A Study of Evolutionary Algorithm Selection Hyper-Heuristics for the One-Dimensional Bin-Packing Problem
DOI:
https://doi.org/10.18489/sacj.v48i1.87Keywords:
Hyper-heuristics, one-dimensional bin-packing, evolutionary algorithmsAbstract
Hyper-heuristics are aimed at providing a generalized solution to optimization problems rather than producing the best result for one or more problem instances. This paper examines the use of evolutionary algorithm (EA) selection hyper-heuristics to solve the offline one-dimensional bin-packing problem. Two EA hyper-heuristics are evaluated. The first (EA-HH1) searches a heuristic space of combinations of low-level construction heuristics for bin selection. The second (EA-HH2) explores a space of combinations of both item selection and bin selection heuristic combinations. These EA hyper-heuristics use tournament selection to choose parents, and mutation and crossover with hill-climbing to create the offspring of each generation. The performance of the hyper-heuristics is compared to that of each of the low-level heuristics applied independently to solve this problem. Furthermore, the performance of both hyper-heuristics is also compared. The comparisons revealed that hyper-heuristics in general perform better than any single low-level construction heuristic in solving the problem. In addition to this it was found that the hyper-heuristic exploring a space of both item selection and bin selection heuristic combinations is more effective than the hyper-heuristic searching a space of just bin selection heuristic combinations. The performance of this hyper-heuristic was found to be comparable to other methods applied to the same benchmark sets of problems.Downloads
Published
2012-06-26
Issue
Section
Research Papers (general)
License
Copyright of all work published here subsists in the authors. While SACJ retains right of first publication, subsequent re-publication is expressly permitted provided the original SACJ publication is acknowledged and cited, according to the terms detailed below. If plagiarism is detected during review, a paper may be summarily rejected and will not be accepted unless even minor infringements are corrected. Should plagiarism be detected after a paper is published, the Editor reserves the right to withdraw a paper from publication. We expect authors to be honest in representing work as their own, and to respect the time and effort our reviewers put in without an undue burden of policing plagiarism, and hence take violations seriously. SACJ applies the Creative Commons Attribution NonCommercial 4.0 License (CC BY-NC 4.0) to all papers published in this journal. Authors who publish with SACJ agree to the following:- Authors retain copyright and grant SACJ right of first publication. The work is additionally licensed under a Creative Commons Attribution Non-Commercial License that requires others who share the work to acknowledge the work’s authorship and initial publication in SACJ. Should anyone else wish to make commercial use of the work, SACJ cedes the right to the author to negotiate terms and does not expect to be paid any royalties.
- Authors may enter into additional arrangements for non-exclusive distribution of the SACJ-published version of the work (e.g., post it to a repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are required to refrain from posting their work online prior to completion of reviews so as not to compromise double-blind reviewing or confuse plagiarism checks.