Clustering Residential Electricity Consumption Data to Create Archetypes that Capture Household Behaviour in South Africa
DOI:
https://doi.org/10.18489/sacj.v32i2.845Abstract
Clustering is frequently used in the energy domain to identify dominant electricity consumption patterns of households, which can be used to construct customer archetypes for long term energy planning. Selecting a useful set of clusters however requires extensive experimentation and domain knowledge. While internal clustering validation measures are well established in the electricity domain, they are limited for selecting useful clusters. Based on an application case study in South Africa, we present an approach for formalising implicit expert knowledge as external evaluation measures to create customer archetypes that capture variability in residential electricity consumption behaviour. By combining internal and external validation measures in a structured manner, we were able to evaluate clustering structures based on the utility they present for our application. We validate the selected clusters in a use case where we successfully reconstruct customer archetypes previously developed by experts. Our approach shows promise for transparent and repeatable cluster ranking and selection by data scientists, even if they have limited domain knowledge.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Wiebke Toussaint, Deshendran Moodley
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright of all work published here subsists in the authors. While SACJ retains right of first publication, subsequent re-publication is expressly permitted provided the original SACJ publication is acknowledged and cited, according to the terms detailed below. If plagiarism is detected during review, a paper may be summarily rejected and will not be accepted unless even minor infringements are corrected. Should plagiarism be detected after a paper is published, the Editor reserves the right to withdraw a paper from publication. We expect authors to be honest in representing work as their own, and to respect the time and effort our reviewers put in without an undue burden of policing plagiarism, and hence take violations seriously. SACJ applies the Creative Commons Attribution NonCommercial 4.0 License (CC BY-NC 4.0) to all papers published in this journal. Authors who publish with SACJ agree to the following:- Authors retain copyright and grant SACJ right of first publication. The work is additionally licensed under a Creative Commons Attribution Non-Commercial License that requires others who share the work to acknowledge the work’s authorship and initial publication in SACJ. Should anyone else wish to make commercial use of the work, SACJ cedes the right to the author to negotiate terms and does not expect to be paid any royalties.
- Authors may enter into additional arrangements for non-exclusive distribution of the SACJ-published version of the work (e.g., post it to a repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are required to refrain from posting their work online prior to completion of reviews so as not to compromise double-blind reviewing or confuse plagiarism checks.