An adaptive, probabilistic, cognitive agent architecture for modelling sugarcane growers’ operational decision-making
DOI:
https://doi.org/10.18489/sacj.v34i1.857Abstract
Building computational models of agents in dynamic, partially observable and stochastic environments is challenging. We propose a cognitive computational model of sugarcane growers’ daily decision-making to examine sugarcane supply chain complexities. Growers make decisions based on uncertain weather forecasts; cane dryness; unforeseen emergencies; and the mill’s unexpected call for delivery of a different amount of cane. The Belief-Desire-Intention (BDI) architecture has been used to model cognitive agents in many domains, including agriculture. However, typical implementations of this architecture have represented beliefs symbolically, so uncertain beliefs are usually not catered for. Here we show that a BDI architecture, enhanced with a dynamic decision network (DDN), suitably models sugarcane grower agents’ repeated daily decisions. Using two complex scenarios, we demonstrate that the agent selects the appropriate intention, and suggests how the grower should act adaptively and proactively to achieve his goals. In addition, we provide a mapping for using a DDN in a BDI architecture. This architecture can be used for modelling sugarcane grower agents in an agent-based simulation. The mapping of the DDN’s use in the BDI architecture enables this work to be applied to other domains for modelling agents’ repeated decisions in partially observable, stochastic and dynamic environments
Downloads
Published
2022-07-22
Issue
Section
Research Papers (general)
License
Copyright (c) 2022 Catherine Susan Price
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright of all work published here subsists in the authors. While SACJ retains right of first publication, subsequent re-publication is expressly permitted provided the original SACJ publication is acknowledged and cited, according to the terms detailed below. If plagiarism is detected during review, a paper may be summarily rejected and will not be accepted unless even minor infringements are corrected. Should plagiarism be detected after a paper is published, the Editor reserves the right to withdraw a paper from publication. We expect authors to be honest in representing work as their own, and to respect the time and effort our reviewers put in without an undue burden of policing plagiarism, and hence take violations seriously. SACJ applies the Creative Commons Attribution NonCommercial 4.0 License (CC BY-NC 4.0) to all papers published in this journal. Authors who publish with SACJ agree to the following:- Authors retain copyright and grant SACJ right of first publication. The work is additionally licensed under a Creative Commons Attribution Non-Commercial License that requires others who share the work to acknowledge the work’s authorship and initial publication in SACJ. Should anyone else wish to make commercial use of the work, SACJ cedes the right to the author to negotiate terms and does not expect to be paid any royalties.
- Authors may enter into additional arrangements for non-exclusive distribution of the SACJ-published version of the work (e.g., post it to a repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are required to refrain from posting their work online prior to completion of reviews so as not to compromise double-blind reviewing or confuse plagiarism checks.