Adaptive SVM for Data Stream Classification
DOI:
https://doi.org/10.18489/sacj.v29i1.414Keywords:
Incremental Learning, SVM, Action ClassificationAbstract
In this paper, we address the problem of learning an adaptive classifier for the classification of continuous streams of data. We present a solution based on incremental extensions of the Support Vector Machine (SVM) learning paradigm that updates an existing SVM whenever new training data are acquired. To ensure that the SVM effectiveness is guaranteed while exploiting the newly gathered data, we introduce an on-line model selection approach in the incremental learning process. We evaluated the proposed method on real world applications including on-line spam email filtering and human action classification from videos. Experimental results show the effectiveness and the potential of the proposed approach.Downloads
Published
2017-07-08
Issue
Section
Research Papers (general)
License
Copyright of all work published here subsists in the authors. While SACJ retains right of first publication, subsequent re-publication is expressly permitted provided the original SACJ publication is acknowledged and cited, according to the terms detailed below. If plagiarism is detected during review, a paper may be summarily rejected and will not be accepted unless even minor infringements are corrected. Should plagiarism be detected after a paper is published, the Editor reserves the right to withdraw a paper from publication. We expect authors to be honest in representing work as their own, and to respect the time and effort our reviewers put in without an undue burden of policing plagiarism, and hence take violations seriously. SACJ applies the Creative Commons Attribution NonCommercial 4.0 License (CC BY-NC 4.0) to all papers published in this journal. Authors who publish with SACJ agree to the following:- Authors retain copyright and grant SACJ right of first publication. The work is additionally licensed under a Creative Commons Attribution Non-Commercial License that requires others who share the work to acknowledge the work’s authorship and initial publication in SACJ. Should anyone else wish to make commercial use of the work, SACJ cedes the right to the author to negotiate terms and does not expect to be paid any royalties.
- Authors may enter into additional arrangements for non-exclusive distribution of the SACJ-published version of the work (e.g., post it to a repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are required to refrain from posting their work online prior to completion of reviews so as not to compromise double-blind reviewing or confuse plagiarism checks.