Offline Signature Verification using Locally Optimized Distance-based Classification
DOI:
https://doi.org/10.18489/sacj.v50i1.152Keywords:
Biometrics, pattern recognition, distance-based classificationAbstract
Although handwritten signature verification has been extensively researched, it has not achieved an optimal classification accuracy rate. Therefore, efficient and accurate signature verification techniques are required since signatures are still widely used as a means of personal verification. This research work presents efficient distance-based classification techniques as an alternative to supervised learning classification techniques (SLTs). The Local Directional Pattern (LDP) feature extraction technique was used to analyze the effect of using several different distance-based classification techniques. The classification techniques tested, are the Euclidean, Manhattan, Fractional, weighted Euclidean, weighted Manhattan, weighted fractional distances and individually optimized resampling of feature vector sizes. The best accuracy, of 90.8%, was achieved through applying a combination of the weighted fractional distances and locally optimized resampling classification techniques to the Local Directional Pattern feature extraction. These results are compared with results from literature, where the same feature extraction technique was classified with SLTs. The distance-based classification was found to produce greater accuracy than the SLTs.Downloads
Additional Files
Published
2013-07-26
Issue
Section
Research Papers (general)
License
Copyright of all work published here subsists in the authors. While SACJ retains right of first publication, subsequent re-publication is expressly permitted provided the original SACJ publication is acknowledged and cited, according to the terms detailed below. If plagiarism is detected during review, a paper may be summarily rejected and will not be accepted unless even minor infringements are corrected. Should plagiarism be detected after a paper is published, the Editor reserves the right to withdraw a paper from publication. We expect authors to be honest in representing work as their own, and to respect the time and effort our reviewers put in without an undue burden of policing plagiarism, and hence take violations seriously. SACJ applies the Creative Commons Attribution NonCommercial 4.0 License (CC BY-NC 4.0) to all papers published in this journal. Authors who publish with SACJ agree to the following:- Authors retain copyright and grant SACJ right of first publication. The work is additionally licensed under a Creative Commons Attribution Non-Commercial License that requires others who share the work to acknowledge the work’s authorship and initial publication in SACJ. Should anyone else wish to make commercial use of the work, SACJ cedes the right to the author to negotiate terms and does not expect to be paid any royalties.
- Authors may enter into additional arrangements for non-exclusive distribution of the SACJ-published version of the work (e.g., post it to a repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are required to refrain from posting their work online prior to completion of reviews so as not to compromise double-blind reviewing or confuse plagiarism checks.