
http://doi.org/10.1145/1402521.1413138
http://doi.org/10.1145/1402521.1413138
https://doi.org/10.3390/robotics7030045
https://doi.org/10.1007/978-3-540-74469-6
https://doi.org/10.1007/978-3-540-74469-6
https://www.google.com/glass/tech-specs
https://lwn.net/Articles/336224/
https://lwn.net/Articles/336224/
https://google.github.io/filament/Filament.html
https://google.github.io/filament/Filament.html
https://www.vive.com/eu/product/vive-pro
https://doi.org/10.1145/2609829.2609832
https://doi.org/10.1145/2609829.2609832
https://doi.org/10.1057/ejis.2013.35
https://doi.org/10.1057/ejis.2013.35
https://doi.org/10.18489/sacj.v33i1.908

Munro, D., Calitz, A. and Vogts, D.: Architecture and Architectural Patterns for Mobile Augmented Reality 77

Intel TBB. (2014). TBB Node Types. https://www.threadingbuildingblocks.org/docs/help/
index.htm#tbb_userguide/Task-Based_Programming.htmi

Khronos. (2015). OpenVX Standard. https://www.khronos.org/openvx/

Krasner, G. E. & Pope, S. T. (1988). A Cookbook for Using the Model-View Controller User
Interface Paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 1(3), 26—
49. https://www.ics.uci.edu/~redmiles/ics227-SQ04/papers/KrasnerPope88.pdf

MacWilliams, A., Reicher, T., Klinker, G. & Bruegge, B. (2004). Design Patterns for Augmented
Reality Systems. Proceedings of the IUI-CADUI*04 Workshop on Exploring the Design and
Engineering of Mixed Reality Systems - MIXER 2004. http://ceur-ws.org/Vol-91/
paperE4.pdf

Maier, M. W., Emery, D. & Hilliard, R. (2001). Software Architecture: Introducing IEEE Stand-
ard 1471. Computer, 34(4), 107-109. https://doi.org/10.1109/2.917550

McCool, M., Reinders, J. & Robison, A. (2012). Structured Parallel Programming: Patterns for
Efficient Computation (1st). Morgan Kaufmann Publishers Inc. https://doi.org/10.
1145/2382756.2382773

Microsoft. (2020). HoloLens 2 Specifications. https://www.microsoft.com/en-us/hololens/
hardware

Milgram, P. & Kishino, F. (1994). A Taxonomy of Mixed Reality Visual Displays. IEICE Transac-
tions on Information and Systems, E77-D(12), 1321-1329. http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.102.4646&type=pdf

Miller, A. (2010). The Task Graph Pattern. Proceedings of the 2010 Workshop on Parallel Pro-
gramming Patterns. https://doi.org/10.1145/1953611.1953619

Munro, D. (2020). Patterns and Pattern Languages for Mobile Augmented Reality (PhD Thesis).
Department of Computing Sciences, Nelson Mandela University, Port Elizabeth. https:
//donaldmunro.github.io/thesis/Patterns_and_Pattern_Languages_for_Mobile_
Augmented_Reality.pdf

Nunamaker, J., Chen, M. & Purdin, T. (1990). Systems Development in Information Systems Re-
search. Journal of Management Information Systems, 7(3), 89-106. 10.1080/07421222.
1990.11517898

Ortega-Arjona, J. L. (2003). The Shared Resource Pattern. An Activity Parallelism Architectural
Pattern for Parallel Programming. Proceedings of the 10th Conference on Pattern Languages
of Programming, PLoP. https://www.researchgate.net/profile/Jorge_Ortega-Arjona/
publication/272419733_The_Shared_Resource_Patterns_An_Activity_Parallelism_
Architectural_Pattern_for_Parallel_Programming/links/5509b4c70cf26198a63959f5/
The-Shared-Resource-Patterns-An-Activity-Parallelism-Architectural-Pattern-for-
Parallel-Programming.pdf

Piekarski, W. & Thomas, B. H. (2001). Tinmith-Evo5 - An Architecture for Supporting Mobile
Augmented Reality Environments. Proceedings IEEE and ACM International Symposium
on Augmented Reality, 177-178. https://doi.org/10.1109/ISAR.2001.970530

