A model to improve the routing performance of Cognitive Radio Wireless Mesh Networks
DOI:
https://doi.org/10.18489/sacj.v29i3.524Keywords:
Cognitive Radio, Cognitive Radio Network, Radio Frequency Spectrum, Routing Protocol, Wireless Mesh NetworksAbstract
The increasing demand for broadband wireless technologies has led to the scarcity, inefficient utilization, and underutilization of the spectrum. The Cognitive Radio (CR) technology has emerged as the promising solution which improves the utilization of the spectrum. However, routing is a challenge due to the dynamic nature of the CR networks. The link quality varies in space and time as nodes join and leave the network. The network connectivity is intermittent due to node mobility and the activities of the primary user. The spectrum aware, spectrum agile, and interference aware routing protocols are vital for the sturdiness of the network and efficient utilization of the resources. We propose an interference aware, spectrum aware, and agile extended Weighted Cumulative Expected Transmission Time (xWCETT) routing protocol. The protocol integrates the features of the Ad-hoc On-demand Distance Vector (AODV) and the weighted cumulative expected transmission time (WCETT) routing protocols. The xWCETT was simulated using the Network Simulator 2 and its performance compared with the AODV and the WCETT routing protocols. The xWCETT was evaluated with respect to quality of service related metrics and the results show that it outperformed the AODV and WCETT routing protocols.Downloads
Published
2017-12-08
Issue
Section
Research Papers (general)
License
Copyright of all work published here subsists in the authors. While SACJ retains right of first publication, subsequent re-publication is expressly permitted provided the original SACJ publication is acknowledged and cited, according to the terms detailed below. If plagiarism is detected during review, a paper may be summarily rejected and will not be accepted unless even minor infringements are corrected. Should plagiarism be detected after a paper is published, the Editor reserves the right to withdraw a paper from publication. We expect authors to be honest in representing work as their own, and to respect the time and effort our reviewers put in without an undue burden of policing plagiarism, and hence take violations seriously. SACJ applies the Creative Commons Attribution NonCommercial 4.0 License (CC BY-NC 4.0) to all papers published in this journal. Authors who publish with SACJ agree to the following:- Authors retain copyright and grant SACJ right of first publication. The work is additionally licensed under a Creative Commons Attribution Non-Commercial License that requires others who share the work to acknowledge the work’s authorship and initial publication in SACJ. Should anyone else wish to make commercial use of the work, SACJ cedes the right to the author to negotiate terms and does not expect to be paid any royalties.
- Authors may enter into additional arrangements for non-exclusive distribution of the SACJ-published version of the work (e.g., post it to a repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are required to refrain from posting their work online prior to completion of reviews so as not to compromise double-blind reviewing or confuse plagiarism checks.