https://doi.org/10.18489/sacj.v33i1.908

https://www.threadingbuildingblocks.org/docs/help/index.htm#tbb_userguide/Task-Based_Programming.html
https://www.threadingbuildingblocks.org/docs/help/index.htm#tbb_userguide/Task-Based_Programming.html
https://www.khronos.org/openvx/
https://www.ics.uci.edu/~redmiles/ics227-SQ04/papers/KrasnerPope88.pdf
http://ceur-ws.org/Vol-91/paperE4.pdf
http://ceur-ws.org/Vol-91/paperE4.pdf
https://doi.org/10.1109/2.917550
https://doi.org/10.1145/2382756.2382773
https://doi.org/10.1145/2382756.2382773
https://www.microsoft.com/en-us/hololens/hardware
https://www.microsoft.com/en-us/hololens/hardware
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.4646&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.4646&type=pdf
https://doi.org/10.1145/1953611.1953619
https://donaldmunro.github.io/thesis/Patterns_and_Pattern_Languages_for_Mobile_Augmented_Reality.pdf
https://donaldmunro.github.io/thesis/Patterns_and_Pattern_Languages_for_Mobile_Augmented_Reality.pdf
https://donaldmunro.github.io/thesis/Patterns_and_Pattern_Languages_for_Mobile_Augmented_Reality.pdf
10.1080/07421222.1990.11517898
10.1080/07421222.1990.11517898
https://www.researchgate.net/profile/Jorge_Ortega-Arjona/publication/272419733_The_Shared_Resource_Patterns_An_Activity_Parallelism_Architectural_Pattern_for_Parallel_Programming/links/5509b4c70cf26198a63959f5/The-Shared-Resource-Patterns-An-Activity-Parallelism-Architectural-Pattern-for-Parallel-Programming.pdf
https://www.researchgate.net/profile/Jorge_Ortega-Arjona/publication/272419733_The_Shared_Resource_Patterns_An_Activity_Parallelism_Architectural_Pattern_for_Parallel_Programming/links/5509b4c70cf26198a63959f5/The-Shared-Resource-Patterns-An-Activity-Parallelism-Architectural-Pattern-for-Parallel-Programming.pdf
https://www.researchgate.net/profile/Jorge_Ortega-Arjona/publication/272419733_The_Shared_Resource_Patterns_An_Activity_Parallelism_Architectural_Pattern_for_Parallel_Programming/links/5509b4c70cf26198a63959f5/The-Shared-Resource-Patterns-An-Activity-Parallelism-Architectural-Pattern-for-Parallel-Programming.pdf
https://www.researchgate.net/profile/Jorge_Ortega-Arjona/publication/272419733_The_Shared_Resource_Patterns_An_Activity_Parallelism_Architectural_Pattern_for_Parallel_Programming/links/5509b4c70cf26198a63959f5/The-Shared-Resource-Patterns-An-Activity-Parallelism-Architectural-Pattern-for-Parallel-Programming.pdf
https://www.researchgate.net/profile/Jorge_Ortega-Arjona/publication/272419733_The_Shared_Resource_Patterns_An_Activity_Parallelism_Architectural_Pattern_for_Parallel_Programming/links/5509b4c70cf26198a63959f5/The-Shared-Resource-Patterns-An-Activity-Parallelism-Architectural-Pattern-for-Parallel-Programming.pdf
https://doi.org/10.1109/ISAR.2001.970530
https://doi.org/10.18489/sacj.v33i1.908

Munro, D., Calitz, A. and Vogts, D.: Architecture and Architectural Patterns for Mobile Augmented Reality 78

Reicher, T. (2004). A Framework for Dynamically Adaptable Augmented Reality Systems (Dis-
sertation). Technische Universitdt Miinchen. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.676.8644&type=pdf

Ren, J., He, Y., Huang, G., Yu, G., Cai, Y. & Zhang, Z. (2019). An Edge-Computing Based
Architecture for Mobile Augmented Reality. IEEE Network, 33(4), 162-169. https://doi.
org/10.1109/MNET.2018.1800132

Ton That, T. M., Sadou, S. & Oquendo, F. (2012). Using Architectural Patterns to Define Archi-
tectural Decisions. Working IEEE/IFIP Conference on Software Architecture & European
Conference on Software Architecture, 196-200. https://doi.org/10.1109/WICSA -
ECSA.212.28

Valoriani, M. (2016). Introduction to Mixed Reality with Hololens. https://www.slideshare.
net/MatteoValoriani/etna-dev-2016-introduction-to-mixed-reality-with-hololens

Voss, M., Asenjo, R. & Reinders, J. (2019). Pro tbb: C+ + parallel programming with threading
building blocks (1st). Apress. https://doi.org/10.1007/978-1-4842-4398-5

Wang, J. & Olson, E. (2016). AprilTag 2: Efficient and Robust Fiducial Detection. Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). https:
//doi.org/10.1109/IR0S.2016.7759617

https://doi.org/10.18489/sacj.v33i1.908

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.676.8644&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.676.8644&type=pdf
https://doi.org/10.1109/MNET.2018.1800132
https://doi.org/10.1109/MNET.2018.1800132
https://doi.org/10.1109/WICSA-ECSA.212.28
https://doi.org/10.1109/WICSA-ECSA.212.28
https://www.slideshare.net/MatteoValoriani/etna-dev-2016-introduction-to-mixed-reality-with-hololens
https://www.slideshare.net/MatteoValoriani/etna-dev-2016-introduction-to-mixed-reality-with-hololens
https://doi.org/10.1007/978-1-4842-4398-5
https://doi.org/10.1109/IROS.2016.7759617
https://doi.org/10.1109/IROS.2016.7759617
https://doi.org/10.18489/sacj.v33i1.908

	Introduction
	Mobile Augmented Reality Classification
	Software Architecture and Architectural Patterns
	Related Work
	Proposed Software Architecture for MAR
	Implementation Tools
	Architectural Patterns
	The Architectural Task Graph Pattern
	The Shared Resource Pattern

	Evaluation
	Conclusions

